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Abstract

Introduced in 1992, a partial metric space is a generalisation of the
notion of metric space defined in 1906 by Maurice Fréchet such that
the distance of a point from itself is not necessarily zero. Motivated by
the needs of computer science for non Hausdorff Scott topology, we
show that much of the essential structure of metric spaces, such as
Banach’s contraction mapping theorem, can be generalised to allow
for the possibility of non zero self-distances d(x , x). This talk will
introduce the essential motivation, theory, and applications for partial
metric spaces, leading to the conclusion that the non Hausdorff
nature of topology in computer science is calling upon metric
topology to reconsider its foundations.
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Metric space
How we model distance and its topology

Definition
A metric space is a pair (X , d : X × X → <) such that,

d(x , x) = 0

if d(x , y) = 0 then x = y

d(x , y) = d(y , x)

d(x , z) ≤ d(x , y) + d(y , z)

Maurice Fréchet, 1906.

Definition
The open balls Bε(a) = {x ∈ A : d(x , a) < ε} are the basis for
the usual topology.

Lemma
Each metric open ball topology is Hausdorff .
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Generalised metric space
Fréchet’s axioms can be relaxed by dropping an axiom

Definition
A pseudometric space is a pair (X , d : X ×X → <) such that,

d(x , x) = 0

d(x , y) = d(y , x)

d(x , z) ≤ d(x , y) + d(y , z)

Lemma
d(x , y) = 0 is an equivalence relation.

Lemma
d ′([x ], [y ]) = d(x , y) is a metric over the induced set of
equivalence classes.

Note
Mathematics is, usually, unique up to some equivalence
relation.
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Metric spaces without symmetry

Definition
A quasimetric space is a pair (X , q : X × X → <) such that,

q(x , x) = 0

if q(x , y) = 0 and q(y , x) = 0 then x = y

q(x , z) ≤ q(x , y) + q(y , z)

Lemma
Let x v y iff q(x , y) = 0 . Then (X , v) is a poset.

Lemma
Let d(x , y) = q(x , y) + q(y , x) . Then d is a metric (but
not non negative).

Note
Domain theory, a branch of computer science, is unique only
up to some poset.
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Poset
Partially ordered set

Definition
A poset is a pair (X , v⊆ X × X ) such that,

x v x

if x v y and y v x then x = y

if x v y and y v z then x v z

I For today we assume simply the minimal properties that
our posets have a least member ⊥ v x and are
chain-complete.

I Following domain theory our research is an asymmetric
reconciliation of poset theory and T0 topology. However, it
is firstly defined metrically in a usual symmetric sense.

I The poset x v y must coincide with the specialisation
ordering x ∈ cl{y} .
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Non zero self-distance???
There is a precedent

I In 1942 Karl Menger generalised the concept of metric
space to that of statistical metric space by generalising
the notion of distance from that of a non negative real
number to that of a distribution function.

I In Menger’s notation, F (x ; p, q) is the probability that the
distance of p and q is less than x .

I The relevance to partial metric spaces is that it sets a
precedent that the presumed exactness of a distance may
be questioned.

I Besides that of Karl Menger, are there other
generalisations for metric spaces embodying a less than
exact notion of distance?

I Karl Menger broke the mould of exactness in metric
spaces for exact distances. However, for the special case
of self-distance in a statistical metric space F (x ; , p, p) = 1
for any x > 0, and so self-distance for Menger is,
as for Fréchet, certainly zero.
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Partial metric space
A generalised metric space for which self-distance is to be not necessarily zero

Definition
A partial metric space is a pair (X , p : X × X → <) such that,

p(x , x) ≤ p(x , y)

if p(x , x) = p(y , y) = p(x , y) then x = y

p(x , y) = p(y , x)

p(x , z) ≤ p(x , y) + p(y , z) − p(y , y)

Lemma
Each metric space is a partial metric space.

Note
First came non zero self-distance in my thesis, 1985. Then
Vickers contributed the triangularity axiom in 1987. The above
axioms were presented in the Summer Conference of 1992.
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Properties of partial metric spaces

Lemma
Let q(x , y) = p(x , y) − p(x , x) . Then q is a quasimetric.

Lemma
Let x v y if p(x , x) = p(x , y) . Then (X , v) is a poset.

Lemma
Let d(x , y) = 2× p(x , y) − p(x , x) − p(y , y) . Then d is
a metric.

Lemma
The open balls Bε(a) = {x ∈ A : p(x , a) < ε} are the basis for
the usual topology. Equivalently, this is the induced quasimetric
topology.

Lemma
Each partial metric topology is T0 , and is a sub topology
of the induced metric topology.
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What is new about partial metric spaces?
They add weight to metric space

If, as shown above, each partial metric space can be defined
using an equivalent quasimetric, what new construction is
added to the theory of metric spaces?

