134 Third Program Visualization Workshop

Selecting a Visualization System

Sarah Pollack, Mordechai Ben-Ari

Department of Science Teaching, Weizmann Institute of Science, Israel

moti.ben-ari@weizmann.ac.il

1 Introduction

This paper describes the selection of an algorithm visualization system for use in a high-school
course on data structures. While the selection criteria and the evaluations of the systems are
highly specific to the particular educational context, we believe that it will be helpful to share
our experience with others. Even more important, we wish to point out areas in which none
of the systems fulfilled our requirements, so that developers of existing or future visualization
systems can take them into account.

1.1 The educational context

During the 1990s, a new curriculum was developed for Israeli high schools (Gal-Ezer et al.,
1995). The intent was to enable students to study computer science as a full-fledged scientific
subject for their matriculation examinations. These subjects can be studied in three or five
90-hour units spread over three years of high school. The five-unit curriculum includes three
required units: a two-unit course on the foundations of computer science and a unit called
Software Design, as well as two elective units, one theoretical and one on a second program-
ming paradigm. The Software Design unit is normally studied in the last year of high school;
its syllabus includes the study of (a) designing non-trivial programs and implementing them
in modules, and (b) data structures (lists, stacks, queues, trees) and elementary algorithms
on these structures.

We have had experience in the design and development of the program animation system
Jeliot (Ben-Ari et al., 2002). Our research has shown that visualization can improve the learn-
ing of programming by novices by providing them with a concrete vocabulary for describing
the execution of programming constructs (Ben-Bassat Levy et al., 2003). However, Jeliot
visualizes the lowest level of program execution (individual variables, expression evaluation
and instruction execution), and thus is not suitable for use in the Software Design course,
where we need to visualize more abstract entities like lists and trees. This paper describes
our evaluation of visualization systems to support learning and teaching in this course.

1.2 The visualization systems evaluated

Based upon our previous acquaintance with visualization systems, we chose ANIMAL (R&8ling
and Freisleben, 2002) and Matrix (Korhonen and Malmi, 2002) as the candidate systems.
Later, we also decided to evaluate Interactive Data Structure Visualizations (IDSV) (Jarc,
1999).

ANIMAL is an interactive system for building visualizations and animations. It is an open
tool, meaning that there are no data structures and algorithms predefined by the system:;
instead, the tool supplies graphics primitives that are useful in creating such visualization.
(A library of visualizations of data structures and algorithms is available.) In addition to its
interactive mode, a scripting language (R68ling and Freisleben, 2001) is available; this provides
an alternate method of generating visualizations (one that may be faster in the hands of an
experienced user) and it enables the construction of meta-tools to generate visualizations.
Such a tool is available for generating visualizations of sorting algorithms. ANIMAL can be
downloaded from http://www.animal.ahrgr.de/.

Matrix is a system for visualizing data structures and algorithms, primarily, advanced
tree and graph algorithms. It is closed, meaning that there is a fixed set of structures and

Third Program Visualization Workshop 135

algorithms supported by the system. We evaluated the most recent version of the system called
MatrixPro that can be downloaded from http://www.cs.hut.fi/Research/MatrixPro/.

IDSV is a web-based client-server tool that integrates HTML documents with animations
of data structures and algorithms. IDSV can be run interactively from http://nova.umuc.
edu/~jarc/idsv/. IDSV is also a closed tool, offering a limit number of visualizations, but
the documents can be easily changed from outside the tool. In our environment, we can
assume that schools (and students’ homes) are reasonably well-equipped with computers, but
we cannot take for granted the existence of good Internet access. By courtesy of the developer,
we received the source code of IDSV and created a self-contained Java application suitable
for our environment.

2 Selection criteria

If there were only one set of criteria for choosing a visualization, there would be only one
visualization system. Clearly, the multiplicity of systems means that different researchers and
educators have different sets of criteria. In this section, we set out the criteria that we used
in our selection.

