Research Report 345

Plagiarism in Programming Assignments

M Joy and M Luck

RR345

The number of students following programming courses is steadily increasing at the same time as
access to computers and networks is readily avatlable. There is a significant minority of students
who -- for a variety of reasons -- take advantage of the available technology and illicitly copy
other students' programming assignments and attempt to disguise their deception. Software that
can help tutors to detect plagiarism is therefore of immense assistance in detecting -- and so
helping to prevent -- such abuse.

We introduce a novel approach to designing such software which performs well in comparison to
sophisticated software available elsewhere, yet is simple both in concept and in implementation.
Our approach reduces substantially the effort needed to upgrade to new programming languages,
and has been tested on a variety of classes and several different programming languages.

Department of Computer Science

University of Warwick

Coventry CV4 7AL June 1998
United Kingdom

Plagiarism in Programming Assignments

Mike Joy and Michael Luck,
Department of Computer Science,
University of Warwick,

COVENTRY,

CV4 7AL,

UK
email: {M.S.Joy,Michael.Luck} @dcs.warwick.ac.uk

June 19, 1998

Abstract

The number of students following programming courses is steadily in-
creasing at the same time as access to computers and networks is readily
available. There is a significant minority of students who — for a variety of
reasons — take advantage of the available technology and illicitly copy other
students’ programming assignments and attempt to disguise their deception.
Software that can help tutors to detect plagiarism is therefore of immense
assistance in detecting — and so helping to prevent — such abuse.

We introduce a novel approach to designing such software which per-
forms well in comparison to sophisticated software available elsewhere, yet
is simple both in concept and in implementation. Our approach reduces sub-
stantially the effort needed to upgrade to new programming languages, and
has been tested on a variety of classes and several different programming
languages.

1 Introduction

The numbers of students following computer programming courses — either within
a computing degree or as part of another course — are increasing. One conse-
quence of this increase in numbers is a corresponding increase in difficulty in de-
tecting isolated instances of students engaging in unacknowledged collaboration
or even copying of coursework.

Assessment of programming courses typically involves students writing pro-
grams, either individually or in teams, which are then marked against criteria such
as correctness and style. Unfortunately, it is very easy for students to exchange
copies of code they have written. A student who has produced working code may
be tempted to allow a colleague to copy and edit their program. This is discour-
aged, and is likely to be regarded as a serious disciplinary offence.

It is not sufficient to remind students of regulations forbidding plagiarism;
they must understand that it will be detected, and that it will not be condoned.
However, it is easy for a lecturer to fail to detect plagiarism, especially when class
sizes are measured in hundreds of students.

Automation provides a means with which to address these concerns [10].
Much of the program submission, testing and marking process has the potential
to be automated, since programs are, by definition, stored in a machine-readable
form. We have been developing software which will allow students to submit
programming assignments on-line. An integral part of our software consists of a
module to assist in the detection of instances of possible plagiarism, using a sim-
ple but novel technique. In this paper, we discuss the software and its implications
for the management of large courses.

2 What is Plagiarism?

Plagiarism — unauthorised copying of documents or programs — occurs in many
contexts. In industry, a company may seek competitive advantage; academics
may seek to publish results of their research in advance of colleagues. In these
instances, the issue is treated very seriously by both parties, and the person per-
forming the unauthorised copying may be backed by significant technical and/or
financial resources. Detection becomes correspondingly difficult.

Alternatively, students may attempt to improve marks in assessments. They
are, however, unlikely to enjoy financial or technical support for such an activity,

and the amount of time available to them is short. The methods used to conceal
copied work are therefore, in general. unsubtle. Only moderately sophisticated
software tools are required to isolate potential instances of plagiarism.

There are many reasons for students copying material from each other, or col-
luding in producing a specific piece of work. These include the following:

e A weak student produces work in close collaboration with a colleague, in
the belief that it is acceptable.

e A weak student copies, and then edits, a colleague’s program, with or with-
out the colleague’s permission, hoping that this will go unnoticed.

e A poorly motivated (but not necessarily weak) student copies, and then
edits, a colleague’s program, with the intention of minimising the work
needed.

In the first case, the students concerned are treading on a potentially grey area
of acceptability — we expect, and desire. that students should share knowledge,
thereby reinforcing the learning process. The boundary between plagiarism and
legitimate cooperation is poorly defined, and some students may be used to dif-
ferent customs and norms. It is, nevertheless, still necessary to discover collabo-
ration, so that any misunderstandings are resolved. and so that extra resources can
be targetted at the students involved, if though it appropriate.

In the second case. the weak student is likely to have a poor understanding of
the program they have edited, and the similarities between the two programs are
likely to be strong. Not only may disciplinary action be required, but also — and
perhaps more importantly — the tutor has been alerted that remedial tuition may
be required to assist the weak student.

In the final case. it may be that the student has very good knowledge of the
subject, and is able to make sophisticated modifications to the original program.
Such a student will be more difficult to identify; it might be argued that if a student
can edit a program so much that it is undetected, then that very act is itself a sub-
stantial software development task. However. a genuinely lazy student is unlikely
to fall into that category.

