86 Third Program Visualization Workshop

An Approach to Automatic Detection of Variable Roles in
Program Animation

Petri Gerdt, Jorma Sajaniemi
University of Joensuu, Finland

{Petri.Gerdt|Jorma.Sajaniemi}@cs. joensuu.fi

1 Introduction

Many students have difficulties in learning to program computers. One reason that makes
computer programming a difficult skill to learn is that programs deal with abstract entities,
that are unrelated to everyday things. Visualization and animation is a way to make both
programming language constructs and program constructs more comprehensible (Hundhausen
and Stasko, 2002; Mulholland, 1998). Petre and Blackwell (1999) note that visualizations
should not work in the programming language level because within-paradigm visualizations,
i.e., those dealing with programming language constructs, are uninformative. Hence students
learning to program benefit more from visualization of higher-level program constructs than
visualization of language-level constructs.

Sajaniemi (2002) has introduced the concept of the roles of variables which he obtained
as a result of a search for a comprehensive, yet compact, set of characterizations of variables
that can be used, e.g., for teaching programming and analyzing large-scale programs. A role
characterizes the dynamic nature of a variable embodied by the sequence of its successive
values as related to other variables and external events. A role is not a unique task in some
specific program but a more general concept occurring in programs over and over again.
Table 1 gives ten roles covering 99 % of variables in novice-level, procedural programs.

Roles can be utilized in program animation to provide automatic animation of concepts
that are at a higher level than simple programming language concepts. In a classroom exper-
iment (Sajaniemi and Kuittinen, in press), traditional teaching of elementary programming
was compared with role-based teaching and animation. The results suggest that the intro-
duction of roles provides students with a new conceptual framework that enables them to
mentally process program information in a way similar to that of good code comprehenders.
Moreover, the use of role-based animation seems to assist in the adoption of role knowledge
and expert-like programming strategies.

In this paper, we will present the role concept and the role-based program animator
PlanAni, and discuss possibilities to implement automatic role analysis that is needed in
order to automatically animate programs provided by students.

2 The Role Concept

Variables are not used in programs in a random way but there are several standard use
patterns that occur over and over again. In programming textbooks, two patterns are typically
described: the counter and the temporary. The role of a variable (Sajaniemi, 2002) captures
this kind of behavior by characterizing the dynamic nature of a variable. The way the value
of a variable is used has no effect on the role, e.g., a variable whose value does not change is
considered to be a fized value whether it is used to limit the number of rounds in a loop or
as a divisor in a single assignment. Roles are close to what Ehrlich and Soloway (1984) call
variable plans; however, Ehrlich and Soloway give only three examples and have no intention
to form an complete set.

Table 1 gives informal definitions for ten roles that cover 99 % of variables in novice-level
procedural programs (Sajaniemi, 2002). Each variable has a single role at any specific time,
but the role may change during the execution. If the final value of the variable in the first
role is used as the initial value for the next role, the role change is called proper. On the other

Third Program Visualization Workshop 87

Literal
naming¢
Constant
setting at run time
. collectin . requires
Fixed value————2 »Qrganizer——sTemporary

repetition

countin: Most—r nt calculatin .
Steppere——"9 ohsgldg;:e t Uty 1ransformation

accumulating Nﬁlaying

Gatherer<™ ing \Checking Follower
Most-wanted One-way
holder flag

Figure 1: Role relationships. Literal and constant are programming language constructs;
other nodes are the roles.

hand, if the variable is re-initialized with a totally new value at the beginning of the new role
phase, the role change is said to be sporadic.

Roles can be used to describe the deep meaning of programs: what is the purpose of each
variable and how do the variables interact with each other. For example, calculating the
average of input values requires a most-recent holder for the input values, a gatherer for the
running total, and a stepper for counting the numer of input items. Figure 1 describes the
connections between roles that can be used as a basis for introducing the roles in elementary
programming classes.

Table 1: Roles of variables in novice-level procedural programming.

