94 Third Program Visualization Workshop

TeeJay - A Tool for the Interactive Definition and Execution
of Function-oriented Tests on Java Objects

Ralph Weires, Rainer Oechsle

University of Applied Sciences, Trier, Germany

weiresr@fh-trier.de, oechsle@informatik.fh-trier.de

Abstract

This paper describes the testing tool TeeJay whose main purpose is the function-
oriented testing of Java objects with a particular support for remote RMI objects. TeeJay
offers the possibility of defining and executing tests in an interactive manner. A test
case consists of method calls and checks. TeeJay is a capture/replay tool comparable to
many test tools used for testing graphical user interfaces. A test is defined by recording
all interactively executed method calls and checks. The method calls can be selected for
execution in a way similar to the way method calls are executed in BlueJ.

Whereas Bluel is an educational development environment with a focus on the design
aspect, TeeJay is a corresponding tool for testing.

1 Introduction

An important area of computer science education is software development. Teachers should
emphasize right from the beginning that programming is not equal to software development,
but only a part of it. Other important activities of the software development process are
analysis and design on one hand and program testing on the other.

BlueJ (Barnes and Kélling, 2004) is an educational development environment with a focus
on the design aspect. TeeJay is a corresponding tool for testing which can be used to interac-
tively create and execute tests for Java programs with the help of a graphical user interface
and without the need of writing any test code.

The available building blocks that can be used in a test are classes, existing objects, existing
primitive variables, and existing remote resources. All these building blocks are visualized by
trees. These trees contain the methods that can be applied to each existing class and object.
Tests in TeeJay can simply be composed by interactively selecting methods or constructors
that should be invoked within a test. It is also possible to specify conditions for the attributes
of the objects or for the return value of a called method. To realize this functionality, TeeJay
makes extensive use of the Java Reflection APIL.

TeeJay requires a Java Runtime Environment (JRE) of version 1.4 or higher. It can be
freely used and copied under the conditions of the GNU General Public License (GPL). The
whole underlying diploma thesis (Weires, 2003) as well as the software itself are available on
one of the author’s web pages (at http://www.ralph-weires.de/stud-da.php).

2 Usage Overview

TeeJay offers two working perspectives to the user, one for the definition of tests and the other
one for the execution of existing tests. In this paper we will only show some sample parts of
the user interface in order to give a brief overview over the main usage and functionality of
the program.

2.1 Definition View

The definition view shows the current test environment which consists of classes, objects,
primitive variables, and remote resources. Remote resources are represented e.g. by RMI
registries and are used to obtain references to remote RMI objects. Once a reference to a
remote object has been obtained, remote objects can be used like any other local object.

Third Program Visualization Workshop 95

However, operations on RMI objects are automatically called with a timeout. An RMI call
is cancelled after a certain (user-defined) time has elapsed without the method call having
returned. Thus, we take into account possible disturbances of the network connection to the
remote service.

The views for classes and objects show all members (attributes and methods) which can
be used in a test. The classes view will now serve as an example to explain how the methods
can be used. Figure 1 shows the view of some sample classes in the environment. The
classes are displayed in a tree structure, sorted by their packages. The child nodes of a class

® Obiectz | 5 Primtives |
® Classes | B Remote sources - |

B B java.awt
® Paoint
E M javalang
B @ Ecolean
§ FALSE: Booleah
f TRLE: Eoolean
f TYPE: Clazs
& Boolean(String)
& Boolean(hoolean)
i getBoolean(String) : boolean
i toString(boolean) ; String
m valueOfString) - Boolean
m valueOfiboolesn) . Boolean
£ Runnable
E (& Thread
B B javaxaswing
® JFrame

Figure 1: Classes view of the test environment

node represent constructors, class attributes (static attributes in Java), and class methods
(static methods in Java). Figure 1 depicts these members for the class Boolean, because
the node representing this class is currently expanded. TeeJay can, however, only access
members with the modifier public - so bypassing the defined visibility for the members of a
class is not possible in the current version of TeeJay (although this might change in a future
version). The available members are visualized by their respective declaration. They can
be used in tests. In the example it would thus be possible to call e.g. the static method
getBoolean(String) :boolean.

