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Partial Metric Topology
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ABSTRACT: Metric spaces are inevitably Hausdorff and so cannot, for example, be
used to study non-Hausdorff topologies such as those required in the Tarskian ap-
proach to programming language semantics. This paper presents a symmetric gener-
alised metric for such topologies, an approach which sheds new light on how metric
tools such as Banach’s Theorem can be extended to non-Hausdorff topologies.

INTRODUCTION

In the study of the denotational semantics of programming languages a topological
model is constructed for a programming language defined as a system of logic. More
often than not this means a T0 model for the lambda calculus in the spirit of Scott [12].
However, the necessity in this approach that all suitable models must be T0 appears
to remove any possibility that the theory of metric space (which are of course all T2)
can be applied in any way to semantics in Computer Science. Rare exceptions to this
rule are the use of quasi-metrics by Smyth in [11] to describe T0 spaces, or the use of
a metric super topology for a T0 space by Lawson in [8]. If metrics are to be used at
all then the more conventional wisdom in Computer Science would dismiss Scott’s T0

approach in favour of a purely metric approach such as that of de Bakker and Zucker
[1]. Unfortunately, the latter T2 approach pays the price of losing the notion of partial
ordering inherent in T0 spaces, a concept of fundamental importance in any Tarskian
approach to fixed point semantics [13]. The distinct advantage of using quasi-metrics
is that such generalised metrics can be used to define T0 topologies with partial order-
ings, and so allow Tarskian semantics. Quasi-metrics are not without their problems
though. Being non-symmetric a quasi-metric is arguably an ”unnatural” notion of
distance. A more important criticism is that the lack of symmetry sheds little light
on how to develop tools for reasoning about programs using quasi-metric ideas. The
title Reconciling Domains with Metric Spaces of Smyth’s paper [11] indicates a much
desired long term goal allegedly argued for by Dana Scott that partial order semantics
should one day have a metric foundation. In All Topologies come from Generalised
Metrics [5], Kopperman infers that such a foundation might just be possible. This
may or may not be of interest to topologists in general as many of the more pleas-
ant T2 properties usually associated with metric spaces may be lost in a process of
generalisation. However,
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the point that metrics can, if only in principle, be generalised to explore non-T2-
topologies is firmly established. The problem now is that there is little agreement on
how this should be done.

In this paper the author’s partial metric [9] is used to present a unifying frame-
work for all the approaches mentioned above for studying T0 topologies using a distance
function.

BACKGROUND DEFINITIONS AND RESULTS

DEFINITION 2.1: A basis B for a topology is σ-disjoint if there exists B1, B2, ...
⊆ B such that,

B = ∪ {Bn|n ∈ ω} and,

∀n ∈ ω ∀B, B′ ∈ Bn, B ∩B′ = φ.

DEFINITION 2.2: A partial ordering is a binary relation �⊆ U2 such that,

(PO1) ∀ x ∈ U, x � x
(PO2) ∀ x, y ∈ U, x � y ∩ y � x ⇒ x = y
(PO3) ∀ x, y, z ∈ U, x � y ∩ y � z ⇒ x � z

Within the field of Computer Science, which originally motivated this work, � is
used an an information ordering in which x � y is interpreted as all the information
contained in x is also contained in y. We now establish the usual relationship in Com-
puter Science between topology and the information ordering. The topology usually
placed upon U will at least be T0, and will also be consistent with � in the following
sense.

DEFINITION 2.3: A weakly order consistent topology is a weaker version of the
order consistent topology [2] as used in lattice theory for which in addition suprema
of directed sets are their limits. As the work in this paper requires neither directed
sets nor lattices we work only with weakly order consistent topologies. An interesting
example of a weakly order consistent topology is the topology of all upwardly closed
sets,

T [�] ::= {S ⊆ U |∀x ∈ S, x � y ⇒ y ∈ S}.
Thus, for example, for the usual partial ordering ≤⊆ (ω ∪ {∞})2 on the non-

negative integers with infinity,

T [≤] = {{n, n + 1, . . . ,∞}|n ∈ ω ∪ {∞}}.