Role Informal description

Fixed value A variable initialized without any calculation and not changed thereafter.

Stepper A variable stepping through a systematic, predictable succession of values.

Follower A variable that gets its new value always from the old value of some other
variable.

Most-recent holder A variable holding the latest value encountered in going through a succes-
sion of values, or simply the latest value obtained as input.

Most-wanted holder A variable holding the best or otherwise most appropriate value encoun-
tered so far.

Gatherer A variable accumulating the effect of individual values.

Transformation A variable that always gets its new value with the same calculation from
values of other variables.

One-way flag A two-valued variable that cannot get its initial value once its value has
been changed.

Temporary A variable holding some value for a very short time only.

Organizer An array used for rearranging its elements.

88 Third Program Visualization Workshop

@ data: | s/l

-#15

() count: ' emle ‘g..‘ 3,.3,'5‘.5,'.7?

Figure 2: Visualizations of the same operation for different roles: comparing whether a
most-recent holder (a) or a stepper (b) is positive.

3 The PlanAni Program Animator

We have implemented a program animator, PlanAni, that is based on the role concept (Sa-
janiemi and Kuittinen, 2003). In PlanAni, each role has a visualization—role image—that is
used for all variables of the role. Role images give clues as to how the successive values of the
variable relate to each other and to other variables. For example, a fized value is depicted
by a stone giving the impression of a value that is hard to change, and a most-wanted holder
by flowers of different colors: a bright one for the current value, i.e., the best one found so
far, and a gray one for the previous, i.e., the next best, value. A most-recent holder shows its
current and previous values, also, but this time they are known to be unrelated and this fact
is depicted by using two squares of a neutral color.

In addition to role images, PlanAni utilizes role information for role-based animation of
operations. As the deep meaning of operations is different for different roles, PlanAni uses
different animations. For example, Figure 2 gives visualizations for two syntactically similar
comparisons “some_variable > 0”. In case (a), the variable is a most-recent holder and the
comparison just checks whether the value is in the allowed range. In the visualization, the
set of possible values emerges, allowed values with a green background and disallowed values
with red. The arrow that points to that part of the values where the current value of the
variable lays, appears as green or red depending on the values it points to. The arrow flashes
to indicate the result of the comparison.

In Figure 2(b) the variable is a stepper and, again, the allowed and disallowed values are
colored. However, these values are now part of the variable visualization and no new values
do appear. The values flash and the user can see the result by the color of the current value.
In both visualizations, if the border value used in the comparison is an expression (as opposed
to a literal value), the expression is shown next to the value.

Figure 3 is an actual screenshot of the PlanAni user interface. The left pane shows the
animated program with a color enhancement showing the current action. The upper part of
the right pane is reserved for variables, and below it there is the input/output area consisting
of a paper for output and a plate for input. The currently active action in the program pane on
the left is connected with an arrow to the corresponding variables on the right. frequent pop-
ups explain what is going on in the program, e.g., “creating a gatherer called sum”. Users can
change animation speed and the font used in the panes. Animation can proceed continuously
(with pauses because the frequent pop-ups require clicking “Ok” button, or pressing “Enter”)
or stepwise. Animation can be restarted at any time but backward animation is not possible.

PlanAni is implemented using Tcl/Tk and it has been tested both on Linux/Unix and
Windows NT. The architecture consists of four levels as depicted in Figure 4. The lowest
level takes care of primitive graphics and animation, and implements the user interface. The
next level knows how to animate the smallest actions that are meaningful to viewers of the
animation. This level is language independent in the sense that it can be used to animate

Third Program Visualization Workshop 89

Fle Settings Controls Help

T, program fihonacci {input, output);] T = 1]
var last_fih, fib, temp, number, i: integer; Tii

hegin
last_fib := 1; fib :=1; @ 1
write('How many Fibonacei numbers you want: '}; last_fib \ fib
- o

readln(number);

rmmber := abs{rmmber);
if number <= 2 then
writeln('Both the first and second nambers are 1.%)
else hegin
writeln(' 1. numberis 1');
writeln(' 2. nmumber is 1'); —(
for i := 3 to number 1o hegin femip
temp := last_fibh;
last fih := fib;

fib = fib + temp;
writeln(i:2, '. nmmber is', fiby
end :
end number g
end.

i FU & R agon

number

ow many Fibonacei numbers

. mumberis 1 -
. number is 1 :

T I §tup| 23 I Rgsetl Speegl I

P o I | 2

Figure 3: A screenshot of the PlanAni user interface.