It must be realised that it 1s always possible for undetectable plagiarism to
occur, no matter how sophisticated the tools available. There is a tradeoff on the
part of the lecturer between the resources invested in detecting plagiarism, and
the diminishing returns of finding the few (if any) cases which are difficult to

detect. The dishonest student must also balance the work needed to conceal their
plagiarism against the effort to create a piece of coursework on their own.

2.1 Techniques for Plagiarism

It 1s not feasible to classify all possible methods by which a program can be trans-
formed into another of identical (or similar) functionality — such a task would be
open-ended, as the number of languages available 1s steadily growing. However,
two common transformation strategies can be identified.

2.1.1 Lexical Changes

Lexical changes are those which could, in principle, be performed by a sophis-
ticated text editor. They do not require knowledge of the language sufficient to
parse a program. For instance, all of the following come under this banner.

e Comments can be reworded, added and omitted.
e Formatting can be changed.
e Identifier names can be modified.

e Line numbers can be changed {in languages such as FORTRAN)).

2.1.2 Structural Changes

A structural change requires the sort of knowledge of a program that would be
necessary to parse it. It 1s highly language-dependent. Some examples (appropri-
ate to the language Pascal) are given below.

e Loops can be replaced (e.g. awhile. . .do loop in Pascal can be substi-
tuted for a repeat. . .until loop).

e Nested 1f statements can be replaced by case statements, and vice-versa.

e Statement order can be changed, provided this does not affect the meaning
of the program.

e Procedure calls may be replaced by function calls, and vice-versa.

e Calls to a procedure may be replaced by a copy of the body of the procedure.

e Ordering of operands may be changed (e.g. x < y may becomey > x).

2.2 The Burden of Proof

Not only do we need to detect instances of plagiarism, we must also be able to
demonstrate hevond reasonable doubt that those instances are not chance similar-
ities.

In our experience. most students who plagiarise do so because they do nor
understand fully how to program. The modifications they make — once spotted
— are usually sufficiently obvious that they will readily admit their guilt,

If modifications to a program have been made which are so large as to radically
alter the structure of the program, then it is difficult, if not impossible, to prove
a charge of plagiarism to a disciplinary officer. However, there is small incentive
for a student to engage in such a significant modification, since the time and effort
required would be of a simliar magnitude to that involved in writing the program
afresh.

3 Techniques for Detection

The ability to detect instances of similar programs can be distilled into being able
to decide whether or not a pair of programs are sufficiently similar to be of inter-
est. Management of a larger collection of programs is a topological exercise [11].
That is, consider a graph whose nodes represent programs, and an arc denotes
that the nodes it joins have been detected as “similar”. A connected sub-graph
represents a collection of programs all of which may be related. Note, however,
that the similarity relationship is not transitive. if programs A and B are similar,
and also B and C are similar, it may not be the case that our detection mechanism
would positively identify the similary when given as input the pair of programs
consisting of just A and C. Detection and analysis of clusters of programs repre-
sented by connected sub-graphs enables us to discover groups of more than two
simtilar programs.
There are two principal comparison techniques.

e Calculate and compare attribute counts[7, 1. 2]. This involves assigning
to each program a single number representing capturing a simple quanti-

tative analysis of some program feature. Programs with similar attribute
counts are potentially similar programs. The size of a program, for exam-
ple, would be a very simple attribute count. These metrics can be combined
so that each program is assigned a tuple of numbers, and programs are con-
sidered similar if most or all of the corresponding tuple elements are simi-
lar. Such measures as counts of operators and operands are typically used to
construct attribute counts, and more sophisticated but related metrics such
as cyclomatic complexity[6] and scope number[3] have been examined.

e Compare programs according to their structure[8, 5]. This is a potentially
more complex procedure than comparing attribute counts, and depends fun-
damentally on the language in which the programs are written.

Whale {11, 12] and Verco [10] have carried out a detailed comparison of var-
1ous attribute count and structure comparison aigorithms. They conclude that at-
tribute count methods alone provide a poor detection mechanism, outperformed
by structure comparison, while the structure comparison software developed by
Whale (Plague) [11] and Wise (Yap) [13]. report a high measure of success, a re-
curring feature of structure comparison software 1s its complexity, and a detailed
understanding is required of the target language. Wise reports 2.5 days to adapt
Yap to handle the Pascal language rather than C [13], for instance.

A system which incorporates sophisticated comparison algorithms is, by its
nature, complex to implement, potentially requiring the programs it examines to
be fully parsed. The investment in resources to produce such a system is heavy,
but this may be justifiable in the commercial context, 1f it is necessary to prove
copyright violation. In an educational context, the effort expended by students to
hide their plagiarism is likely to be much less. Furthermore, students will not nec-
essarily use a single programming language throughout their degree course, and
any detection software must be readily upgradeable to handle new languages and
packages. There is, therefore, a need for a relatively simple method of program
comparison which can be updated for a new programming language with mini-
mal effort, and yet which is sufficiently reliable to detect plagiarism with a high
probability of success.

