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Abstract

This paper presents a taxonomy for algorithm simulation exercises that allow to build
learning environments that not only portray a variety of algorithms and data structures,
but also distribute tracing exercises to the student and then automatically evaluates
his/her answer to the exercises. The taxonomy systematically classifies the exercises into
8 separate categories that have 8 subcategories each. Each category is characterized and
demonstrated by describing an example exercise that falls in the category.

The taxonomy provides a thinking tool to systematically diversify the set of possible
simulation exercises. Thus, the taxonomy promotes new perspectives to come up with
novel exercises of completely new genre. Moreover, we demonstrate a fully working web
based learning environment that already includes implementations for such exercises.

1 Introduction

Today, algorithm animation is primarily utilized for both supporting teaching in the lectures
and for studying in open and closed labs. A variety of systems are available for us on the
web. However, from the pedagogical point of view, many of them lack the potential to give
automatic formative or summative feedback on a student’s performance, which is an essential
factor in the learning process. Fortunately, the unambiguity of algorithms and data structures
allows one to set up automatically assessed exercises and compare the student’s solution to
the correct model solution. This gives an opportunity to produce systems that not only
portray a variety of algorithms and data structures, but also distribute tracing exercises to the
student and then evaluate his/her answer to the exercises. One possible method for building
such systems is visual algorithm simulation (Korhonen, 2003), which allows to practise, for
example, such core CS topics as sorting algorithms, search trees, priority queues, and graph
algorithms on a conceptual level without writing any code. When automatic evaluation of
students’ submitted work is included into the system, we refer to this as automatic assessment

and feedback of algorithm simulation exercises.
Very few systems fully support algorithm simulation exercises with the automatic assess-

ment and feedback capability. However, TRAKLA (Hyvönen and Malmi, 1993; Korhonen and
Malmi, 2000), and its follower TRAKLA2 (Korhonen et al., 2003) both do, and they form
the basis of our discussion. Some other systems support algorithm simulation exercises, as
well, but only within a limited scope. PILOT (Bridgeman et al., 2000) is targeted to tracing
exercises, but covers only graph algorithms and provides only formative feedback. On the
other hand, “stop-and-think” questions requiring an immediate response from the learner,
such as introduced in JHAVÉ (Naps et al., 2000), can be interpreted to be algorithm simula-
tion exercises, too. The learner is supposed to understand the algorithm either by mentally
executing the algorithm or by doing such a simulation with paper and pen. Thus, the system
illustrates exercises where the learner is asked to manually trace an algorithm on a small data
set. However, the system does not give feedback on the correctness of such a trace, but merely
asks questions that should confirm that the learner has understood the concept. Finally, if
we generalize the concept algorithm to be any well-defined procedure to solve computational
problems, we can also bring in tools such as the problets introduced by Krishna and Kumar
(2001). They illustrate problem generators on the topic of precedence and associativity of
operators in which the learner is to evaluate expressions by solving sub-expressions in correct
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order. The task is to solve exercises by following the predefined rules of operator precedence
and associativity (that could also be expressed as an algorithm).

In this paper, we introduce a systematical classification for algorithm simulation exercises.
Our aim is to illustrate the full range of exercises this method supports, and thus better dis-
cover their potential in supporting learning. The taxonomical evaluation divides the exercises
into separate categories that are described by characterizing each category first. In addition,
each category is demonstrated by describing an example exercise that falls in the category.
We have a fully working web based learning environment that includes implementations for
many of the exercises. Thus, you can try out the exercises in live action1.

In Section 2, we briefly describe how to apply algorithm animation and simulation to-
gether to construct a learning environment with exercises for data structures and algorithms.
Section 3 introduces the taxonomy of algorithm simulation exercises, and in Section 4 we
present sample exercises in our learning environments TRAKLA and TRAKLA2. Finally,
in Section 5, we discuss some aspects how this taxonomical approach could be applied in
practice.