To actually call a method, the required parameters have to be specified. Any objects
and primitive variables, which are currently present in the test environment and which were
gained by the execution of previous operations, can be used. They can be referred to by
their identifier. Besides such arguments coming from the test environment it is also possible
to define fixed values for a call. In the case of a primitive parameter every literal of the
respective data type can be used. In the case of an object parameter, null can be used or a
literal string, if the parameter type is compatible with the class String. If the return type of
a called method is not void, it is additionally possible to assign the return value of the called
method to a variable of the test environment. The identifier of the variable has then to be
indicated.

Instead of assigning the return value of a method call to a variable, it is also possible to
check certain conditions for a return value. This option is mainly given for primitive values.
Such return values can be compared with a type compatible reference value (which can e.g.
be again a value out of the test environment), using one of the usual comparison operators
like == oder <=.

After the complete specification of a method call, the method is actually called using the
Java Reflection API. It is thus possible to compose the desired test environment piece by piece
and to optionally check certain conditions. The result of every method call is displayed in

96 Third Program Visualization Workshop

a logging window. In case of a thrown exception during the execution of a method call, the
respective exception object is displayed in the logging window together with its stack trace
to support debugging.

If a class is needed in a test, the class has to be added to the test environment. This is
done by indicating the fully qualified class name. The classes view can so be filled as shown
in Figure 1 for several sample classes and interfaces. The user is thus enabled to test class
methods, or to construct her test environment by creating objects which will later be used in
tests.

In order to allow TeeJay to access the required classes, the user has to specify the directories
and libraries (jar or zip archives) that will be searched. Only compiled class files are needed,
there is no source code required. For RMI objects it is also possible to enable dynamic class
loading, thus making the local presence of the class files optional. To make use of this option,
it is however needed to start the program with some special options which are not further
described here.

The objects view which is shown in Figure 2 can be used in a way quite similar as the classes
view. For every object, all public instance attributes and methods (non-static attributes and

@ Classes | O Remicte sources. |
@ Objects | B Prinifives |

[fed [¢] [m]

B, chatServer [Remcte |
B @ intarr [int]]]
o oetint) : int
wm lenothi 3 :int
dm set(int, int)
i equals(Ohject) | boolean
e getClass() Class
e hashCoder) int
e notify()
m natify Al
i toStringl) String
m wvait()
i yvait(long)
i wait(long, int)
® ol [Ohject]
@ =tr1 [String] = "Hello world”
@ =tr2 [Sting] = null

Figure 2: Objects view with pseudo array methods

methods in Java) are displayed. To get a better overview it is possible to hide the attributes,
the methods, or all inherited members.

The type of a reference to an object gained by a method call depends on the formal return
type of that method. The fields and methods of an object that are displayed, and are thus
available, depend on the current reference type. The type of a reference can be interactively
changed by an explicit cast operation.

If an object reference represents an array, TeeJay offers some pseudo methods which do
actually not exist. These methods represent the reading and writing of an element of the
array as well as reading the array length. The types of the parameters and return values of
these methods depend on the array type. As an example, Figure 2 shows the methods get,
set, and length for an array of int.

For testing purposes, TeeJay provides a kind of capture/replay function which can be
used for the definition and execution of tests. To define a test, the program can be switched
into a recording mode, in which all operations interactively executed by the user within the
test environment are recorded. After having finished the recording, the recorded sequence of
operations is available as a test case which can later be replayed.

It is additionally possible to define test suites which are composed of recorded test cases
as described above or other test suites. Complex test trees consisting of many test cases can

Third Program Visualization Workshop 97

thus be created. A test suite can be executed later by a single mouse click. For every test case
within a test suite, it is possible to specify the number of times the test has to be repeated.

All defined tests can be saved persistently. This is why they can be reused in future
sessions. To run one of the available tests, TeeJay provides a separate view (besides the
definition view) which will be described in the next subsection.

2.2 Test Run View

The second perspective of TeeJay’s user interface is used to select one of the available tests
and run it. Every defined test can thus be executed again after the source code of the tested
classes has been modified. Therefore TeeJay is suited for regression testing. A regression test
checks whether all the functions that have been successfully tested in the past, still work after
the code has been modified.