Definition
A weight is a function | · | : X → < .

Note
Pseudometric adds equivalence relation to metric space, and
quasimetric adds poset. But, neither adds weight.

Definition
A weighted metric space is a tuple (X , d , | · |) such that,

(X , d) is a metric space

| · | is a weight

d(x , y) ≥ |x | − |y |
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What is new about partial metric spaces?
They add weight to metric space

Lemma
For each weighted metric space (X , d , | · |) let,

p(x , y) =
d(x , y) + |x | + |y |

2

Then (X , p) is a partial metric space, and p(x , x) = |x | .

Lemma
For each partial metric space (X , p) let,

d(x , y) = 2× p(x , y) − p(x , x) − p(y , y)
|x | = p(x , x)

Then (X , d , | · |) is a weighted metric space, and
|x | = p(x , x) .
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What is new about partial metric spaces?
They add weight to quasimetric space

Definition
A weighted quasimetric space is a tuple (X , q, | · |) such
that,

(X , q) is a quasimetric space

| · | is a weight

|x | + q(x , y) = |y | + q(y , x)

Lemma
Not every quasimetric space is weight-able (Matthews, 1992).
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What is new about partial metric spaces?
They add weight to quasimetric space

Lemma
For each weighted quasimetric space (X , q, | · |) let,

p(x , y) = |x | + q(x , y)

Then (X , p) is a partial metric space, and p(x , x) = |x | .

Lemma
For each partial metric space (X , p) let,

q(x , y) = p(x , y) − p(x , x)
|x | = p(x , x)

Then (X , q, | · |) is a weighted quasimetric space, and
|x | = p(x , x) .
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How does weight relate to order?
Weight is consistent with order

However we introduce weight, be it into a metric space, into a
quasimetric space, or derived from a partial metric space, the
induced ordering is consistent with the weight.

Lemma
If x v y then |x | ≥ |y |

I Good! But, what does it mean? First we ask this
question of domain theory, with a view later of asking
general topology.

I Domain theory is a model of computation as increasing
information.

I In contrast, weight is a function decreasing to 0 .
I As domain theory models the information that has been

computed, then weight must model how much information
has yet to be computed.
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An example of a partial metric space
To describe the notion of flat domain in the theory of metric spaces

Definition
A flat domain is a poset (X ∪ {⊥}, v) such that,

⊥ 6∈ X

if x @ y then x = ⊥

Example
For each set X and ⊥ 6∈ X let,

p(x , y) =

{
0 if x = y ∈ X
1 otherwise

Then p is a partial metric, and (X ∪ {⊥}, v) is a flat
domain.

⊥ (pronounced bottom) represents no output so far, while x
is the output if it ever comes. That is, at each moment
in time all or nothing has been output.
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An example of a partial metric space
To describe the notion of flat domain in the theory of metric spaces

"The answer to the Great Question . . . Of Life, the Universe and
Everything is ..." Forty-two . . . " said Deep Thought with infinite
majesty and calm.
"Forty two!" yelled Loonquawl.
"Is that all you’ve got to show for seven and a half million years’
work?"
"I checked it very thoroughly," said the computer, "and that quite
definitely is the answer. I think the problem, to be quite honest
with you, is that you’ve never actually known what the question
is."

⊥ @

From The Hitchhiker’s Guide to the Galaxy (1979)
(Douglas Adams, 1952-2001).
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Another example of a partial metric space
The first real domain

Let ω be the set of all natural numbers ,

ω = {1, 2, 3, , . . . }

Let Pω denote the set of all subsets of ω .
Pω is historically important in domain theory, as it was the first
real domain, that is, the model defined by Dana Scott (1969) for
the λ-calculus (see Stoy 1977).
Let,

p(x , y) = 1 −
∑

n∈x∩y

2−n for any x , y ∈ Pω

Then p is a partial metric, with the (usual) subset ordering,
x v y iff n ∈ x ⇒ n ∈ y . Also, ⊥ = { } and > = ω .
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Another example of a partial metric space
The interval domain

Example
For all closed intervals on the real line let,

p([a, b], [c, d ]) = max{b, d} − min{a, c}

Then p is a partial metric, |[a, b]| = b − a , and
[a, b] v [c, d ] iff [c, d ] ⊆ [a, b] .

Note
To ensure that the intervals form a domain, a little more work is
required. For example, as each domain has to have ⊥ we
might only consider the domain of closed sub intervals of
[0, 1] .
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What do we know so far?

I The notion of metric space can be generalised to
meaningfully introduce non zero self-distance.

I Equivalently, metric space can be generalised to introduce
weight.