2 Algorithm simulation and animation in a learning environment

We define a learning environment as a system that is capable of meaningful interaction with
the user with respect to the topic of the class to which this environment is attached. We
refer to the users of such an environment as learners. In the context of data structures
and algorithms, our vision is that a good learning environment should provide the learner
a selection of interactive learning objects to view algorithms working (animation), interact
with the animations, i.e., control or simulate the algorithms, get feedback on the simulation in
order to test one’s knowledge on its working, and explore the general behavior of the algorithm
through simulation with smaller or larger data sets. Moreover, the learner should be able to
operate on the algorithm both on a conceptual level and on the implementation level to fully
grasp its working. Implementing such a vision is a major task, and requires typically several
different visualization tools. In this paper, we consider only working on the conceptual level,
and the visualization of algorithm code execution is out of scope of this paper. First, we briefly
define the concepts algorithm simulation and automatic algorithm animation, since they form
the basis for the rest of the paper.

In visual algorithm simulation, the user manipulates graphical objects on the screen that
are visual representations of actually implemented underlying data structures. Typically a
simulation sequence consists of a number of context sensitive drag & drop operations, each
simulating, e.g., basic variable assignments, reference manipulations, or operation invocations
such as insertions and deletions. The system interprets the operations and modifies the corre-
sponding underlying data structures, such as arrays, lists or trees according to the operations,
and automatically updates the visual representation on the screen. Thus, visual algorithm
simulation applies automatic algorithm animation to update the screen. The conceptual dif-
ference between algorithm animation and algorithm simulation is that in the animation all
changes in data structure representations are based on the execution of a predefined algo-
rithm whereas in the simulation, the user is the active part initiating the changes. As a
whole, a seamless combination of these methods, such as introduced in the Matrix application
framework (Korhonen and Malmi, 2002), allows the user to explore the working of different
algorithms and interact with the system in many ways.

If compared with plain algorithm animation tools, the simulation facility enables us to
define new interesting types of algorithmic exercises, because the user-generated simulation
sequence can be compared with a sequence generated by a true implemented algorithm. Thus,
we can build exercises that train and test different aspects of the working of algorithms. We

1The research pages for TRAKLA2 learning environment at http://www.cs.hut.fi/Research/TRAKLA2/
includes fully working applets that demonstrate the algorithm simulation exercises.
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can request the user to imitate a real algorithm with a given initial data, as depicted in
Figure 1. Or, we can ask the user to solve a counter example: for a given algorithm, generate
the initial data that produce the given output. There are also other possibilities as we can
see in the next section.

Figure 1: TRAKLA2 applet. The exercise window includes the data structures and push
buttons. The model solution window is open in the front.

In the figure, we show a sample exercise in which the learner is to insert (drag and drop)
the keys from the given array (initial data) one by one into the binary search tree. After
completing the exercise, the learner can ask the system to grade his or her performance.
The feedback received contains the number of correct steps out of the maximum number of
steps. The learner can also view the model solution for the exercise as an algorithm animation
sequence. The model solution is shown as a sequence of discrete states of the data structures,
which can be browsed backwards and forwards in the same way as the learner’s own solution.

3 Taxonomy

As the dynamics of a simulation is targeted to algorithms, we can derive the taxonomy of
algorithm simulation exercises by examining the function P : I → O that an algorithm A
is supposed to compute. An algorithm simulation exercise can employ any of the following
three components, i.e., the algorithm A (instructions to compute P ), the input I or the
output O, or any combination of them, while the other components are fixed (predefined in
the assignment). Thus, an algorithm simulation exercise is a tuple EP = (A, I, O), where P
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is the fixed problem to be solved by an algorithm A, I is the legitimate input set (a problem
instance), and the solution is the obtained output set O = A(I).

An algorithm simulation exercise type is a tuple ET = (X1X2X3), where Xi is substituted
by F if the corresponding E-component, i.e., algorithm, input or output is fixed, respectively,
and Q if it is in question. Most of the TRAKLA exercises ask the student to simulate a
particular algorithm A with individually tailored input sequence f1, f2, . . . , fk ∈ I, and show
how the corresponding structures change by determining the output sequence q1, q2, . . . , qk ∈

O. Thus, the exercise is of type ET = (FFQ) and we denote the input and output sequences
as Fk and Qk, respectively. The question is, in general, what is the output for the given
algorithm with the given input. For example, Fk can be an ordered set of keys to be inserted
into an initially empty binary search tree or it can be the parameter(s) an algorithm receives
in each recursive call. Here, for each fj the corresponding qj = Aqj−1

(fj), i.e., the binary
search tree after each insertion or the computed result after each recursive call to A.