Each T0 topology is weakly order consistent if and only if it is a topology of
upwardly closed sets. Given any T0 topology the information ordering can be recovered
using the specialisation ordering defined by x � y ⇒ x ∈ cl({y}), a topic discussed
more fully elsewhere [3]. In Computer Science we are interested in totally ordered
sequences X ∈ Uω of the form X0 � X1 � X2 � . . ., called chains,
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of increasing information, the least upper bound lub(X) of which is intended to cap-
ture the notion of the amount of information defined by the chain. To ensure that
lub(X) cannot contain more information than can be derived from the members of the
chain X we insist that our topologies have the following property.

DEFINITION 2.4: A Scott-like topology over a partial ordering �⊆ U2 is a weakly
order consistent topology T over U such that for each chain X ∈ Uω, lub(X) exists,
and,

∀O ∈ T , lub(X) ∈ O ⇒ ∃k ∈ ω∀n > k, Xn ∈ O.

In other words, the least upper bound of a chain must be a limit of that chain. The
term Scott-like topology introduced here is a weaker version of the term Scott topology
[2] used in the study of continuous lattices. As the results in this paper do not need the
full strength of the Scott topology we work only with the weaker Scott-like topology.

DEFINITION 2.5: A metric is a function d : U2 →R such that,

(M1) ∀ x, y ∈ U, x = y ⇔ d(x, y) = 0
(M2) ∀ x, y ∈ U, d(x, y) = d(y, x)
(M3) ∀ x, y, z ∈ U, d(x, z) ≤ d(x, y) + d(y, z)

DEFINITION 2.6: A quasi-metric is a function q : U2 →R such that,

(Q1) ∀ x, y ∈ U, x = y ⇔ q(x, y) = q(y, x) = 0
(Q2) ∀ x, y, z ∈ U, q(x, z) ≤ q(x, y) + q(y, z)

LEMMA 2.1: For each quasi-metric q : U2 → R the relation �q⊆ U2 defined by,
∀x, y ∈ U, x �q y ⇔ q(x, y) = 0 is a partial ordering.

LEMMA 2.2: For each quasi-metric q : U2 → R the set of all open balls of the
form,

Bq
ε (x) ::= {y ∈ U |q(x, y) < ε}

for each x ∈ U and ε > 0 is the basis for a weakly consistent topology T [q] over �q.

The following example shows how the well-known Hausdorff metric [7] can be gen-
eralised.

EXAMPLE 2.1: For each complete bounded metric d : U2 → R and for each
collection of closed sets U ⊆ 2U the function q : U2 →R where,

∀X, Y ∈ U , q(X, Y ) ::= sup{inf{d(x, y)|y ∈ Y }|x ∈ X}

is a quasi-metric such that, ∀X, Y ∈ U , X �q Y ⇔ X ⊆ Y .

LEMMA 2.3: For each quasi-metric q : U2 → R the symmetrisation function
qS : U2 →R for q where,

∀x, y ∈ U, qS(x, y) ::= q(x, y) + q(y, x)

is a metric such that T [q] ⊆ T [qS ].

LEMMA 2.4: (The quasi-metric contraction mapping theorem) For each qua-
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si-metric q : U2 → R such that qS is complete, and for each function f : U → U such
that,

∃0 ≤ c < 1 ∀ x, y ∈ U, q(f(x), f(y)) ≤ c× q(x, y)

called a contraction, there exists a unique a ∈ U such that a = f(a).

Trivially, each constant function is a contraction, and so the fixed point obtained
by the quasi-metric contraction mapping theorem is not in general maximal. Thus, as
objects with totally defined information content will always be maximal this theorem
cannot be used within Computer Science to prove that recursive definitions specify
such totally defined objects. The root of the problem here is that the quasi-metric
gives us no way of measuring the definedness of an object, and so no way of discussing
total definedness. The next definition attempts to ”re-axiomatise” the metric in order
to overcome precisely this problem.