Automatic role analysis

Program-level animation

Statement-level animation
Primitives for graphics

Figure 4: Architectural levels of PlanAni.

programs written in various languages, e.g., Pascal, C, and Java.

The third level takes as input a program to be animated, annotated with the roles of
variables and possible role changes, and animates the program automatically. Finally, the
uppermost level does not need role information because it finds roles automatically. Currently,
the two uppermost levels are not implemented. As a consequence, animation commands must
be authored by hand for each program to be animated. Typically 5 animation lines are
required for each line in an animated program.

The uppermost level of PlanAni will accept programs without role annotations. It should
make a dataflow analysis and assign roles and role changes based on this analysis. Its output—
the input to the third level—looks like the program in Figure 5 with two variables that are
initially most-recent holders. When the second loop begins, the role of the variable count
changes to stepper. Since the last value of the old role is used as the first value in the new
role, the role change is marked as proper.

The implementation of the fourth level is challenging for two reasons. First, roles are
cognitive concepts which means that different people may assign different roles to the same
variable. There is also the possibility of repeating phases of the same behavior making auto-
matic detection of, e.g., one-way flag behavior hard. Second, the recognition of roles requires
extensive dataflow analysis which is a research area of its own.

90 Third Program Visualization Workshop

program doubles (input, output);
var count{MRH}, value{MRH}: integer;
begin
repeat
write(’Enter count: ’); readln(count)
until count > 0;
while count{proper:STEP} > O do begin
write(’Enter value: ’); readln(value);
writeln(’Two times ’, value, ’ is ’, 2*value);
count := count - 1
end
end.

Figure 5: A Pascal program with role annotations.

4 Automatic Detection of Roles

Roles are cognitive constructs and represent human programming knowledge. An automatic
analysis of roles takes as input computer programs and tries to assign roles to the variables.
The automatic analysis must find a connection between the program code and the cognitive
structures of the programmer. The fact that human cognition is not exact whereas program
code is exact makes this task a challenging one.

A related example of extracting programming related information automatically is the
PARE (Plan Analysis by Reverse Engineering) system (Rist, 1994). PARE extracts the plan
structure of an arbitrary Pascal program that it gets as input. A plan is a series of actions that
achieve a goal, which PARE defines as a sequence of linked lines of code. Lines of code that
either use or control another lines are linked, and define a sequence of lines, which constitute
a plan. A program may have many plans, which together build up the plan structure of the
program. PARE deals with larger constructs when compared to automatic role analysis: the
plans detected by PARE represents a view to the solution of a problem, whereas automatic
role analysis essentially searches program code for clues of stereotypical usage of variables.

The primary objective of automatically assigning roles to variables can be divided into two
subgoals: to automatically find characteristics of a variable from a source program (“dataflow
analysis” of the identification phase in Figure 6); and to map these characteristics to a certain
human understood role (“Matching” in Figure 6).

The first subgoal requires customization of compiler and dataflow analysis methods and
techniques (Aho et al., 1988; Nielson et al., 1998) in order to extract information about
how data flows through a variable; this information is compressed into a flow characteristics
description (FC). The second subgoal presupposes the creation of a database that contains
mapping information between human defined variable roles and flow characteristics. The
creation of this database is called the learning phase in Figure 6. The database is obtained by
taking a set of existing programs with roles annotated in the style of Figure 5, and applying
the same dataflow analysis technique as in the identification phase. With this method, a set
of flow characteristics can be attached to each role, and some machine learning mechanism
(“Learning” in Figure 6) can then be used to generalize the results into a role-FC database.