Two different subtypes for E-components can be identified: implicit and explicit. An
explicit question (denoted by capital case Q) requires the learner to produce an answer for
the question, for example, the output in the previous example. Implicit questions (denoted
by lower case q) only require that the learner is familiar with the topic in question but no
explicit answer is required and the learner may choose from among a set of alternatives. For
example, the learner may be asked to apply any algorithm that produces topological sorting
and not any particular one. Usually, this happens when there is more than one Q-component
in an exercise. On the other hand, also fixed E-components can be implicit. For example, it
is obvious what is the output structure while sorting an array of keys. Thus, we denote the
implicit output as lower case f .

Eight different basic types of exercises can be named and characterized and 256 in total if
the subtypes are taken into account. In the following, we summarize the 8 basic types briefly
and give an example of each that includes also the subtype definitions.

1. E1 = (FFif) - Determining characteristics: Which items in the array Fi are compared
with the given search key k /∈ Fi in binary search?

2. E2 = (FaFiQ) - Tracing exercise: i) Insert the set of input keys Fi into an initially
empty binary search tree. ii) Insert the set of keys Fi into an initially empty hash table
using linear probing with the given hash function Fa.

3. E3 = (FQFo) - Reverse engineering exercise: Determine a valid insertion order for the
keys resulting the AVL tree Fo in question.

4. E4 = (FQq) - Exploration: Determine such an input string for Boyer-Moore-Horspool
algorithm that satisfies the statement coverage (every statement is executed at least
once with the test set). Describe the output of such an execution.

5. E5 = (QFiFo) - Determining algorithm: The following binary tree Fi was traversed in
different orders. The resulting traversing order of nodes are Fo. Name the algorithms.

6. E6 = (qFQ) - Open tracing exercise: i) Trace topological sort on a given graph. ii)
Compare several recursive sorting algorithms with each other. Show the state of the
input array F after each recursive call.

7. E7 = (qQf) - Open reverse engineering exercise: Compare several sorting algorithms to
each other. Determine an example input for each of them that leads to the worst case
behavior.

8. E8 = (QQQ) - Completely open question. Let us consider the following broken binary
search tree. All duplicate keys are inserted into the left branch of the tree, but the
deletion of a node having two children replaces the key in the node with the next largest
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item (from the right branch). Give a sequence of insert and delete operations with keys
of your choice that results in a tree that is no longer a valid binary search tree (Hint:
the search routine can only find duplicates from the left branch).

Obviously the taxonomy presented here is not exhaustive in the sense that there exist
exercises that are not algorithm simulation exercises at all. However, the taxonomy gives us a
systematic way to cover one particularly interesting area of exercises throughout, and consider
how such exercises could be supported by visualization tools.

4 TRAKLA and TRAKLA2 exercises

TRAKLA (Hyvönen and Malmi, 1993; Korhonen and Malmi, 2000) was initially implemented
in 1991 to assess manual algorithm simulation exercises, i.e., the learners solved the exercises
on pen and paper and submitted the solution to the TRAKLA server by email. Later on,
a visual front end for editing the answer was added, but there was no change in the system
capabilities, because the front end was a dummy drawing tool with no understanding on the
underlying data structures. TRAKLA2 (Korhonen et al., 2003), on the other hand, is a web-
based learning enviroment built on the Matrix framework that provides full support for visual
algorithm simulation and automatic algorithm animation.

We summarize the types of exercises that TRAKLA and TRAKLA2 systems support
in Table 1. We use the systems as a proof of concept to address the many possibilities
that automatically assessed algorithm simulation exercises have in the broad context of data
structures and algorithms.

Table 1: Examples of automatically assessed exercises supported by TRAKLA and
TRAKLA2.

Exercise type TRAKLA2 TRAKLA

E1 = (FFF ) FFif FFif

E2 = (FFQ) FaFiQ FaFiQ, FFiQ, fFiQ

E3 = (FQF )

E4 = (FQQ) (FQq, Q implies q)

E5 = (QFF )

E6 = (QFQ) qFiQ, q implies Q

E7 = (QQF ) (qQif)

E8 = (QQQ) QQ′q, Q′ implies q

All the exercise types marked for TRAKLA and exercise types FFif , FFiQ,and QQ′q in
TRAKLA2 have been in production use with hundreds of students. For the FQq exercise,
we have a reference implementation. For the tree traversing exercises (E5 = (QFiFo)) men-
tioned on page 121 and Huffman code exercise (E6 = (qFiQ)) introduced with TRAKLA,
however, we have a little bit different scheme. They will be implemented as a tracing exercise
(E2 = (FFiQ)), and an open reverse engineering exercise (E7 = (qQif)), respectively. It
should be noted, however, that also exercise types not marked for TRAKLA2 can and will be
incorporated into the system in the future, but for brevity these are not discussed here any
further. In the following, we map each example exercise type described above to an actual
exercise implemented or designed.