THE PARTIAL METRIC

DEFINITION 3.1: A partial metric or pmetric [9] (pronounced ”p-metric”) is a
function p : U2 →R such that,

(P1) ∀ x, y ∈ U, x = y ⇔ p(x, x) = p(x, y) = p(y, y)
(P2) ∀ x, y ∈ U, p(x, x) ≤ p(x, y)
(P3) ∀ x, y ∈ U, p(x, y) = p(y, x)
(P4) ∀ x, y, z ∈ U, p(x, z) ≤ p(x, y) + p(y, z)− p(y, y)

The pmetric axioms P1 thru P4 are intended to be a minimal generalisation of the
metric axioms M1 thru M3 such that each object does not necessarily have to have
zero distance from itself. In this generalisation we manage to preserve the symmetry
axiom M2 to get P3, but have to ”massage” the transitivity axiom M3 to produce the
generalisation P4 (originally suggested to the author in [16]). Consequently a metric
is precisely a pmetric p : U2 →R such that,

∀ x ∈ U, p(x, x) = 0.

”Half” of the metric axiom M1 is preserved as,

∀ x, y ∈ U, p(x, y) = 0 ⇒ x = y

However, the converse implication does not generally hold. p(x, x), referred to as the
size or weight of x, is a feature used to describe the amount of information contained
in x. The smaller p(x, x) the more defined x is, being totally defined if p(x, x) = 0.

EXAMPLE 3.1: In Computer Science a flat domain is a partial ordering of the
form �⊆ (S ∪ {⊥})2 consisting of a set S of totally defined objects together with the
special undefined object ⊥ 6∈ S (pronounced ”bottom”), and ordering defined by,

∀ x, y ∈ S ∪ {⊥}, x � y ⇔ x = ⊥ ∨ x = y ∈ S.

Such a domain can be defined by the flat pmetric p : (S ∪ {⊥})2 → {0, 1} where,
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∀ x, y ∈ S ∪ {⊥}, p(x, y) = 0 ⇔ x = y ∈ S

Note how the condition p(x, x) = 0 precisely captures the flat domain notion x ∈ S of
total definedness.

DEFINITION 3.2: An open ball for a pmetric p : U2 →R is a set of the form,

Bp
ε (x) ::= {y ∈ U |p(x, y) < ε}

for each ε > 0 and x ∈ U .
Note that, unlike their metric counterparts, some pmetric open balls may be empty.

For example, if p(x, x) > 0 then Bp
p(x,x)(x) = φ.

THEOREM 3.1: The set of all open balls of a pmetric p : U2 → R is the basis of
a topology T [p] over U .

Proof: As, U = ∪x∈UBp
p(x,x)+1(x) and, for any balls Bp

ε (x) and Bp
δ (y),

Bp
ε (x) ∩Bp

δ (y) = ∪{Bp
η(z)|z ∈ Bp

ε (x) ∩Bp
δ (y)}

where, η ::= p(z, z) + min{ε− p(x, z), δ − p(y, z)}. 2

THEOREM 3.2: For each pmetric p, open ball Bp
ε (a), and x ∈ Bp

ε (a), there exists
δ > 0 such that x ∈ Bp

δ (x) ⊆ Bp
ε (a).

Proof:
Suppose x ∈ Bp

ε (a).
Then p(x, a) < ε.
Let δ ::= ε− p(x, a) + p(x, x).
Then δ > 0 as ε > p(x, a).
Also, p(x, x) < δ as ε > p(x, a).
Thus x ∈ Bp

δ (x).

Suppose now that y ∈ Bp
δ (x).

∴ p(y, x) < δ.
∴ p(y, x) < ε− p(x, a) + p(x, x).
∴ p(y, x) + p(x, a)− p(x, x) < ε.
∴ p(y, a) < ε (by P4).
∴ y ∈ Bp

ε (a).
Thus Bp

δ (x) ⊆ Bp
ε (a). 2

Using the last result it can be shown that each sequence X ∈ Uω converges to an
object a ∈ U if and only if,

lim
n→∞

p(Xn, a) = p(a, a).

THEOREM 3.3: Each pmetric topology is T0.

Proof: Suppose p : U2 → R is a pmetric, and suppose x 6= y ∈ U , then, from
P1 & P2 (wlog) p(x, x) < p(x, y), and so,

x ∈ Bp
ε (x) ∧ y 6∈ Bp

ε (x),

where, ε ::= (p(x, x) + p(x, y))/2. 2

So far we have shown that a partial metric p can quantify the amount of infor-
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mation in an object x using the numerical measure p(x, x), and also that p has an
open ball topology. This would not be of much use in Computer Science without a
partial ordering.

