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1 Introduction

One of the definitions for visualization is to give a visible appearance to something, mak-
ing it easier to understand. In Price et al. (1998), software visualization is defined as “the
use of crafts of typography, graphic design, animation and cinematography with modern
human-computer interaction and computer graphics technology to facilitate both the human
understanding and effective use of computer software”. Program visualization is defined as
“the visualization of actual program code or data structures in either static or dynamic form”.

We focus on the functional programming paradigm here. We study crafts used to visualize
functional program code and data structures. The study has been done over sixteen systems.
These systems can be categorized in multiple ways (Price et al., 1993; Myers, 1986; Brown,
1998). Although we do not want to make a new taxonomy, we differentiate among integrated
development environmens, debuggers, teaching systems and visualization systems.

We have made a compilation of information about functional visualization systems (this
information is very dispersed). In general, most systems are partial solutions to the main
problem; the visualization of functional programs. Our ultimate aim is to find a more general
solution.

In section 2 particular aspects of the functional paradigm are introduced. Section 3 briefly
describes the systems we studied. The visualization of each particular aspect identified is
presented in section 4. In section 5 the evaluation of some systems is described. Finally we
draw our conclusions in section 6.

2 Features of the Functional Paradigm

The functional programming paradigm has some particular features that are needed to be
visualized to understand the execution of a program. In functional programming the source
code of a program is formed of bodies of functions. Each function is a set of rules. In the
following, a program to compute the addition of elements in a list is shown:

fun sumlist list(int) -> int
| sumlist([]) = O
| sunlist(head::rest) = head + sumlist(rest);

The execution of a functional program begins with an expression in which some of the
functions of the program are called. Each execution step is a rewriting step applied on an
expression, and its result will be another expression. The following are all the rewriting steps
of the execution of sumlist([3,5,2]).
| sumlist([3,5,2]) | = sumlist(3::[5,2])

3 + |sumlist([5,2]) | = sumlist(5::[2])
3 + 5 + |sunlist([2]) | = sumlist(2::[])
3+ 5+ 2 + |sumlist([]) |= sumlist([])

3+ [+ 2]

3+7
10
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As shown in the previous example, the rewriting steps are applied to parts of the whole
expression (framed code in the example). For each step, the next subexpression to rewrite (or
reduce) is called the redex. Each rewriting step is related to the evaluation of a (sub)expression,
and each evaluation gives (sub)results. Therefore, important aspects to visualize are the
evaluation of (sub)expressions, its corresponding redexes and the (sub)results obtained.

Another feature to visualize is the order in which function calls are executed. Two impor-
tant details are the evaluation of parameters and how pattern matching is used to select the
appropiate rule in the body of the function to be applied.

The environment of variables (also called contour) fixes their values, so it will be important
to clearly visualize those environments. Moreover, if complex data structures are used in a
program, as lists or trees, it will be desirable to work with special visualizations for them.

There are two ways (also called strategies) of executing a functional program. The previous
example shows eager execution. Alternatively, lazy execution evaluates an expression only
when necessary. For example, the expression fact (4+2) is reduced to if ((4+2)=1) then 1
else (4+2)*fact((4+2)-1). The function fact is applied before evaluating the argument
4+2. In order to avoid inefficiency, the subexpression 4+2 does not appear 3 times, but it
is unique and shared among the three places. Therefore, expression sharing is an important
feature of lazy evaluation to visualize.

3 Systems Studied

Normally, the features to be visualized and the way this is achieved depend on the class of
the system being used. We have therefore classified systems into four categories: integrated
development environments, debuggers, teaching systems and visualizing systems.

Integrated development environments use to integrate a number of tools under the same
interface. CIDER (Hanus and Koj, 2001) uses the lazy language Curry. It integrates edition,
program analysis tools, a graphical debugger, and a dependency graph drawing. Execution
data are collected in a trail. Its debugger supports breakpoints and changing the execution
direction.

WinHIPE (Naharro-Berrocal et al., 2002) uses the language Hope. Programs are executed
under the eager stategy. It shows the set of expressions resulting during an evaluation. Its
debugger provides general options such as executing one or n steps, evaluating to the next
breakpoint, evaluating the redex or backtracking to a previous expression. It shows graphically
lists and trees and supports a wide range of customizations, including graphical format, typo-
graphic characteristics and subexpression visibility. From the static visualizations generated,
it allows building animations that can be saved and loaded for educational use.

ZStep (Lieberman and Fry, 1998) is a Lisp integrated environment. Its debugger supports
execution in both directions, evaluating the selected expression and executing until the end.
Speed execution control and a tree function calls are also provided. Execution data can again
be found in a trail. ZStep simultaneously shows the source code and the execution code.
Execution errors are located in the same place where the correct values should be located.

The last environment is called TERSE (Kawaguchi et al., 1994). Properly speaking, it is
not a functional program environment, but rather a term rewriting system (which is the basis
of functional program execution). It has been developed with Standard ML/NJ, and allows
transforming TERSE programs into Standard ML programs. During execution it allows
selecting, among all redexes available, the one that will be reduced. Also, it permits to choose
the rule to apply and the execution strategy. It shows a global vision of the expression,
represented as a tree, and a zoomed vision of a particular area of it, and also generates
rewriting sequences.