1. FFif ; binary and interpolation search; the algorithm is explicitly determined as well as
the parametrized input. The result is obvious as the key is not found from the structure.
The user must determine which items in the array Fi are compared with the key to be
searched during the search.
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2. FaFiQ, FFiQ, fFiQ; linear probing, deque, radix sort; the algorithm can be parametrized
as it is in case of linear probing, it can also be expressed implicitly as it is done on radix
sort (the learner must determine which radix sort is simulated by examining the inter-
mediate states of the input structure).

3. FQq (TRAKLA2 only); BMH-algorithm; determine such an input Q for Boyer-Moore-
Horspool algorithm that satisfies the statement coverage (every statement is executed
at least once with the test set). Describe the output of such an execution. The selected
input Q implies the output q.

4. qFiQ, q implies Q; topological sort, Huffman code; in both of these exercises several
correct solutions are possible for a given input. The algorithm applied by the learner
implies the resulting output.

5. qQif ; Huffman code; the learner is asked to simulate Huffman’s algorithm q to form the
Huffman code f in order to decode the original text string Qi. The actual visible input
for the algorithm is the frequencies of the characters in Qi.

6. QQ′q, Q′ implies q; broken binary search tree; many procedures can lead into a correct
solution. Several correct answers are possible due to the nature of the exercise. The
input keys chosen by the learner imply the resulting output.

As mentioned in the introduction, there are few other systems that support algorithm
simulation exercises. PILOT (Bridgeman et al., 2000) is targeted to tracing exercises that
employ graph algorithms. There is also an option to allow parametrized input graphs. Thus,
the type of the exercises is E2 = (FFiQ). On the other hand, “stop-and-think” questions
requiring an immediate response from the learner introduced in JHAVÉ (Naps et al., 2000)
can be interpreted to be E1 = (FFif) questions where the learner determines characteristics
of the given algorithm. Moreover, the same system illustrates exercises in which the learner
is asked to manually trace an algorithm on a small data set. However, in this case, there is
no automatic assessment involved.

5 Discussion

The taxonomy of algorithm simulation exercises was first presented by Korhonen (2003).
However, an interesting analogy exists independently within a completely different area of
teaching. In their paper, Sutinen and Tarhio (2001) present a similar example of problem
classes that are applied for characterizing problem management in thinking tools. They also
have three components (Start (input), Technique (algorithm), and Goal (output)) that they
call dimensions. Again, these expand to eight classes, if restricted to binary values “open”
and “closed” (in question and fixed above). This construction spans the creative problem
management space.

Such a problem management space is useful for teachers in various ways. Regardless
of whether we are designing a single course or a larger program, we can use this space as
a reference to better identify what are the learning goals of the exercises. Typically the
exercises change from closed exercises to more open ones, when students progress in their
studies. In closed exercises students generally train specific skills and techniques whereas
in open exercises they have to apply their knowledge to solve new and varying problems.
However, the presented problem space provides for a broader view of this issue than such a
one-dimensional closed – open axis.

Let us now consider more closely, how this applies to a data structures and algorithms
course. When learning this topic, students first have to learn how various well-known algo-
rithms, such as quicksort and binary search algorithms work. These can be trained with exer-
cises of types FFF and FFQ (and possibly qFQ). Next, they should understand the behaviour
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of the algorithms. Typically this is strongly related to mathematical analysis of presented al-
gorithms, especially considering their worst-case behaviour. Attached to this theme, common
assignments deal with generating worst case or best case input data for a given algorithm
(type FQf), or more generally compare worst cases / best cases of a set of algorithms (type
QQf).

