76 Third Program Visualization Workshop

Algorithm Visualization through Animation and Role Plays

Jarmo Rantakokko
Uppsala University, Department of Information Technology
Uppsala, Sweden

jarmo@it.uu.se

1 Introduction

The motivation and expectations for using visualization of algorithms in the education is that the
students will grasp and understand the abstract algorithms and concepts used in computer science
courses easier, i.e. the algorithms will be more concrete for the students. Visualization is a useful
technique for learning in any computer science course. In this paper, we focus on parallel computing
and in particular on parallel sorting algorithms (Grama et al., 2003). Parallel computing is intrinsically
more difficult than sequential computing, as it requires coordination of the parallel processes which
can be very problematic to conceptualize. We want the students to understand how the processors
work together in an algorithm and how they interact. As the students can see how the processors
run simultaneously in parallel this will illustrate important concepts such as processor load balance,
synchronization, and communication.

The use of pictures and visualizations as educational aids is accepted practice. Textbooks are filled
with pictures and teachers often diagram concepts on the blackboard to assist an explanation. Anima-
tion includes one more dimension, explaining and illustrating the dynamic properties of an algorithm.
Role plays go even further by actively involving the learners within the algorithm. Furthermore, ani-
mations and role plays bring a variety into teaching that is usually missing. There are different learning
styles, i.e. Visual (V), Aural (A), Read/Write (R), and Kinesthetic (K) (Fleming, 2001). While tradi-
tional teaching and lecturing are more directed towards the Aural and Read/Write learners, animations
are more directed towards the Visual learners and role plays towards Kinesthetic learners. Moreover,
computer systems students have some preference to the visual learning style (Fleming, 2001).

In this paper, we discuss how students perceive these two visualization techniques, animations and
role plays, for understanding abstract algorithms in parallel computing. We have used both techniques
in the same course and then let students answer questions anonymously in writing. The students have
also taken the VARK-test (Fleming, 2001) to correlate the answers with their learning style.

Computer animations are commonly used in traditional computer science courses, see e.g. (Naps
et al., 2003a,b; Stasko et al., 1998), but little efforts have been made in parallel computing. Most visu-
alization techniques are used by researchers for analyzing the parallel performance of their programs
(Pancake, 1998). For educational purposes a group at the Georgia Institute of Technology led by
John Stasko has developed the software package Polka for creating animations of parallel algorithms
(Stasko et al., 1991, 1998). We have used this package to develop our animations. Another system
that supports visualization of concurrent events is the Pavane system (Roman et al., 1992). A histor-
ically interesting note of using role plays is the experiment set up by Lewis F. Richardson in 1922
for computing a weather prediction (Richardson, 1922), long before the existence of parallel com-
puters. Richardson simulates a parallel algorithm by letting individual workers do partial numerical
calculations in parallel, as in todays parallel computers.

2 Computer Animations

We have developed two different animations for parallel sorting using the Polka package (Stasko
et al., 1991, 1998). The animations are based on two parallelization strategies that are completely
different and with different properties regarding communication, load balance, memory requirements,
etc. The purpose is to let the students compare the algorithms, learn how they work and understand
their inherent problems, i.e. the communication pattern, computation complexities and load balance.
The students can work individually with the animations in a computer room exercise.

Third Program Visualization Workshop 77

2.1 Parallel bucket sort

The first animation shows a parallel bucket sort algorithm for sorting a sequence of integer numbers
in the interval [1, 100]. The numbers are represented with bars of corresponding height. We define
k buckets by dividing the interval length uniformly into k subintervals, e.g. [1,25], [26,50], [51,75],
[76,100] using four buckets on the interval [1,100]. The elements (numbers) are filtered in a sequential
step into the equally spaced buckets. The buckets are then assigned to different processors and sorted
in parallel with Quicksort. When running the animation, the user is prompted for the number of
buckets, the number of processors, and how to distribute the buckets to processors. In addition, the
animation is independent of the random number sequence. The user can choose from different random
number sequences as input or even provide her own data file. In the animation we have two windows,
one dynamic view of how the elements are sorted (Figure 1a), and one static view of the processor
load balance (Figure 1b).

Bucketsort [-1 Processor Load Balance [

‘ A »| ¥ 4| In| Oug Debug Refresh| Close|

‘ | »| ¥ 4| In| Ouy Debug Refresh| Close|

(a) Physical sorting view (b) Processor load balance

Figure 1: The bucketsort approach for parallel sorting.

In a first step, the elements are moved from a single stack to the different buckets. The buckets are
coded with different colors depending on which processors they belong. Next, the elements are sorted
simultaneously in the different buckets creating an illusion of parallelism. The processor with the
highest work load will continue sorting the longest time, illustrating the effect of the load imbalance.
Different random number sequences will give different work loads in the buckets. The workload can
then be balanced with, e.g., using more buckets than processors and distributing the buckets cyclicly
to the processors or by providing a file with pre-described non-uniform bucket widths.