The first and most important criterion is the appropriateness of the visualization for the
intended users—high-school teachers and students—and the probable contribution to learning
from use of the visualization system. The users can be characterized as having very good
computer literacy skills, and beginning programming skills in the language used in the course
(Pascal or C). Therefore, ease of installation and use is a primary consideration, and the
effective use of a visualization tool cannot require proficiency in Java programming. (All
three systems are written in Java and we had no problems installing or using them.) There
are plans to use Java and C# in Software Design course in the future, but we can never expect
teachers and students to acquire the skills to effectively modify large Java programs.

Here is a list of aspects of the tools that were assessed under this criterion:

e Ease of installation and operation.
e Support for the teacher to easily create demonstrations.

e The ability to integrate the tool within the type of teaching activities that the teachers
routinely use. (Teachers tend to be conservative in adopting new educational technology,
especially if it affects their existing corpus of lesson plans and teaching materials.)

e Beyond the basic visualization of the data structures and algorithms, the tool should
enable the students and teachers to analyze data types, for example, to analyze the
efficiency of a tree search in relation to the height of the tree.

e The visualization tool should support communications between the teacher and student:
Can the student use the tool to ask questions and can the teacher use the tool to answer
them?

The second criterion is that a visualization tool must support visualizations of the data
structures and algorithms actually used in the course, preferably through built-in visualiza-
tions that will not require extra effort on our part. The algorithms to be studied include
creation of the data structure, adding and removing elements, and searches and traversals. In
order to support the creation of exercises for students, it is essential that the tool have the
ability to easily input data sets.

The third criterion is the quality of the visualization. We looked for the ability to control
the speed of animation, to choose step-by-step or continuous execution, and to step backwards
and forwards. Control of the step granularity is very helpful and it is important that the visu-
alization be coordinated with a display of the source code (whether in a programming language

136 Third Program Visualization Workshop

or pseudocode). A save/load facility is essential to help teachers prepare visualizations for
demonstrations.

In terms of the criteria given by Anderson and Naps (2000), we want Level I (understand-
ing of the algorithm as a recipe) and Level 2 (understanding the relationship of the algorithm
to its implementation) of their Algorithm Understanding Scale. For their Instructional De-
sign Scale, the important levels are Level 1 (the visualization ... demands no interaction
from the viewer), and Level III (allow the student to design input data for the algorithm).
Flexibility of the visualization is less important, because the students are young novices, and
the presentation of textual material is not too important, because we intend to supply our
own material tailored to contents of the course.

3 Evaluation

The evaluation was carried out by the first author, who is a very experienced teacher of
computer science in high schools; in particular, she has taught the Software Design course
for many years. Four typical exercises using binary search trees (BST) were written in the
style that such exercises would be given to students or used by a teacher for demonstration:
constructing a BST, adding an element to a BST, searching for a value in both balanced and
unbalanced BSTs, and using a BST for sorting. The tools were then analyzed to determine
their potential for improving the learning experience when used with these exercises. A table
was created for each of the criteria and sub-criteria, and scores and weights were assigned.

3.1 Animal

As an interactive tool ANIMAL is very easy to use, because its intuitive drag-and-drop interface
makes it possible to produce new visualizations with little training. However, the amount of
time required to create a visualization is quite large. While investing this amount of time
can be justified when preparing a large formal lecture, it would not be practical in a high-
school classroom. The classroom dynamics is such that a teacher should be able to use the
visualization to quickly respond to questions such as: “What would happen if the last value
to be inserted in the tree were 15 and not 307" Therefore, the tool received a low score for
the criterion of aiding communication between the student and the teacher.

The problem is that the ANIMAL tool does not contain algorithm-specific knowledge. While
it does supply primitives that facilitate the creation of algorithm animations, we could not see
that teachers and students would find these sufficiently more powerful than those available in
a generic tool like PowerPoint, with which they are very familiar.

The attractive mode of the use of ANIMAL is to use meta-tools to generate ANIMALSCRIPT
for algorithm visualizations. Meta-tools enable the data set to be easily changed for exercises.
The ANIMAL web site includes such a tool for sorting algorithms, but these algorithms are
covered in the second year course, not in the Software Design course. Building meta-tools
is not difficult, but it is not feasible given the low programming skills of the teachers and
students. The option of manually writing ANIMALSCRIPT commands is not an attractive
option for a target audience who are used to working with interactive tools.