Role definitions may differ from person to person and it is probable that programmers
with different backgrounds and experience levels produce different mappings between the role
concept and actual program code. By asking programmers with different backgrounds to
assign roles to the programs used in the learning phase, it becomes possible to analyze the
differences in the resulting databases, i.e., differences of the programmers’ mental models.

The complexity of the extraction of FCs differ, some can be determined with a relative

Third Program Visualization Workshop 91

Learning phase

Role-FC
database

Role-annotated Dataflow Role-FC
progams analysis pairs

Learning

Identification phase
New Dataflow > Variable-FC 5 | : Variable-role
progam analysis pairs ikt | g pairs

Figure 6: An overview of the learning and matching phases in automatized variable role
detection.

simple syntax analysis, others need more complicated analyses of the data flow. The whole
process of program analysis begins with the scanning of the program, during which the pro-
gram is partitioned into tokens, such as reserved words and strings. These tokens are then
processed through syntax analysis, in which the tokens are matched to the syntax of the pro-
gramming language. The variables of the program are located during the scanning process
and basic information about their type and assignments are found during syntax analysis.

Some examples of FCs are related variables and value scaling. The related variables cha-
rasteristic indicates how many variables affect the value of the variable under examination.
The value scaling charasteristic tells that the value of a variable is scaled by some constant
or variable in some context during its lifetime. The related variables FC can be determined
during syntax analysis by simply recording all variables that appear on the right hand side
of assignments. Syntax analysis also produces data that can be used to find out whether the
value of a variable is scaled. The simplest case of value scaling is the modification of the
assigned value by some constant, such as in “x := x + 1”. In a more complex case value
scaling may include two variables on the right hand side of an assignment, where the other
represents the scaling factor. Both related variables and value scaling may happen in the
same assignment; in general FCs are not exclusive, but rather conditions which may apply in
association with each other.

The extraction of some FCs require the examining the execution order of a program.
For example the FC called change frequency records how many times the value of a variable
changes during its lifetime. This information requires that program execution is simulated
in order to find out how many assignment are made to a certain variable. The lifetime of a
variable is an important source of information for determining FCs. An example of a dataflow
analysis technique, which is needed when examining the lifetime of a variable is the live
variables analysis (Nielson et al., 1998). A variable is said to be live at a certain point of
program execution if the value assigned to it will be used later as the execution proceeds.
The live variables analysis may show that a value assigned to a variable in the beginning of a
program is not used at all, in fact the next use of the variable is independent of the previous
value. In this case the variable may have two different roles during its lifetime. If a variable
is not live at a certain point of a program, then it may not have an active role at that time.
A variable may in fact have many different roles during its lifetime, thus the lifetime of a
variable and the lifetime of a role are two different things.

Another reason for examining the execution order is the fact that the sequence in which
the FCs of a variable appear are important. Consider for example the variable count in the
program of Figure 5. The change frequency of count is determined to be frequent, as it is
assigned values repeatedly inside two loops. On the other hand the value scaling FC apply to
the variable count too, as its value is modified with the statement “count := count - 1”
in the while loop. If the appearance order of the FCs are not considered, then the role of
the variable count looks like a stepper. A stepper can be identified by the combination of a
frequent change frequency and the value scaling FCs.

If the sequence in which the FCs of the variable count appear is considered, then we can

92 Third Program Visualization Workshop

identify two groups of FCs. The first group includes only the frequent change frequency FC
(in the repeat loop) and the second group includes a pair of FCs: frequent change frequency
and value scaling (in the while loop). The fact that the FCs of count can be grouped into
two distinct groups suggests that count might have two different roles during its lifetime.
The latter group identifies the role of stepper as discussed above. The former group including
only the change frequency FC needs an additional FC to indentify a role: user input, which
indicates that the value of the variable is dependant on user input. Thus we get a grouping of
the FCs frequent change frequency and user input, which suggests that the role of the variable
count is most-recent holder during the first loop of the program in Figure 5.