DEFINITION 3.3: For each pmetric p : U2 →R, �p⊆ U2 is the binary relation
such that,

∀x, y ∈ U, x �p y ⇔ p(x, x) = p(x, y).

THEOREM 3.4: For each pmetric p, �p is a partial ordering.

Proof: We prove P01 thru PO3.

(PO1) ∀x ∈ U, x �p x as p(x, x) = p(x, x).

(PO2) ∀x, y ∈ U, x �p y ∧ y �p x
⇒ p(x, x) = p(x, y) = p(y, y) (by P3)
⇒ x = y (by P1).

(PO3) ∀x, y, z ∈ U, x �p y ∧ y �p z
⇒ p(x, x) = p(x, y) ∧ p(y, y) = p(y, z).
But by P4, p(x, z) ≤ p(x, y) + p(y, z)− p(y, y)
∴ p(x, z) ≤ p(x, x)
∴ p(x, z) = p(x, x) (by P2)
∴ x �p z. 2

EXAMPLE 3.2: The concept of a vague real number might be constructed as a
nonempty closed interval on the real line. The function p : {[a, b]|a ≤ b}2 → R over
all such intervals where,

∀[a, b], [c, d], p([a, b], [c, d]) ::= max{b, d} −min{a, c}

is a pmetric such that [a, b] �p [c, d] ⇔ [c, d] ⊆ [a, b], read as [c, d] is a more precise
version of [a, b]. Also we can use p([a, b], [c, d]) to measure the degree of vagueness of
a vague number [a, b].

EXAMPLE 3.3: Gilles Kahn’s model of parallel computation [4] consists of a
set of computing processes sending unending streams of information from one process
to another. Such streams can easily be modelled using the well-known Baire metric
d : (Sω)2 →R of ω-sequences over a set S defined by,

∀x, y ∈ Sω, d(x, y) = 2−sup{i|i∈ω∧∀j<i,xj=yj}

However, such networks of processes must have partially defined streams of information
as well as the totally defined infinite streams if a least fixed point semantics [13] is
to be possible, and so we need to add the set S∗ of all finite sequences. The desired
initial segment partial ordering on S∗ ∪ Sω is,

∀x, y ∈ S∗ ∪ Sω, x � y ⇔ length(x) ≤ length(y)and, ∀i < length(x), xi = yi.
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The Baire metric can be extended to the set S∗ ∪ Sω of all finite and infinite
sequences over S by the Baire pmetric p : (S∗ ∪ Sω)2 →R where,

∀x, y ∈ S∗ ∪ Sω, p(x, y) = 2−sup{i|i≤length(x)∧i≤length(y)∧∀j<i,xj=yj}.

Note that for each x, p(x, y) = 2−length(x), and thus the condition p(x, x) = 0 (as
in Example 3.1) can be used to distinguish between the totally defined objects which
comprise the Baire space and the remaining partial objects.

If x � y for an information ordering � then y must have at least as much infor-
mation as x. To see that �p does indeed have this property the following result can
be deduced from axioms P1 & P2.

∀x, y ∈ U, x �p y ⇒ p(x, x) ≥ p(y, y)

From this we can conclude that totally defined objects are indeed maximal in the
pmetric framework, and also derive an interesting result for chains. If X ∈ Uω is a
chain converging to a ∈ U , and if in addition,

lim
n→∞

p(Xn, Xm) = p(a, a)

then the least upper bound of X must exist, and this will be a.

THEOREM 3.5: For each pmetric p, T [p] ⊆ T [�p], that is, T [p] is a weakly
order consistent topology over �p.

Proof: It is sufficient to show that,

∀x ∈ U ∀ε > 0. Bp
ε (x) = ∪ {{z|y �p z}|y ∈ Bp

ε (x)}.

Suppose x, y, z ∈ U and ε > 0 are such that y ∈ Bp
ε (x) and y �p z. Then,

p(x, z) ≤ p(x, y) + p(y, z)− p(y, y) (by P4)

= p(x, y) as y �p z

< ε as y ∈ Bp
ε (x).