2.2 Parallel Quicksort

The second animation illustrates a memory efficient and fully parallel algorithm. The data is kept
distributed all the time and there are no large serial sections as in the filtering operation above. In this
approach, we divide the elements equally among the processors and perform a local sort within each
processor. Then we exchange data pairwise between processors to get a global sorting order. The
algorithm is outlined in Figure 2.

In this animation, the user can also choose the number of processors and the random number
sequence as input. Here, the processor load balance depends on how the pivot elements are chosen
in step 3.1, Figure 2. There are different pivot selections strategies available for the user to choose as
input. The animation supports two different views of the algorithm. The dynamic view shows how

78 Third Program Visualization Workshop

Parallel quick-sort

1. Divide the data into p equal parts, one per processor.
2. Sort the data locally for each processor.
3. Perform global sort.

3.1 Select pivot element within each processor set.

3.2 Locally in each processor, divide the data into two
sets according to the pivot (<’ or '>').

3.3 Split the processors into two groups and exchange data
pairwise between them so that all processors in one group
get data less than the pivot and the others get data larger
than the pivot.

3.4 Merge the two lists in each processor into one sorted list.

Repeat 3.1 - 3.4 recursively for each half (logy,p steps).

Figure 2: Parallel Quicksort. The elements are divided equally among the processors and
sorted locally. Then, in a number of steps, the processors split their data into two parts accord-
ing to a pivot and exchange data pairwise with a merging step to get a global sorting order.

| Quick sort]|

Execution Profile [-]

Debug Refresh| Close| Debug Refresh| Close|

(a) Snapshot during global sorting (b) Execution profile

Figure 3: Views of the parallel quicksort animation.

the elements are physically sorted and moved between different processors (Figure 3a). All parallel
activities are animated simultaneously, creating an illusion of parallelism. In the second view, an
execution profile is grown simultaneously as the animation continues (Figure 3b). Here, different
activities are color coded in bars for respective processor. Arrows represent the communication. The
arrows are drawn from the sender to the receiver processor and their stopping point indicates how
much data is communicated. From the execution profile it is possible to extract both computation and
communication load imbalances.

3 Role Plays

Role plays are well suited for visualization of parallel algorithms. Each student can take the role
of a processor in the algorithm. All bottlenecks, such as communication and load imbalance, in an
algorithm become very obvious and concrete. The role plays can be performed within class.

Again, we have used different sorting algorithms for demonstration. The first algorithm is a
pipelined version of bubblesort. The students are given different parts of an unsorted deck of cards.
They lay out their cards on the table. The first student starts its first iteration moving the largest card
by pairwise compare-exchange to her right while the other are idle. When she comes to the end of

Third Program Visualization Workshop 79

her cards in the first iteration she must compare and exchange cards with her neighbor and can then
start the next iteration. The other students proceed in the same way but have to wait awhile in the first
iteration before they can start. Similarly, the processors/students to the right will finish sorting first
and will then be idle. This algorithm requires frequent communication and synchronization and it also
has a large load imbalance.

Next, we let the students perform the odd-even transposition algorithm. Here the students are also
given parts of the deck of cards but now they first sort their own cards (locally). Then, they exchange
all their cards alternately with their left and right neighbor. In each step, one student in a pair merges
his cards with his neighbor’s cards and gives back half of the cards, keeping the other half. The
algorithm proceeds in p-steps (where p is the number of processors/students). This algorithm is much
faster and requires less communication than the pipelined bubblesort algorithm. Still, there is some
load imbalance, with half of the processors doing the merging while the other half of the processors
are idle.

Finally, we let the students simulate the parallel quick-sort algorithm, as shown in Figure 2. This
algorithm minimizes the communication compared to the two previous ones and terminates in [og2(p)
steps. Any load imbalance comes obvious from bad pivot choices giving some students more cards
than the others.

4 Students

The target course, Programming of parallel computers, is a C-level course given in the third year. The
students come from different programs, Master of Science, Computer Science, Natural Science, and
exchange students. The students are mostly male (85%). The pre-requirements for the course are that
they have at least taken two programming courses. This is their first course in concurrent programming
techniques. The course is given with traditional lectures and has mandatory computer room exercises.

5 Results

In addition to a course evaluation we have asked the students to fill out a survey with the following
questions: Grade 1-5 (where 1=not useful and 5=very useful) traditional lectures (L), textbook (B),
animations (A) and role plays (R) with respect to:

1. Understanding parallelism and algorithms

2. Motivation for learning

3. Help for programming assignments

4. Which combination of teaching methods would you benefit most of, e.g. (L)+(B)+(A)

The results from the survey are summarized in Figure 4. The scores for the fourth question are calcu-
lated by counting the number of (L), (B), (A), and (R), respectively, then dividing these numbers by
the number of students and finally multiplying with five to normalize with the other scores.