Certain roles appear in pairs, which adds a new dimension to the automatic detection
of roles. For example a variable with the role of an organizer appear often with an another
variable with the role of a temporary. The temporary variable is used to facilitate the re-
organizing of the organizer variable. An another example of a role pair is a gatherer, whose
gathering activities are controlled by a stepper.

Our initial prototype will analyze Pascal programs and deal with only three roles: fized
value, stepper, and most-recent holder. These three roles covered the majority of variables
(81.7-90.3 %) in a study of three Pascal programming textbooks (Sajaniemi, 2002). The
implementation is done using Tcl/Tk and it is based on Yeti (Pilhofer, 2002), a Yacc-like
compiler-compiler (Aho et al., 1988).

5 Conclusion

In this paper we have presented the concept of variable roles, which are a set of characteri-
zations of variables. The concept explicitly embodies programming knowledge in a compact
way that is easy to use in teaching programming to novices. The PlanAni program animator
visualizes the roles in a program by attaching a role image to each variable and animating
operations on the variables according to their roles. This way the program visualizations that
the PlanAni animator produces goes further than the mere surface structure of the program.

Automatic role detection is needed in order to make automatic role-based animation of
arbitrary programs possible. The combination of a non-exact cognitive concept and the exact
nature of programming languages makes this task a non-trivial one. We suggest that automatic
role analysis is possible by performing dataflow analysis combined with a machine learning
strategy. Automatized role analysis also makes it possible to deal with the roles of variables
in large-scale programs, which may provide interesting opportunities for large-scale program
comprehension.

Acknowledgments

This work was supported by the Academy of Finland under grant number 206574.

References

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques, and Tools.
Addison-Wesley Publishing Company, 1988.

K. Ehrlich and E. Soloway. An Empirical Investigation of the Tacit Plan Knowledge in
Programming. In J. C. Thomas and M. L. Schneider, editors, Human Factors in Computer
Systems, pages 113-133. Ablex Publishing Co, 1984.

S. A. Hundhausen, C. D. Douglas and J. T. Stasko. A meta-study of algorithm visualization
effectiveness. Journal of Visual Languages and Computing, 13:259-290, 2002.

P. Mulholland. A Principled Approach to the Evaluation of SV: A Case Study in Prolog. In
J. Stasko, J. Dominique, M. H. Brown, and B. A. Price, editors, Software Visualization —
Programming as a Multimedia Ezperience, pages 439-451. The MIT Press, 1998.

Third Program Visualization Workshop 93

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag,
Heidelberg, 1998.

M. Petre and A. F. Blackwell. Mental Imagery in Program Design and Visual Programming.
International Journal of Human-Computer Studies, 51(1):7-30, 1999.

F. Pilhofer. YETT - Yet another Tcl Interpreter. Internet WWW-page, URL:
http://www.fpx.de/fp/Software/Yeti/, 2002. (March, 2004).

R. S. Rist. Search Through Multiple Representations. In D. J. Gilmore, R. L. Winder, and
F. Detienne, editors, User-Centred Requirements For Software Engineering Environments.
Springer-Verlag, New York, 1994.

J. Sajaniemi. An Empirical Analysis of Roles of Variables in Novice-Level Procedural Pro-
grams. In Proceedings of IEEE 2002 Symposia on Human Centric Computing Languages
and Environments (HCC’02), pages 37-39. IEEE Computer Society, 2002.

J. Sajaniemi and M. Kuittinen. Program Animation Based on the Roles of Variables. In
Proceedings of the ACM 2003 Symposium on Software Visualization (SoftVis 2003), pages
7-16. Association for Computing Machinery, 2003.

J. Sajaniemi and M. Kuittinen. An Experiment on Using Roles of Variables in Teaching
Introductory Programming. Computer Science Education, in press.