Thus, z ∈ Bp
ε (x). 2

Thus T [p] is a Scott-like topology over �p if each chain X has a least upper bound
and if,

lim
n→∞

p(Xn, Xm) = p(lub(X), lub(X))

THEOREM 3.6: For each pmetric p : U2 →R, T [p] = T [�p], if and only if,

∀x ∈ U,∃ε > 0, Bp
ε (x) = {y|x �p y}

Proof: Suppose first that, ∀x ∈ U∃ε > 0, Bp
ε (x) = {y|x �p y}. Then,

∀O ∈ T [�p],

O = ∪x∈O {y|x �p y} = ∪x∈O Bp
ε (x) ∈ T [p]

∴ T [�p] ⊆ T [p]

∴ T [p] = T [�p] (by Theorem 3.5)

Suppose now that, T [p] = T [�p]. Then, ∀x ∈ U, {y|x �p y} ∈ T [p]. Thus by
Theorem 3.2,
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∀x ∈ U ∃ε > 0, x ∈ Bp
ε (x) ⊆ {y|x �p}.

But, if x ∈ Bp
ε (x) then {y|x �p y} ⊆ Bp

ε (x). Thus,

∀x ∈ U ∃ε > 0, Bp
ε (x) = {y|x �p y}. 2

Having now established the relationship of the open ball topology T [p] to both the
upward closure T [�p] and the weakly order consistent topology we now move on to
consider the relationship of the partial metric to the quasi-metric.

PARTIAL AND QUASI-METRICS

THEOREM 4.1: For each pmetric p : U2 →R the function q : U2 →R where,

∀x ∈ U, q(x, y) = p(x, y)− p(x, x)

is a quasi-metric such that T [p] = T [q] and �p=�q.

Proof: We show first q is a quasi-metric by proving Q1 and Q2.

(Q1⇒) ∀x, y ∈ U, x = y ⇒ q(x, y) = 0 (by definition of q).

(Q1⇐) ∀x, y ∈ U, q(x, y) = q(y, x) = 0

⇒ p(x, y)− p(x, x) = p(y, x)− p(y, y) = 0

⇒ p(x, x) = p(x, y) = p(y, y) (by P3)

⇒ x = y (by P1).

(Q2) ∀x, y, z ∈ U, p(x, z) ≤ p(x, y) + p(y, z)− p(y, y)

⇒ q(x, z) ≤ q(x, y) + q(y, z).

Thus q is a quasi-metric.
Now, T [p] = T [q] as,

∀x ∈ U, ∀ε > p(x, x), Bp
ε (x) = Bq

ε−p(x,x)(x)

∀x ∈ U ∀0 < ε ≤ p(x, x), Bp
ε (x) = φ

∀x ∈ U ∀ε > 0, Bq
ε (x) = Bp

ε+p(x,x)(x).

Finally, �p=�q as,

∀x, y ∈ U, p(x, x) = p(x, y) ⇔ q(x, y) = 0. 2

DEFINITION 4.1: A weighted quasi-metric over a set U is a pair 〈q, | |〉 consisting
of a quasi-metric q : U2 →R and a weight function | | : U →R specified by,

(WQ) ∀x, y ∈ U, q(x, y) + |x| = q(y, x) + |y|.
A quasi-metric q is weightable if there exists a function | | : U →R such that 〈q, | |〉 is
a weighted quasi-metric.
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THEOREM 4.2: For each weighted quasi-metric 〈q, | |〉 over a set U the function
p : U2 →R where,

∀x, y ∈ U, p(x, y) ::= q(x, y) + |x|
is a pmetric such that T [p] = T [q] and �p=�q.

Proof: We show first that p is a pmetric by proving P1 thru P4.

(P1⇒) Trivial.

(P1⇐) ∀x, y ∈ U, p(x, x) = p(x, y) = p(y, y)

⇒ |x| = q(x, y) + |x| = |y| (by Q1)

⇒ |x| = q(x, y) + |x| = q(y, x) + |x| = |y| (by WQ)

⇒ q(x, y) = q(y, x) = 0

⇒ x = y (by Q1).