The execution speed of a test can be adjusted by the user. The progress of a started test
can be observed during its execution. The results are displayed in two ways:

1. In the detailed view the result of every single step is displayed with all the details like
thrown exceptions and stack traces in case of an error.

2. The summary of the results of the test run so far displays some statistics to give a rough
overview over the current progress. Figure 3 shows an example of such a summary after
completion of a test run. These statistics contain information about the number of
executed tests, operations and checks (checks are operations, too). For the checks it is
also displayed how many of them were executed successfully and how many failed. After
a test run has been terminated, there is a single summarizing message being displayed to
inform the user about the result of the test run. The message shown in figure 3 appears
only if the test run was completed successfully (it was not aborted neither by the user
nor by a failed operation), and if additionally all checks have passed.

3 Related Work

We know a few tools which have a functionality that is comparable to TeeJay. This section
takes a look at the differences to these tools and the consequential pros and cons in comparison
with TeeJay.

3.1 JUnit

JUnit (Beck and Gamma, 1998) is certainly one of the most common tools for testing Java
programs. Like TeeJay, JUnit is used for the creation of function-oriented tests. It has a
simple structure and is very versatile. It requires the definition of tests by directly writing
test code. This has the advantage that there are no restrictions for the definition of tests,
whereas TeeJay does not allow the definition of control structures, e.g., in tests.

Results of last test run:

Test successiul executed

Executecttests: 4 of 4
Executed operations: 30 of 30

Performed checks: 3 of 3
passed: 3

failed: 0

Figure 3: Summary of a test run

98 Third Program Visualization Workshop

The fundamental difference (besides the graphical user interface) between these two tools
is that in JUnit tests are defined statically, whereas in TeeJay they are defined dynamically.
Dynamic test definition means that all test steps are executed immediatly after their definition.

Hence in TeelJay it is possible to observe the results and effects of every step already at
definition time. The user is thus provided with a test environment which is always up to date,
making it possible to analyse the progress and the effects already during the definition of a
test. Errors can therefore be detected immediately. We believe that especially for programmer
novices this feature can be very helpful.

Another difference between the tools is that the single test cases in JUnit are independent
from each other and can therefore be executed in any order without any problems. Thus every
test case represents a self-contained test.

Tests in TeeJay may on the contrary have dependencies. If an object is e.g. added to the
test environment in one test, it is usually still available after that test has finished. In this
way tests can be created which are based on each other, making it possible, e.g., to reuse a
basic test in more than one test scenario.

However, this feature of TeeJay has the disadvantage, that, during the execution of a test
suite, a failure of a single test case may cause the failure of the whole test suite. This is
different in JUnit because of the independency of the test cases.

3.2 Exacum

We found the commercially available testing tool Exacum (http://www.ist-dresden.de/
products/Exacum/) only when the development of TeeJay was nearly finished. Even though
TeeJay was not influenced by Exacum, there are some similarities between these two tools.
But there are also some important differences.

Exacum is not only comparable to TeeJay, but also to JUnit. In contrast to JUnit, the
definition of tests in Exacum is also done using a graphical user interface. Like TeeJay, Exacum
offers the possilitiy to the user to define simple test steps like constructor or method calls as
well as checks as part of a test case. However, this definition is done statically in Exacum,
whereas it is done dynamically in TeeJay, as already mentioned in the previous subsection.
The test steps are actually executed only if the user starts a test run. This happens after a test
has been completely defined. So there is no execution of any test step during the definition
of a test.

In this regard Exacum is similar to JUnit. Hence, the pros and cons mentioned in the
previous subsection do not have to be repeated here. Futhermore, like in JUnit, different test
cases are independent from each other.

To sum up, Exacum is like JUnit but has a graphical user interface for the definition of
tests like TeeJay. JUnit offers more flexibility because the test steps have to be programmed in
Java. TeeJay supports especially the testing of remote RMI objects, whereas Exacum mainly
focusses on servlets and EJBs (Enterprise Java Beans).

3.3 Blueld

BlueJ (Barnes and Kélling, 2004) is originally not a testing tool, but a development environ-
ment for Java whose main purpose is the support of teaching object-oriented principles to
programming beginners. TeeJay adapts the philosophy of BlueJ to the world of program test-
ing. Like in BluelJ, TeeJay users work on classes and objects, e.g., by interactively selecting
methods to be called. Also like BlueJ, TeeJay visualizes the available classes and objects as
well as their methods and attributes.