Debuggers adapted to functional programming are commonly called steppers. We have
studied six debuggers. Freja (Nilsson and Sparud, 1997) and Buddha (Pope, 1998) use subsets
of the language Haskell. They are algorithmic debuggers, and use the dependency reduction
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graph to guide the user while debugging.

Hat (Sparud and Runciman, 1997) also supports a subset of Haskell. It generates a trail
of reduced redexes, allowing to browse it in a graphical way.

Hood (Gill, 2000) uses the whole Haskell language. To visualize the execution, the source
code must be modified, inserting calls to the visualization system where a visualization is
needed (either a function or a data structure). The visualization is obtained as a result of the
execution of the program.

Prospero (Taylor, 1995) and Hint (Foubister and Runciman, 1995) are very similar sys-
tems. Prospero uses the language Miranda and Hint uses a subset of Haskell. Both generate
and use a trail. While debugging, they allow using breakpoints, but do not allow changing
the direction of the execution.

Teaching systems usually focus the user’s attention on particular aspects of programming
languages in order to gain understanding. Ewaltrace (Touretzky and Lee, 1992) uses Lisp. Its
visualizations are documents generated with IATEX. This system is focused on differentiating
between applying and evaluating actions. It also visualizes macros and side effects. It is
integrated into a programming environment.

KIEL (Berghammer and Milanese, 2001) works with a subset of the language Standard
ML, were only first order functions are allowed. It allows changing the execution strategy and
executing a number of rewriting steps.

DrScheme (Findler, 2002) uses the language Scheme. It allows using four subsets of the
language. When a error is produced, DrScheme locates the function call that produced it. It
has an static debugger which, using type inference, can predict potential errors.

KAESTLE & FooScape (Boecker et al., 1986) work with Lisp too, but they only visualize
data structures and function call graphs. They can generate snapshots of each visualization
and sequences of them. They use trails generated by the FranzLisp system and are also
integrated in a programming environment.

We have studied two wvisualization systems. GHood (Reinke, 2001), which graphically
shows the observations made by Hood. It has typical VCR controls and possible EPS output
of its graphs. It generates animations where the speed can be controlled. Visual Miranda
(Auguston and Reinfelds, 1994) uses the language Miranda. It generates a textual trail, but
it can be shown in a graphical way.

4 Partial Visualizations of Functional Programs

In this section, we describe how the systems cited above support the visualization of the
different aspects (partial visualizations) of functional programming mentioned in the second
section. Four partial visualizations and some existing combinations of them are considered.

4.1 (Sub)expressions, Redexes and (Sub)results

A functional expression has a tree structure, so all systems work internally with expressions
represented as trees (or directed graphs in lazy functional languages). Many systems also
visualize expressions as trees (see Fig. 1). These are CIDER, KIEL (which allows interacting
directly with the abstract syntax tree), Prospero, Hint and TERSE (which gives a different
representation to constructors, variables and functions).

When an expression is large, its visualization can be confusing. Therefore, some tools
make a compact version of the expression (see Fig. 2). Prospero and Hint allow applying
filters (spatial and temporal ones). Moreover, Hint provides a metalanguage to define those
filters. TERSFE transforms subtrees into tree nodes. WinHIPFE elides the visualization of less
important subexpressions by applying fish-eye views. ZStep allows filtering expressions by
defining conditions. Fwvaltrace compacts trivial evaluation steps; for instance, in the evaluation
of sumlist([]), the evaluation of the parameter [] into itself is trivial.
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Figure 1: Expressions represented as trees  Figure 2: Compression of large expressions

All systems except Hood & GHood and FEwvaltrace highlight the redex (see Fig. 3). Hood
€ GHood only show the value of a variable marked as observable.

Hat, Freja, Buddha and Fuvaltrace connect each subexpresion and the result of its evalua-
tion. DrScheme shows simultaneously the current expression, its reduction and the function
definition used in the rewriting step. Visual Miranda connects the expression with its subex-
pressions and finally with its result (see Fig. 4).
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4.2 Function Calls, Function Application and Pattern Matching

The visualization of function calls is carried out by KAESTLE € FooScape by drawing a static
flow diagram where functions are represented as ellipses, and function calls are represented
as arcs from the caller to the callee (see Fig. 5). The user can choose to hide calls from
a function, compacting the diagram. It allows a dynamic visualization too, by highlighting
functions that have not finished their execution. Ewaltrace focuses on differentiating evaluation
and application of functions to their arguments. This is done by drawing different lines while
evaluating the parameters of a function call or while applying the function: a thin line and
a thick line respectively. Also, lines connect the evaluation of parameters with the function
application and the result (see Fig. 4). Visual Miranda shows the full pattern matching
process, trying to match the rule and detailing if the match fails or succeeds (see Fig. 4).
Finally, Hood allows showing function calls and their result if the observation is located in the
definition of the function (see Fig. 6).
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Figure 5: A function call graph in FooScape Figure 6: A Hood observation

Function calls may also be used as an auxiliary element, even though they do not play an
important element in visualizations. Thus, WinHIPE uses function calls as breakpoints, but
the visualization displays the current expression as a whole.