(P2) ∀x, y ∈ U, 0 ≤ q(x, y)

∴ ∀x, y ∈ U, |x| ≤ q(x, y) + |x|
∴ ∀x, y ∈ U, p(x, x) ≤ p(x, y) (by Q1).

(P3) ∀x, y ∈ U, q(x, y) + |x| = q(y, x) + |y| (by WQ)

∴ ∀x, y ∈ U, p(x, y) = p(y, x).

(P4) ∀x, y, z ∈ U, q(x, z) ≤ q(x, y) + q(y, z) (by Q2)

∴ ∀x, y, z ∈ U, q(x, z) + |x| ≤ (q(x, y) + |x|) + (q(y, z) + |y|)− |y|
∴ ∀x, y, z ∈ U, p(x, z) ≤ p(x, y) + p(y, z)− p(y, y) (by Q1).

Thus p is a pmetric.
Now, T [p] = T [q] as,

∀x ∈ U ∀ε > x, Bp
ε (x) = Bq

ε−|x|(x)

∀x ∈ U ∀0 < ε < |x|, Bp
ε (x) = φ

∀x ∈ U ∀ε > 0, Bq
ε (x) = Bp

ε+|x|(x).

Finally, �p=�q as,

∀x, y ∈ U, p(x, x) = p(x, y) ⇔ q(x, y) = 0. 2

Theorems 4.1 and 4.2 have established an algebraic equivalence between the partial
metric and a class of quasi-metrics, raising the question of whether every quasi-metric
topology is also a partial metric topology.

THEOREM 4.3: Not every quasi-metric is weightable.

Proof: Let q : {a, b, c}2 → {0, 1, 2, 3} be the unique quasi-metric such that,
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q(a, b) = 0 q(b, a) = 2

q(a, c) = 1 q(c, a) = 1

q(b, c) = 3 q(c, b) = 0

Suppose by way of contradiction that there exists a weight function | | : {a, b, c} →
R for q, then,

|b|+ q(b,c)

= (|b|+ q(b, a)) + 1

= (|a|+ q(a, b)) + 1 (by WQ)

= |a|+ q(a, c)

= |c|+ q(c, a) (by WQ)

= (|c|+ q(c, b)) + 1

= (|b|+ q(b, c)) + 1 (by WQ).

Unfortunately, Theorem 4.1 does not answer the question of whether or not every
quasi-metric topology can be defined using a partial metric. Theorem 4.3 only shows
that the method of defining a pmetric for a quasi-metric topology using a weight
function will not always work. The next result does answer the question for finite
quasi-metric topologies.

THEOREM 4.4: For each quasi-metric q : U2 → R over a finite set U there
exists a pmetric p : U2 →R such that T [p] = T [q] and �p=�q.

Proof: Let �∗
q⊆ 2U be the set of all chains in �q. Let $ : U → ω be the function

where,
∀x ∈ U, $(x) ::= 2max{length(c)|c∈�∗

q∧lub(c)�qx}

Then it can be shown that the function p : U2 → ω where,

∀x, y ∈ U, p(x, y) ::=

2|U|+1 −max{
X
x∈c

$(x)|c ∈�∗
q ∧lub(c) �q x ∧ lub(c) �q y}

is a pmetric such that T [p] = T [q] and �p=�q . 2

An important implication of Theorem 4.4 is that any finite partial ordering can be
defined by a partial metric.

Additional Results on Weighted Quasi-metrics

Since the Queen’s College Summer School, Hans-Peter Kunzi [6] has shown that every
σ-disjoint topology can be defined by a weighted quasi-metric. This result is an im-
portant result only in as much as it helps to clarify the class of quasi-metric topologies
which are also pmetric. Unfortunately Kunzi’s construction
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is probably not of much use though to computer scientists who wish to use the notion
of weight as a tool for reasoning about the total definedness of programs. In Kunzi’s
construction only a topology with a single maximal object (and so for example not the
Baire pmetric space) can have an object of size 0. Kunzi has also helped further clarify
the relationship between quasi-metric and pmetric topologies [6] by showing that the
Sorgenfrey line with base {[a, b]|a ≤ b ∈ R} of semi-open intervals is an example of a
quasi-metric topology which is not a pmetric topology.