However, during the development time of TeeJay, BlueJ has been enhanced with compo-
nents that provide testing support. This has been achieved by integrating JUnit into BlueJ
(Patterson et al., 2003). Hence, it is meanwhile possible to define unit tests in BlueJ in a
similar manner as in TeeJay. Besides the possibility of explicitly writing JUnit test code, it is

Third Program Visualization Workshop 99

possible to interactively create a corresponding test class for a class represented in the UML
class diagram view of BlueJ. For such test classes, test methods can be defined by recording
a sequence of interactively executed calls of constructors and methods in the environment.
Also, similar to TeeJay, it is possible to define certain conditions for the return values of called
methods while a test is being recorded. These conditions are tested when the created test
methods are run afterwards. The graphical user interface for executing tests is similar to the
one known from JUnit.

Although the testing features of BlueJ and TeeJay are based on the same idea and are
thus similar in many ways, there are also some significant differences. BlueJ supports test
fixtures. A test fixture is an environment that is established before a test run is started. A
test fixture can be reused for many test cases. TeeJay does not support test fixtures, although
they can be emulated by recording additional preparation and cleanup tests which can then
be used with different test cases inside of test suites.

Another advantage of the testing features of BlueJ is due to the integration of JUnit into
BlueJ. The tests created by BlueJ are Java classes suited for JUnit. It is thus possible to run
them also in the traditional JUnit environment - the BlueJ environment in which the tests
were created is not needed for the execution. On the contrary, TeeJay is always needed to
run the tests created with it. Furthermore, the created tests in BlueJ can be manually edited
at a later time.

In TeeJay, there are no source files needed for the classes being tested, whereas in BlueJ,
it is only possible to define test classes for those classes whose source code is available (unless
the test code is written manually). In general, methods or constructors of classes cannot be
interactively called in BlueJ unless the source files are available. On the contrary, in TeeJay
classes can be displayed and used without the need of knowing the corresponding source code.

Another difference between the two interactive testing environments is the graphical rep-
resentation of classes and interfaces. In BlueJ, UML class diagrams are used, whereas classes,
interfaces, and objects are represented by trees in TeeJay (see subsection 2.1).

Furthermore, TeeJay was developed with a special focus on testing remote RMI objects.
As far as we know, this is not possible in BlueJ. In addition, after having found a remote object
in an RMI registry, it is possible in TeeJay to load the class file for this object dynamically
over the network.

Finally, some features of TeeJay regarding the definition of tests are not possible in BlueJ
(unless the test code is written manually). E.g., in BlueJ it is not possible to save the return
value of a called method in the test environment if this value has a primitive type. This
is mainly because the BlueJ environment only manages objects, not primitives. Therefore,
it is not possible to create a test which checks whether the (primitive) return value of two
methods, called one after the other, is the same.

3.4 JavaCHIME

Like BlueJ, JavaCHIME (Tadepalli and Cunningham, 2004) is more oriented towards teaching
than testing purposes. It is another tool which allows direct interaction with objects and
classes like BlueJ and TeeJay do. It is, however, currently under development and can not be
tested by the authors yet. Thus, we are not able to provide further information.

4 Possible Usage of TeeJay in Practical Education

TeeJay can be used in practical education as a valuable tool for programmer novices. It
provides a simple visual overview of the classes and objects currently in use, and enables the
students to directly see the effect of a performed action such as a method call. TeeJay could
thus help to understand important principles of object oriented programming in a similar way
as BlueJ does.

100 Third Program Visualization Workshop

More important is TeeJay as a tool that fosters the integration of testing into the software
development process right from the beginning of computer science education. We believe that
this is as important as the integration of software modelling techniques from early on. The
students should be encouraged to create tests already for their small exercise programs that
they have to write in their first year. After changing the underlying code, the same tests can be
used again to perform a regression test without any more work to do. Students will discover
that some of the test cases will not work any more. If they did not expect that the code
changes have such an impact to their test cases, they will gain some important experiences
and insight into the area of software development. Especially, they will get used to the testing
process and they will achieve a better understanding of the eminent and increasing importance
of testing software thoroughly before actually using it in a running system.