I Equivalently, quasimetric space can be generalised to
introduce weight.

I Equivalently, each partial metric space is a metric space, a
weight, and a poset as a single formulation.

I Partial metric spaces are consistent with domain theory,
the so-called Scott-Strachey order-theoretic topological
model for a logic of computer programs (1969).

I Domain theory (1969) is founded upon only poset and
topology, reconciled to quasimetrics by Smyth (1988).
Thus domain theory precedes partial metric spaces
(1992). So, why bother?
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A weighted contraction mapping theorem
To model the Cycle Sum Test

I On one occasion the order and topology of domain theory
did not have a counterpart for weight.

I In fact, the need to find a proof for Wadge’s Cycle Sum
Test led to the necessity for a notion of non zero
self-distance (Matthews, 1985) to work with domain theory
and metric spaces.

I Partial metric space (Matthews, 1992) is thus the eventual
formalisation of Wadge’s intuition (1981),

"A complete object (in a domain of data objects)
is, roughly speaking, one which has no holes or
gaps in it, one which cannot be further
completed."

I That is x is complete if p(x , x) = 0 , otherwise partial .
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A weighted contraction mapping theorem
To model the Cycle Sum Test

I The early conception of a correct computer program was
one that always terminated .

I By the 1970s computer scientists had many programs
(such as for computing the value of π) which did not
terminate, but should be nonetheless correct.

I Wadge intuited that if at each stage in the execution of a
program progress was made, then, at the end of time, be it
finite or infinite, the result must be correct.

I But! correctness as termination did not allow for the
possibility of a correct program (such as for computing π)
taking infinitely long.

I Domain theory (of the 1970s) could model infinitely long
programs, but, had no machinery for identifying those to be
treated as being correct.
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A weighted contraction mapping theorem
To model the Cycle Sum Test

I A program passes the Wadge Cycle Sum Test if each
possible cycle in the execution necessarily results in a net
increase in the amount of data produced by that cycle.

I The Cycle Sum Test was hard to prove in the very machine
oriented world of computer science.

I Once the metrical abstraction of the partial metric was
established, all the messy machine detail could be
scrapped, and the Test reduced to the obvious weighted
generalisation of Banach’s contraction mapping theorem
(1922).

Theorem
Each contraction mapping in a complete partial metric space
has a unique fixed point, and this point is complete (Matthews,
1995).
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Based metric space
A way to view a metric space

Definition
A based metric space is a tuple (X , d , φ ∈ X ) such that
(X , d) is a metric space.

Lemma
For each based metric space (X , d , φ) let,

p(x , y) =
d(x , y) + d(x , φ) + d(y , φ)

2

Then (X , p) is a partial metric space, x v φ , |φ| = 0,
and |x | = d(x , φ) for each x ∈ X .

This suggests that the asymmetry and weight found in partial
metric spaces are not actually far removed from the original
mathematics of metric spaces, and not dependent upon
domain theory.
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Based metric space
Another way to view a metric space

The base point could be ⊥ (to suit domain theory) or > to
suit metric topology.

Lemma
For each based metric space (X , d , φ) (and constant c) let,

p(x , y) = c +
d(x , y) − d(x , φ) − d(y , φ)

2

Then (X , p) is a partial metric space, φ v x , |φ| = c,
and |x | = c − d(x , φ) for each x ∈ X .

I Thus partial metric space with > or ⊥ is equivalent to
metric space with base point.

I The problem is, deciding whether the base point should be
>, ⊥, or conceivably something else?
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Properties of partial metric spaces

I Once the taboo against non zero self-distance has been
broken, other questions soon arise.

I For example, (Heckmann 1999) demonstrated that the
so-called small self-distances axiom p(x , x) ≤ p(x , y)
can be dropped as follows.

I Define a partial metric to be weak if it does not have to
satisfy the small self-distances axiom.

Lemma
Let p′(x , y) = max{p(x , x), p(x , y), p(y , y)} for a weak
partial metric p . Then p′ is a partial metric, and has the
same topology as p .

I This example reinforces the conception of a partial metric
space being a threefold combination of metric, poset, and
weight, but, none getting lost in the mix.
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Two topologies are better than one

I For each partial metric p, and a > 0, and any b, let
p′(x , y) = a× p(x , y) + b . Then p′ is a partial metric,
having the same poset, and same topology as p.

I In contrast to the usual convention for metric space,
distance could be negative. That is, if p is a partial
metric, then, p′(x , y) = p(x , y) − c is equivalent.

I Let p∗(x , y) = p(x , y)− p(x , x)− p(y , y) be the dual
partial metric of p . Then vp∗ = wp .

I Let p(x , y) = max{x , y} over the real line. Then p is
a partial metric, with the usual ordering v = ≤ .