The ANIMAL library includes many contributed visualizations, which would be invaluable
in preparing lectures, but the visualizations are static in the sense that to change them to use
different data requires that they be entirely recreated. Therefore, it would be difficult for the
teacher to integrate the visualizations within the existing activities in the course.

The quality of the visualizations and the control that the user has is good. The visu-
alization can be run step-by-step or it can be displayed as a smooth animation. A unique
advantage of ANIMAL is that its visualization primitives support the display of source code,
and you can (manually) coordinate between the code and the visualization. Finally, ANIMAL
contains no support for assessment.

Third Program Visualization Workshop 137

3.2 Matrix

Matrix comes with a large built-in selection of algorithm visualizations, mostly for advanced
algorithms. The developers kindly agreed to add visualizations of simple data structures like
stacks and queues, so that we have a set of visualizations covering the data structures taught
in the course.

Matrix uses step-by-step animation, though it can export the animation in the Scalable
Vector Graphics (SVG) format and these animations are smooth. The control of the visual-
ization is good and animations can be saved and reloaded. Of particular importance is the
ability of Matrix to read external files of data so that the teacher can easily prepare different
demonstrations and exercises for a particular algorithm, for example to show the dependency
of the efficiency of a BST search on the balance of the tree. Since the files are text files, they
could even be modified during a class using an editor. Matrix also includes a self-assessment
facility.

The control of the animation is excellent: not only can you run the animation forwards or
backwards, and step-by-step or continuously, but you can also define breakpoints and specify
the granularity of the animation step.

Matrix has the novel ability to simulate algorithms (Korhonen, 2003). In algorithm sim-
ulation, the user can manually modify the visual representation of the data structure, and
these modifications are applied to the internal representation of the structure. We have not
yet decided if this feature is important in our context.

The most serious problem with Matrix is that there is no display of source code nor is
there any coordination with explanatory material. It is also difficult to extend it to visualize
new algorithms. Such an extension was demonstrated to us by the developers, but it requires
significant Java programming experience and familiarity with the structure of the source code,
both of which are way beyond the capability of high school teachers.

3.3 IDSV

We modified the original IDSV tool to be a Java application using the Swing user interface;
source code and explanations are displayed from text files distributed in the tool archive.
However, the source code is just displayed, not coordinated with the animation of the algo-
rithm.

IDSV uses smooth animation, where you can see an element slowly travel throughout the
data structure, rather than just appear in its correct position. Based upon our experience with
Jeliot, we believe that smooth animation is better for beginning students learning elementary
algorithms. Furthermore, like Jeliot, IDSV displays helpful comments at each step. Since
these features proved to be extremely useful in teaching introductory students, this made
IDSV extremely attractive for our high schools students.

The control of the animation is less complete than in the other tools, and you cannot run
animations backwards.

There are two main problems with IDSV. First, there is a limited selection of built-in data
structures and algorithms, and like with Matrix, adding new visualizations requires significant
effort and Java programming experience. Second (and more important), while IDSV enables
the user to see animations run with random data or data entered interactively, there is no
way to supply a file with a data set.

4 Our selection

The three tools were evaluated according to a set of criteria and weighted numerical scores were
given and justified.! Data adapted from that report are shown in Table 1. More important

!The full report—in Hebrew—is available from the authors.

138 Third Program Visualization Workshop

‘ Criterion ‘ Subcriterion ‘ Weight ‘ Subweight ‘ Matrix ‘ IDSV ‘ Animal ‘
Usability 20%) 3 3.8
Installation 20% 5 5 5
Existing animations 40% 5 3 5
Creating animations 40% 5 2
Visualization 30% 3.7 2.8 3.1
Visualization of ADT 10% 5 2 3
Control of animations 35% 5 3 5
Coordinated with algorithm 30% 1 4 5
Reinitialize ADT 30% 5 3 1
Pedagogy 50% 5 2.75 1.75
ADTs and their operations 25% 5 3 3
Open to new ADTs 25% 5 3 2
Building exercises 25% 5 2 1
Learning activities 25% 5 3 3
Total \ | 100% | | 46 | 28 | 26 |

Table 1: Weighted scores of the visualization tools

than the actual scores, however, the match between the capabilities of the tools and the needs
of our students and teachers.