METRICS AND PARTIAL METRICS

A T0 space can also be studied by providing it with a metric space ”refinement”
super topology in the spirit of Lawson [8]. For us such a refinement can be provided
by a weighted metric.

DEFINITION 5.1: A weighted metric over a set U is a pair 〈d, | |〉 consisting of
a metric d : U2 →R and a weight function | | : U →R specified by,

(WM) ∀x, y ∈ U, d(x, y) ≥ |x| − |y|
A metric d is weightable if there exists a weight function | | such that 〈d, | |〉 is a
weighted metric.

The next two results show the algebraic equivalence between the partial metric
and the weighted metric.

THEOREM 5.1: For each pmetric p : U2 → R the pair 〈pm : U2 → R, || : U →
R〉 where,

∀x, y ∈ U, pm(x, y) ::= 2× p(x, y)− p(x, x)− p(y, y)

∀x ∈ U, |x| ::= p(x, x)

is a weighted metric such that T [p] ⊆ T [pm], and,

∀x, y ∈ U, p(x, y) = (pm(x, y) + |x|+ |y|)/2.

Proof: By Theorem 4.1, the function q : U2 →R where,

∀x, y ∈ U, q(x, y) ::= p(x, y)− p(x, x)

is a quasi-metric such that T [p] = T [q]. Thus by Lemma 2.3 pm is a metric such that,

∀x, y ∈ U, pm(x, y) = q(x, y) + q(y, x).

Thus, T [p] ⊆ T [pm].
Finally, WM holds as by P2 ∀x, y ∈ U, pm(x, y) ≥ |x| − |y|.2

THEOREM 5.2: For each weighted metric 〈d, | |〉 over a set U the function
p : U2 →R where,

∀x, y ∈ U, p(x, y) ::= (|x|+ |y|+ d(x, y))/2

is a pmetric such that d = pm and ∀x ∈ U, |x| = p(x, x).
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Proof: As
M1 ⇒ P1 and
WM ⇒ P2 and
M2 ⇒ P3 and,
M1 & M3 ⇒ P4. 2

We now turn to constructing a contraction mapping theorem for partial metrics.
Unlike the quasi-metric version in Lemma 2.4 the partial metric contraction mapping
theorem below can be used to prove that a recursive definition over a pmetric topology
defines a total object. To do this we first need to generalise the notions of Cauchy
sequence and complete metric to partial metric topology.

DEFINITION 5.2 For each pmetric p : U2 → R, and for each X ∈ Uω, X is a
Cauchy sequence if there exists

lim
n,m→∞

p(Xn, Xm).

A sequence is Cauchy in the pmetric sense precisely when it is Cauchy, in the met-
ric sense of the word, with respect to pm. A nice example of a Cauchy sequence is the
chain, as each chain is Cauchy. Thus the chain, so important in Tarskian fixed point
semantics, can be considered in the pmetric framework as being merely a particular
form of Cauchy sequence.

DEFINITION 5.3 A pmetric p : U2 → R is complete if every Cauchy sequence
x ∈ Uω converges to an object of size

lim
n,m→∞

p(Xn, Xm).

As with the pmetric definition of Cauchy sequence, p is complete precisely when
pm is complete in the metric sense of the word. Thus for a complete pmetric each
chain must have a least upper bound, this also being a limit. In other words T [p] is a
Scott-like topology for each complete pmetric p. Thus if the Scott topology [2] is rel-
evant to programming language semantics, as undoubtedly it is, then it is reasonable
to claim that so is the complete partial metric space introduced in this paper.

THEOREM 5.3: (The partial metric contraction mapping theorem) For each com-
plete pmetric p : U2 →R, and for each function f : U → U such that,

∃ 0 ≤ c < 1 ∀x, y ∈ U, p(f(x), f(y)) ≤ c× p(x, y)

called a contraction, firstly there exists a unique a ∈ U such that a = f(a), and
secondly p(a, a) = 0.