The results show that traditional lectures outperform the other teaching methods in all aspects. But
it is interesting to see that the students feel that both animations and role plays give better understand-
ing for the algorithms than the textbook and that the students prefer animations before the textbook
for learning (in combination with lectures). Comparing the two visualization techniques clearly shows
that computer animations are experienced by the students as having higher impact on learning than
role plays. The results of the survey depend very much on factors such as quality of lectures, book,
animations, enthusiasm of lecturer, and preference to learning style.

The students also took a VARK-test (Fleming, 2001). The results from the test, Figure 5, show
that this particular group of students had some preference to the Read/Write and Kinesthetic learning
styles. This does not correlate with the results of the questionnaire where the textbook got low scores
while lectures got high scores.

80 Third Program Visualization Workshop

3.5F

w
T

AVERAGE SCORE
o o

Hl Lectures
[Textbook
0.51 7 Animations
Il Role plays

QUESTION

Figure 4: Average scores from the survey, 13 students answered the questionnaire.

LEARNING STYLE SURVEY
70

60

50

40

30

20

Figure 5: Total scores from the VARK-test. 15 students answered the questionnaire.

The course evaluation, which the students also answered anonymously, was very positive giving
an average score 4.3 (out of 5.0) for the course as whole, 4.6 for the lectures and 4.1 for the laboratory
exercises including the animations. The textbook got an average score 3.6 which can still be considered
good.

6 Discussion

We have used both computer animations and student role plays to visualize abstract algorithms in par-
allel programming. Both techniques increase and facilitate learning and understanding of the specific
algorithms. They also illustrate general concepts, such as load imbalance, synchronization and com-
munication, in a very concrete way. In this particular study, they are experienced by the students as
giving better understanding for the parallel algorithms than the textbook.

There are some fundamental differences between these two visualization techniques. Computer
animations allow the students to work in their own pace and let them re-run the animations as often
as they want to. They can also experiment with different input parameters and data testing different
scenarios and behavior of the algorithms. Role plays on the other hand make the inherent concepts
more concrete and real. For example, a load imbalance forces one participant to work more than the
others. Role plays do not require any technical equipment or software development, maintenance, etc.
Developing computer animations requires a lot of work and it can be difficult and time consuming to
learn how to do this (Naps et al., 2003a). A problem with role plays is that they can be difficult to
perform in a large group of students. It can be impossible to let all participate and then some of the
students may not be able to follow or feel left out and be unengaged. Also, while role plays promote
understanding of details it can on the other hand be difficult to see the big picture of the algorithms.

In the student survey, animations got better scores than role plays. But the best results were given
to the lectures. One explanation is that the impact of the other factors, e.g. quality and enthusiasm,

Third Program Visualization Workshop 81

has higher impact than the individual learning styles. Moreover, the lectures are a mixture of different
teaching methods, including discussions, writings and visualization with pictures on the blackboard.

References
Niel Fleming. Vark, a guide to learning styles. http://www.vark—-learn.com/, 2001.

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to parallel computing,
second edition. Pearson Education Limited, 2003.

Thomas L. Naps, Guido Rofling, Vicki Almstrum, Wanda Dann, Rudoplh Fleischer, Chris Hund-
hausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger, and Angel Velazquez-Iturbide.
Exploring the role of visualization and engagement in computer science education. inroads 35:2,
pages 131-152, 2003a.

Thomas L. Naps, Guido R6Bling, Jay Andersson, Stephen Cooper, Wanda Dann, Rudolph Fleischer,
Boris Koldehofe, Ari Korhonen, Marja Kuittinen, Charles Leska, Lauri Malmi, Myles McNally,
Jarmo Rantakokko, and Rockford J. Ross. Evaluating the Educational Impact of Visualization.
inroads 35:4, pages 124-146, 2003b.

Cherri M. Pancake. Exploiting visualization and direct manipulation to make parallel tools more
communicative. Lecture Notes in Computer Science 1541, 1998.

Lewis Richardson. Weather prediction by numerical process. Cambridge University, 1922.

Gruia-Catalin Roman, Kenneth C. Cox, Donald Wilcox, and Jerome Y. Plune.G. Pavane: A system for
declarative visualization of concurrent computations. Journal of Visual Languages and Computing,
Vol 3, No 1, pages 161-193, 1992.

John Stasko, William F Appelbe, and Eileen Kraemer. Utilizing program visualization techniques to
aid parallel and distributed program development. Graphics, Visualization, and Usability Center,
Georgia Institute of Technology, Atlanta, GA, Technical report GIT-GVU-91/08, 1991.

John Stasko, John Domingue, Marc H Brown, and Blaine A Price (editors). Software visualization:
Programming as a multimedia experience. MIT Press, Cambridge, MA, 1998.