We found that ANIMAL supports the visualization of the data structures that are taught
in the course, but it is difficult to integrate into the type of activities that are currently
used. Furthermore, neither of the modes of the use of ANIMAL—interactive and scripts—is
appropriate for our environment.

In deciding between IDSV and Matrix, IDSV has the advantages of smooth animation
and display of code and explanations, while Matrix has a larger set of built-in visualization
and better control of the visualization. We decided to adopt Matrix, primarily because of
its excellent flexibility: the ability to save and load animations, and to create data sets for
exercises and examinations. We hope that future versions of Matrix will improve in the two
areas in which it is deficient: display of source code and ease of extension.

5 The problem with all of them

The emphasis in the Software Design course for high-school students is on understanding the
concept of abstract data type (ADT), building modules to implement ADTs and using them
to solve problems. Here is a list of typical problems that would be given as exercises on
homework or examinations:

e Let L1 and L2 be ordered lists of integers. Write an algorithm that returns the list
resulting from the removal of all elements of L1 from L2.

e Write an algorithm for the boolean-valued operation immediately-after(L,x,y), where
L is a list of integers and x and y are integers; the operation returns true iff x appears
in L immediately after y or y appears in L immediately after x.

e Write an algorithm to compute the number of nodes in a binary tree.
e Write an algorithm to check if two binary trees are “mirror images” of each other.

e Define a sum-tree as a binary tree such that the value at every node is larger than the
sum of all the values of the nodes in the left subtree and smaller than the sum of the

Third Program Visualization Workshop 139

values of the nodes in the right subtree. Write algorithms to create a sum-tree and to
check if a tree is a sum-tree.

With closed systems like Matrix and IDSV, we cannot create animations for these problems.
With an open system like ANIMAL, any animation can be created, but this is a task that is
separate from the task of solving the problem. To build an animation, a student would first
have to solve the problem, but once she solves the problem, there doesn’t seem to be any
point in putting in the extra effort to create the animation.

We believe that if student-written algorithms could be easily animated, it would improve
the students’ ability to successfully solve problems. Ideally, we would want a visualization
system to be able to work directly from student-written source code, as is done in Jeliot
(Ben-Ari et al., 2002).

The objection that is made to self-animation is that it cannot be as good as animations
that are hand-crafted for particular algorithms. While this is true to some extent, courses in
data structures and algorithms study a very limited number of generic structures: arrays, lists,
trees, graphs. (These are called fundamental data structures in Matrix (Korhonen, 2003).) It
ought to be possible to have a visualization system interpret source code manipulating these
structures. The feasibility of this approach was demonstrated in the first version of Jeliot,
which animated array, stack and queue algorithms by modifying the source code with no
further user intervention.

A related issue that we would like to see addressed is that of visualization of self-assessment
facilities. As implemented in Matrix and IDSV, the student simply receives a score and the
correct answer. What we would like to see is a visualization that would point to a node and
display “the key 5 is less than the value 10 in this node, but you entered the right subtree
instead of the left subtree.”

6 Other systems

There are other visualization systems that are worth evaluating, but that were not appropriate
for our study because they are intended for teaching that uses the Java programming language.
Two of them are worth mentioning, because they address issues discussed in this paper.

Dot.java (Hamer, 2004) is a Java class that can be included in a student’s program. It
provides a method drawGraph that creates a drawing of any Java object. The drawing is visu-
alized with the GraphViz utility. Although it requires intervention in the source program, the
intervention is very simple. The primary advantage of Dot.java is that it enables visualization
of any student-written program, which we believe to be of great importance.

jGrasp (Hendrix et al., 2004) is a well-known pedagogical development environment. The
latest version contains the beginnings of a dynamic visualization feature. The advantage of
here is that the visualization is integrated into an IDE so a separate tool is not required.