The achieved effect of using TeeJay in practical education could be evaluated i.e. by
separating the students into two groups: one that is teached to work and test with TeelJay
and another one that does not use TeeJay. We assume that the programs created by the first
group will be better (less bugs, more robustness), since these programs will be better tested
than those of the other group.

In order to get significant results, the experiment has to be carried out with larger student
groups working on a number of different exercises. To realize the comparison of the student
programs, a tool for the automatic assessment of the student programs (such as those described
e.g. by Reek (1989) or Jackson and Usher (1997)) would be very helpful.

5 Summary and Outlook

TeeJay is a testing tool for programmer novices that offers the possibility of defining and
executing tests in an interactive manner. A test case consists of method calls and checks.
TeeJay is a capture/replay tool comparable to many test tools used for testing graphical user
interfaces. A test is defined by recording all executed method calls and checks. The method
calls can be selected for execution in a way similar to the way method calls are executed in
BlueJ. TeeJay can be used as a tool for programmer novices that fosters the integration of
testing into the software development process right from the beginning of computer science
education.

Up to now, TeeJay supports only the definition of tests by explicit specification of each
step. These steps are basically at the level of source code statements. This way of test
definition is well suited for simple tests, but is too time-consuming for larger tests. JUnit is
much more efficient and flexible in this respect.

The usability of TeeJay can be improved significantly if test cases are derived automatically
from a given higher-level specification. State charts are an example of such higher-level
specifications. By applying appropriate traversing algorithms for state charts, TeeJay could
automatically find the needed test cases to cover all possible transitions of a state chart.

Such an approach is described in the diploma thesis of Sokenou (1999) which deals with
the definition of state charts for class testing. The work focusses on a technique for the
inheritance of state charts in class hierarchies.

Apart from such fundamental extensions, some smaller improvements are also planned
such as modifications of the user interface. An extended view of the different contents would
be useful to give an even better overview of the test environment to the user. An example
for this would be a deeper display of the attribute values of objects as can be seen in many
advanced debuggers. Some currently not used abilities of the Reflection API could be used
to access members with limited access modifiers.

A possibility to edit defined (recorded) tests would be another useful feature which is not
available at the moment. A little fault made at definition time would no longer force the
whole recording process to be repeated.

The addition of further remote resource types is another direction for future work. Cur-

Third Program Visualization Workshop 101

rently, only RMI registries are available as remote resources. Other possible remote resource
types that can be made available for TeeJay are JINI Lookup Services, Java Spaces, CORBA
Naming Services, and Web Services.

References

David J. Barnes and Michael Kolling. Objects First with Java: A Practical Introduction using
BlueJ. Prentice Hall / Pearson Education, 2nd edition, 2004. ISBN 0-13-124933-9.

Kent Beck and Erich Gamma. Test infected: Programmers love writing tests. Java Report, 3
(7):37-50, July 1998.

David Jackson and Michelle Usher. Grading Student Programs using ASSYST. In Proceedings
of the 28th SIGCSE Technical Symposium on Computer Science FEducation, pages 335—-339,
1997.

Andrew Patterson, Michael Koélling, and John Rosenberg. Introducing Unit Testing with
BluelJ. In Proceedings of the 8th conference on Information Technology in Computer Science
Education (ITiCSE), 2003.

Kenneth A. Reek. The TRY System - or - How to Avoid Testing Student Programs. In
Proceedings of the 20th SIGCSE Technical Symposium on Computer Science Education,
pages 112-116, 1989.

Dehla Sokenou. Ein Werkzeug zur Unterstiitzung zustandsbasierter Testverfahren fiir JAVA-
Klassen. Softwaretechnik-Trends (in German), 19(1):37-50, Februar 1999.

Pallavi Tadepalli and H. Conrad Cunningham. JavaCHIME: Java Class Hierarchy Inspector
and Method Executer. In Proceedings of the ACM-Southeast Conference, pages 152—-157,
April 2004.

Ralph Weires. Entwurf und Implementierung eines Werkzeugs zur interaktiven Definition und
Ausfiihrung funktionsorientierter Tests fiir lokale und iiber RMI nutzbare Java-Objekte.
Diplomarbeit (in German), Fachhochschule Trier, 2003.