I Each partial metric p gives rise to a bitopological space,
(X , τ [p], τ [d ]) where τ [p] ⊆ τ [d ] .
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Efficiency oriented languages
A new application for partial metric spaces?

I Michel Schellekens has advocated complexity spaces ,
and efficiency oriented programming languages .

I This is evidence that the algorithms and complexity
genre of computer science can be unified with that of
denotational semantics , which is founded upon domain
theory .

I However, there is little historical, or natural affinity between
the two sub disciplines to call upon.

I Partial metric spaces do suggest that the quantitative
notion of weight can be introduced to the qualitative notion
of topology .
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Cost-oriented topology
There is no such thing as a free lunch

I A typical algorithm to generate the sequence of all prime
numbers would take longer and longer to produce each
number.

I In domain theory we have order theory and topology to
model the primes as follows.

⊥ v 〈2〉 v 〈2, 3〉 v 〈2, 3, 5〉 v 〈2, 3, 5, 7〉 v . . .

I But, there is no means here to model the complexity of
the algorithm which would inform us that it takes longer
and longer to produce each prime.

30 / 36



Cost-oriented topology
There is no such thing as a free lunch

I Wadge envisaged the idea of a hiaton , a pause object.
I For example, the following sequence includes both the

necessary domain theory for expressing prime numbers,
and the pauses.

〈∗, 2, 3, ∗, 5, ∗, 7, ∗, ∗, ∗, 11, . . . 〉

I At present Wadge’s hiaton remains the most intuitive
argument for motivating computer science research into
cost-oriented topology, while Schellekens complexity
spaces is perhaps the most substantive theory available.

I What we really need is for applied topology to break free of
computer science, and to take on the challenge of defining
a new sub discipline of cost-oriented topology .
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Key contributors to partial metric spaces
See partialmetric.org for links to publications

Michael Bukatin – quantitative domains, relaxed metrics,
relations with fuzzy sets and Höhle’s many valued topology.
Reinhold Heckmann – weak partial metric drops the small
self-distance axiom p(x , x) ≤ p(x , y) .
Ralph Kopperman – all topologies come from generalised
metrics, bi-topology, partial metrizability (into value quantales).
Hans-Peter Künzi – asymmetric topology, quasi metrics, quasi
uniformities.
Steve Matthews – partial metric (X , p), contraction mapping
theorem, data flow, based metric (X , d , φ).
Simon J. O’Neil – negative distance p(x , y) < 0, dual partial
metric p∗(x , y) = p(x , y)− p(x , x)− p(y , y) .
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Key contributors to partial metric spaces
See partialmetric.org for links to publications

Homeira Pajoohesh – lattices, partial metrizability (into value
quantales).
Michel P. Schellekens – characterising partial metrizability,
semivaluations, quantitative domains, efficiency oriented
languages.
Mike Smyth – constructive maximal point space and partial
metrizability.
Steve Vickers – p(x , z) + p(y , y) ≤ p(x , y) + p(y , z) axiom,
topology via logic.
Bill Wadge – Lucid, complete object, cycle sum test.
Pawel Waszkiewicz – quantitative domains.
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What’s it really all about?
Topology, Nothing, View, and Cost

Nothing defined,

x + 0 = 0 + x = x

Nothing partially known,

x +⊥ = ⊥+ x = ⊥ v x

Distance defined,

d(x , y)

Distance partially known,

p(x , y)

The topology of nothing,

⊥ v x v y ∈ O ∈ τ ⊆ 2X

A fuss about nothing

c© David Kopperman
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A background tutorial for partial metric spaces
Speaker : Steve Matthews

The plenary session in applied topology has introduced the essential
concepts and results of partial metric spaces. In so doing there was
not time to describe the background in computer science that actually
gave rise to the conception of non zero self-distance in metric
spaces. It is thus instructive to give a tutorial upon how concerns in
programming language design of the 1970s came to be related to
metric spaces, and from there, how metric topology is returning full
circle to influence, what is now known in computer science as,
discrete mathematics . In short, this tutorial is intended to be an
inspiring example of how an infinitary concept such as metric space
from continuous mathematics can be re-discovered to simplify the
finitary structure of contemporary computer science. For applied
topology there is a useful, liberating lesson here that finitary concepts
are not trivial, but naturally arise in a modern context as partial
approximations to simplify their infinitary counterparts.
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Reference for tutorial
Download via partialmetric.org

I Lucid, a Nonprocedural Language with Iteration . E.A.
Ashcroft and W.W. Wadge. Communications of the
Association for Computing Machinery. Vol. 20, Issue 7, pp.
519-526. July 1977. ISSN:0001-0782.
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