In traditional education of the topic there are, however, seldom exercises in which students
could explore the behaviour of the algorithm using different kinds of input sets. The obvious
reason is that this may be clumsy on pen and paper, or laborious, if it requires coding. On the
other hand, using visual algorithm simulation such exercises are easy to organize. Moreover,
providing automatic feedback on the answers is often simple, as well. As an example, a
student could be given an FQq type of exercise: “Insert the following keys into a red-black
tree in such order that the height of the resulting tree is at least 6”, or an FQF type exercise
“Insert the following keys into a binary search tree in such order that the resulting tree is
a complete binary tree”. Another exercise of type FQq is “Consider the following weighted
graph. You may modify the weight of at most 3 edges to create a graph in which both Prim’s
and Djikstra’s algorithms starting at node A create the same spanning tree. Is this possible?”.
Note that in such exercises it is not enough just to apply the algorithm. The student has
to recognize how the result is affected by changes in the input data, which is something else
than understanding the worst-case or best-case behavior of the algorithm. Still, automatic
assessment of the solution is straightforward.

Constructing new algorithms to solve new problems is a standard type of exercises in an
algorithms course. Such exercises are of type QFF or QFq. If we allow the student freely
demonstrate his/her skills on the course theme, we end up in QQQ type of totally open
exercises, even though we can limit the exercise topic as we did in the broken binary search
tree exercise.

In the previous discussion, we have provided classifications for existing exercises. Con-
versely, the teacher can try to devise exercises of each type in the taxonomy, to find out new
ways of handling the topic. Especially exercises which are related to exploring the behaviour
of the algorithm (FQQ, FQF) can enrich the commonly used exercise sets. The taxonomy
thus promotes creating new course material.

Next, we continue to discuss some other aspects of the taxonomy. Two main characteristics
should be taken into account while designing new algorithm simulation exercises. First, we
should make clear how these exercises are delivered to the students. We identify two main
classes here, namely closed labs and automatically assessed exercises. The main difference
between these two is the available support from instructors. In closed lab sessions, we assume
that an instructor is present and takes actions to guide the learner by asking specifying
questions, giving additional feedback, and so on. The exercises can be solved by “exploring”
the state space and the correctness of such an exploration can be assessed by the instructor.
Thus, the exercises are more open in their nature. On the other hand, automatically assessed
exercises should be self-explanatory so that the learner can cope with the assignments by
himself. In addition, the feedback should be explicitly targeted to the assignment in question
and aid the learner to find the correct solution. Roughly speaking, the most open questions
(types QFQ, QQF, QQQ) are more suitable for closed labs while tracing exercises (FFF,
FFQ, FQF) suit well to automatic assessment. There are, however, counter examples that
contradict this discrete view.

Finally, we mention an important characteristics (especially with automatically assessed
exercises) in which the fixed E-components can be parametrized (denoted by subindex) so
that each learner has his own individualized exercises. For example, in the tracing exercise
E2 = (FFiQ), where keys are inserted into an initially empty binary search tree, the keys
Fi to be inserted can be randomly drawn from the set of all possible keys. Thus, each
learner has an individually tailored set of keys to be inserted. This is the approach used
both in TRAKLA and TRAKLA2 although they have slightly different policies concerning
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resubmission of solutions. In TRAKLA exercises, the learner is allowed to resubmit his/her
solution to a particular exercise to the server only a few times, and each time the initial data
remains the same. In TRAKLA2, on the other hand, the initial data is randomized each time
the learner wants to continue after requesting grading or the model solution, but then there
is no limit for the number of grading requests.

In the case of input and output components, the randomization is trivially achieved by
randomly picking a suitable number of keys into the corresponding structure. Of course, some
constraints must be taken into account in order to prevent the exercise turning out to be
trivial (for example, the AVL tree insertions should include both single and double rotations).
However, parametrized algorithm exercises E1...4 = (FaXX) are slightly trickier. Usually, the
implementation of such a parametrization depends on the algorithm. For example, in linear
probing, the hash function h(k) = (k+p) mod q can be parametrized by individually tailoring
p and q.

6 Summary

We have presented a novel method for classifying algorithm simulation exercises. The pre-
sented taxonomy can be used not only as a classification tool, but also as a design tool for
teachers when they create new exercises for their data structures and algorithms courses. The
taxonomy can give more insight into this design process, and as such aid teachers to refine
the learning goals they wish to set up for their students. It seems that in most cases the
exercises can be supported with automatic feedback on students’ answers. Our TRAKLA2
has demonstrated this widely with tracing exercises, but we have a lot interesting work to do
to implement new types of exercises in different fields of algorithms.

Finally, we hope that our taxonomy will promote other systems to implement algorithm
simulation, and apply these ideas in other environments, as well.
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