Proof: Suppose u ∈ U , then,

∀ n, k ∈ ω, p(fn+k+1(u), fn(u))

≤ p(fn+k+1(u), fn+k(u)) + p(fn+k(u), fn(u))− p(fn+k(u), fn+k(u))

≤ cn+k × p(f(u), u) + p(fn+k(u), fn(u)).
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Thus,

∀ n, k ∈ ω, p(fn+k+1(u), fn(u))

≤ (cn+k + . . . + cn)× p(f(u), u) + p(fn(u), fn(u))

≤ cn × ((1− ck+1) / (1− c))× p(f(u), u) + cn × p(u, u)

≤ cn × ((p(f(u), u) / (1− c)) + p(u, u)).

Thus as, ∀n ∈ ω, p(fn(u), fn(u)) ≤ cn × p(u, u) we see that 〈fn(u)|n ∈ ω〉 is a
Cauchy sequence such that,

lim
n,m→∞

p(fn(u), fm(u)) = 0.

Thus as p is complete we can choose a ∈ U such that X converges to a and p(a, a) = 0.
Thus,

lim
n→∞

p(fn(u), a) = 0.

But, p(f(a), a) = 0 as,

∀ n ∈ ω, p(f(a), a)

≤ p(f(a), fn+1(u)) + p(fn+1(u), a)− p(fn+1(u), fn+1(u))

≤ c× p(a, fn(u)) + p(fn+1(u), a).

Thus a = f(a), and p(a, a) = 0 by P1 & P2.

Suppose b ∈ U is such that b = f(b), then,

p(a, b) = p(f(a), f(b)) ≤ c× p(a, b).

Thus, as c < 1, p(a, b) = 0, and so a = b. Thus the fixed point of f is unique.2

CONCLUSIONS AND FURTHER WORK

The principal conclusion from the research in this paper is that generalised met-
ric topology has a largely unexplored potential in the field of non-Hausdorff partial
order topology. This conclusion is justified for the following reasons. Firstly, this re-
search both supports the quasi-metric approach used by Smyth in [11] and the metric
refinement approach used by Lawson in [8] to model such topologies. Secondly, we
have shown that such work can be conducted using a symmetric distance function.
Thirdly, we have shown that such work can be conducted within metric topology itself
by adding the notion of a weight to points in a metric space. Finally, we have shown
that Banach’s contraction mapping theorem can be generalised to many T0 topologies
for applications in program verification. The author’s intuition in this work is that
the relationship,

pmetric ≡ metric + size

is a way of turning the analytic notion of a metric into a more logic based construct.
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The cycle sum test of Wadge [14] for proving Kahn’s data flow networks [4] free
of deadlock was the original motivation provided by Computer Science for this work.
Consisting of solely infinite computations Kahn’s data flow model needs an alternative
to the now obsolete notion of program correctness based upon terminating programs.
Wadge argued that there should be a suitable generalisation of termination based upon
the following intuition.

”A complete object (in a domain of data objects) is, roughly speaking, one
which has no holes or gaps in it, one which cannot be further completed.”

Inspired by Wadge’s intuition, the partial metric framework is now proposed by the
author as a theory of complete and partial objects. By formulating Kahn’s domain of
message passing streams for parallel computing as the Baire pmetric space we can both
formulate and prove the cycle sum test. In [10] the author’s cycle contraction mapping
theorem is introduced for extending the cycle sum test to lazy data flow networks as
used by the lazy LUCID [15] data flow programming language.

The primary motivation for this work has been to develop metric based tools
for program verification in which the notion of the size of an object in a domain
plays a pivotal role in quantifying the extent of its definedness. This is the amount
of information currently known about an object in a computation. To successfully
verify programs using the pmetric approach will require further work on how ”useful”
pmetrics can be defined. For example, the following construction can be used to ensure
that all maximal objects in a pmetric space have size 0. For each pmetric p : U2 →R
for which the set V ⊆ U of all maximal objects is such that ∀x ∈ U ∃ z ∈ V, x �p z
let pp : U2 →R be such that,

∀ x, y ∈ U, pp(x, y) = p(x, y)− inf{p(z, z)|z ∈ V ∧ (x �p z ∨ y �p z)}

Then pp is a pmetric such that �pp=�p and all maximal objects have size 0.
As noted in [1] there are considerable rewards to be gained from a theory of com-

putation based upon the concept of distance instead of the more traditional partial
ordering approach. The latter is much more suited to sequential computing, but the
former appears to be more suitable for the future needs of parallel computing.
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