4.3 Variables and Data Structures

The contour of variables and their values is visualized in several ways. All the systems show
variable values. Hood is a special case, because it shows values in a particular location of
the source code, so in the body of a function, the user can choose to visualize a variable
in a rule and not in others. Fwaltrace identifies a contour by connecting the begining and
the end with a thick line. If this line is solid, then the global contour is the parent of the
present contour. Otherwise, there is a local variable definition and the parent contour is the
closest enclosing one. DrScheme connects variables and their occurences with lines (see Fig.
7). Visual Miranda shows the value for each variable before evaluating a (sub)expression (see
Fig. 4).

A check-syntax scm - DiScheme
File Edit View Language Scheme Special Hg
heck-syntax scm|

(d:flw)
[x 1

(£ 10)

|

Figure 7: Contour visualization with DrScheme and Evaltrace

Only two systems allow alternative visualizations of complex structures (see Fig. 8).
WinHIPE permits to customize the visualization of tree and lists, by identifying constructors
used (the predefined constructors of the language for lists; Node and Empty for binary trees),
and assigning to it the corresponding shapes, line styles, background and foreground colours
and dimensions defined by the user configuration. KAESTLE & FooScape visualize lists by
drawing their elements into squares, putting one after another or connecting them with arcs
as needed. It allows modifying the layout of each list visualized and its contents.

WinHIPE Kaestle & FooScape
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Figure 8: Alternative representations for complex data structures
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4.4 Subexpression Sharing in Lazy Evaluation

Systems supporting lazy evaluation should visualize shared subexpressions. CIDER and Hat
do not visualize shared subexpressions until they are reduced, then they highlight all oc-
curences of the shared subexpression. Prospero and Hint (see Fig. 9) only visualize once
a shared subexpression, being connected the rest of occurrences to the first one by arcs or
labels.
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Figure 9: Visualization of shared subexpressions in lazy evaluation

4.5 Combining Partial Visualizations

Some systems combine some of the previous partial visualizations. While Hood & GHood
are able to show values of variables and results of function calls, and KAESTLE & FooScape
display a function call graph and current state of lists in the program, the rest of systems tend
to blur the separation of code and data in functional programs. WinHIPE, DrScheme and
Visual Miranda display values and data structures integrated into expressions. Fvaltrace does
it too but in a different way, by integrating values of variables into a pretty-printed textual
description of the execution of the program. In addition DrScheme and Fwaltrace show the
contour of variables, and Visual Miranda is able to display the full pattern matching process.

5 Systems Evaluation

We have only found two documented experimental evaluations of systems. The first (Chitil
et al., 2001) is a comparative study of three systems: Freja, Hat and Hood. The study is
focused on their tracing and debugging facilities. A number of criteria are evaluated for each
system: readability of expressions, the process of locating an error, redexes and language
constructs, and modification of the program. This study identifies strengths and weakness of
each system and then suggest how the systems can be improved.

The second documented evaluation (Medina-Sédnchez et al., 2004) is of the WinHIPE
environment. This evaluation is focused on effortlessness and usability of animations and
their construction process. The experiment was done with students and its results show that
animations are easy to use, its construction process is easy to learn, and are understood as a
help to complete other tasks, such as debugging or program understanding.

There are two more evaluations but they are documented in a rather informal way. In the
section 6 of Findler (2002) some experience with DrScheme is briefly described and in section
5 of Reinke (2001) some details are shown about experience with GHood.

6 Conclusions

We have given a survey of visualizations of functional programs provided by sixteen different
systems. In order to make the exposition more meaningful, we have given a two dimension
classification. On the one hand, we have classified the systems into four categories (program-
ming environments, debuggers, teaching systems, and visualization systems). On the other
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hand, we have considered the most important partial views provided about functional pro-
grams (expression evaluation, function calls, values, and subexpression sharing). Our selection
of these dimensions has been pragmatical: we do not pretend these dimensions to be the most
important ones, but we found them especially clarifying to us. In Price et al.’s taxonomy, the
corresponding categories are program (B.1) and purpose (F.1).

In spite of this variety of visualizations, none provides comprehensive visualizations, with
multiple views of all the aspects. There are several systems covering several features of
functional programming, more comprehensive visualizations are still lacking. We advocate
for a comprehensive approach that would make use of solutions given by current systems.
A comprehensive approach could offer current partial views, but it would also offer more
powerful and flexible visualizations on the different features of functional programs.

Such a comprehensive visualization still has to be designed. However, notice that the
first identified feature, namely expression evaluation, is the basic element of the functional
paradigm. Consequently, it should be the basis if the new visualization. Two other features
(function calls and values) are partial views that mimic our understanding of program exe-
cution derived from the imperative paradigm. Therefore, they should be integrated in the
expression model. Finally, subexpression sharing is a particular and important aspect of lazy
evaluation.
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