7 Conclusions

The choice of Matrix was primarily dictated by the flexibility it offered for building exercises
that would enable the analysis of algorithms. We were not aware of Karavirta et al. (2002)
when performing our comparison, so it is gratifying to see that our analysis is consistent
with the concepts and analysis presented in that paper. Given the level of the students and
teachers it is essential that the visualizations be as effortless as possible. Figure 1 of Karavirta
et al. (2002) shows that ANIMAL is generic and high effort, whereas Matrix is specific and low
effort; similarly, Figure 2 ranks ANIMAL as having a primitive graphical vocabulary and high
effort, whereas Matrix has a complex graphical vocabulary and is low effort. (Note that the
scripting language of ANIMAL was not evaluated in this study.)

We would like to see tool developers explicitly discuss the intended pedagogical use of their
tools; an example of such an explicit discussion is given in Chapter 9 of Korhonen (2003). We

140 Third Program Visualization Workshop

believe that a priority for future development of algorithm visualization systems is to enable
the visualization of student-written algorithms.

Acknowledgements

We would like to thank the developers of the visualization systems for their willingness to
answer our questions. This research was partially funded by the Israeli Ministry of Education.

References

Jay Martin Anderson and Thomas L. Naps. A context for the assessment of algorithm visu-
alization systems as pedagogical tools. In Proceedings of the First Program Visualization
Workshop, pages 121-130, Porvoo, Finland, 2000.

Mordechai Ben-Ari, Niko Myller, Erkki Sutinen, and Jorma Tarhio. Perspectives on program
animation with Jeliot. In Software Visualization: International Seminar, Lecture Notes in
Computer Science 2269, pages 31-45, Dagstuhl Castle, Germany, 2002.

Ronit Ben-Bassat Levy, Mordechai Ben-Ari, and Pekka A. Uronen. The Jeliot 2000 program
animation system. Computers & Education, 40(1):1-15, 2003.

Judith Gal-Ezer, Catriel Beeri, David Harel, and Amiram Yehudai. A high school program
in computer science. IEEE Computer, 28(10):73-80, 1995.

John Hamer. A lightweight visualiser for Java. In Proceedings of the Third Program Visual-
ization Workshop, pages 54—61, Warwick, UK, 2004.

T. Dean Hendrix, James H. Cross II, and Larry A. Barowski. An extensible framework for
providing dynamic data structure visualizations in an lightweight IDE. SIGCSE Bulletin,
36(1):387-391, 2004.

Duane J. Jarc. Assessing the Benefits of Interactivity and the Influence of Learning Styles on
the Effectiveness of Algorithm Animation Using Web-based Data Structures Courseware.
PhD thesis, George Washington University, 1999. http://www.student.seas.gwu.edu/
“idsv/djj-dissertation.pdf.

Ville Karavirta, Ari Korhonen, Jussi Nikander, and Petri Tenhunen. Effortless creation of
algorithm visualization. In Proceedings of the Second Finnish / Baltic Sea Conference of
Computer Science Education, pages 52-56, 2002.

Ari Korhonen. Visual Algorithm Simulation. PhD thesis, Helsinki University of Technology,
2003.
http://1ib.hut.fi/Diss/2003/isbn9512267950/1sbn9512267950.pdf.

Ari Korhonen and Lauri Malmi. Matrix—Concept animation and algorithm simulation sys-
tem. In Proceedings of the Working Conference on Advanced Visual Interfaces, pages 109—
114, Trento, Italy, 2002.

Guido Ro68ling and Bernd Freisleben. ANIMALSCRIPT: An extensible scripting language for
algorithm animation. SIGCSE Bulletin, 33(1):70-74, 2001.

Guido R68ling and Bernd Freisleben. ANIMAL: A system for supporting multiple roles in
algorithm animation. Journal of Visual Languages and Computing, 13(2):341-354, 2002.