6

4 The Warwick Approach

Several criteria were isolated which we felt essential to a robust and practical
package.

e The program comparison algorithm must be reliable — ideally a structure
comparison method.

e The program comparison algorithm must be simple to change for a new
language.

e The lecturer using the package must have an easy-to-use interface (prefer-
ably with graphical output) to enable them to isolate potential instances of
plagiarism rapidly.

e The output from the package must be in a form which is clear to someone
unfamiliar with the programs it is examining. If two students are suspected
of being involved in plagiarism. clear evidence needs to be presented both
to them and and to a third party (such as a disciplinary officer) who might
need to become involved.

In order to preserve the correct functioning of a copied program, only lim-
ited editing can be performed, unless the person copying the program already
understands well how it works. It is thus reasonable to assume that some lexical
changes, as described above, would probably be implemented, together with a
limited number of structural changes.

We might expect. then, that by filtering out all this information, and reducing
a program to mere fokens or primitive language components, similarities would
become apparent. Even with substantial structural changes, we would expect there
to be significantly large sections of the programs which are tokenwise the same. In
practice, this filtering process removes much data. For simpler programs typical of
introductory programming courses, students have a limited choice of algorithms to
use, and tokenised representations of their programs yield many spurious matches.
Indeed, similarity of tokenised representations alone is insufficient to demonstrate
plagiarism, unless a program is complex or of an unusual structure.

4.1 Incremental Comparison

We adopted the following approach, which we call incremental comparison. A
pair of programs is compared three times,

e in their original form,
e with the whitespace and all comments removed, and

e franslated to a file of tokens.

A token is a value, such as name, operator, begin, loop-statement, which is
appropriate to the language in use. The tokens necessary to detect plagiarism
may not be the same as those used in the parser for a real implementation of the
language — we do not need to parse a program as accurately as a compiler. Our
scheme will work even with a very simple choice of tokens, and a rudimentary
parser. Thus it is easy to update for a new language. Each line in the file of tokens
will usually correspond to a single statement in the original program.

[f a pair contains similarities, then it 1s likely that one or more of these compar-
isons will indicate as much. By examining the similarities and the corresponding
sections of code in the original program, it should be possible to arrive at a pre-
liminary decision as to whether the similarities are accidental, or are worthy of
further investigation.

4.2 Implementation

We have implemented this scheme n a program, called SHERLOCK, which al-
lows a lecturer to examine a collection of submitted programs for similarities. It
assumes that each program is stored as a single file, and 1s written using a specific
predefined language. Each pair of programs in the collection 1s compared three
times, as described above.

4.2.1 Runs and Anomalies

A run is a sequence of lines common to two files, where the sequence might not
be quite contiguous. That is, there may be a (possibly small) number of extra
or deleted lines interrupting the sequence. The allowable size of interruptions
(which we call anomalies), and density within the sequence, are configurable. For

instance, (using a default configuration) in Table 1, Sequence 1 and Sequence 2
form a run with two anomalies comprising one extra and one deleted line. By con-
trast, Sequence | and Sequence 3 do not form a run since there are six anomalies
in nine lines.

When comparing two programs, SHERLOCK traverses the two programs look-
ing for runs of maximum length. An entry is appended to a record file for each
run, indicating which two programs are being compared, where the runs are lo-
cated in the files, the number of anomalies in each run, and the size of the run as
a percentage of the length of each program.

4.2.2 Presentation of Data

When all pairs of programs have been compared, a neural network program (a
Kohonen self-organizing feature map [4]) is invoked which reads the record file
and creates an image which illustrates the similarities between the programs listed
in the record file. The main purpose of the neural network program is to arrange
the components within the image so that it is cJear and uncluttered (insofar at that
is possible with a given set of data).

This image is a graph, whose nodes represent the files being compared, and
whose arcs indicate that significant similarities have been found between the files
whose nodes are their end-points. The shorter the line, the stronger the similari-
ties. The function of the neural network is to design the layout for the image, a
procedure which would be difficult by other means.

In Figure 1, which is typical of the sort of output produced by the neural
network, the named files are grouped into 3 clusters. Files in separate clusters
have essentially no similarities; those in the A—C cluster and the E-I cluster have
similarities, but these are relatively weak. Cluster J-K is very tight, and large parts
of files J and K are almost identical.

The image may be viewed or printed. The lecturer is then presented with a
copy of the record file, and invited to select an entry from the file. Typically, an
entry representing a long run for two programs close together in the image would
be selected initially. The line sequences forming the run would then be displayed
in separate windows, so they can easily be compared.

By repeatedly selecting entries from the record file, the lecturer is quickly be
able to arrive at a preliminary judgement as to which programs are worth a detailed
examination.

Sequence [| Sequence 2 - Sequence 3
begin begin begin

line 2 line 2 extra line
line 3 extra line | line 3

line 4 line 3 extra line
line 5 line 4 line 4

line 6 line 5 extra line
line 7 line 7 another line
line 8 | line 8 | line 7

end end - end

Table 1: [Hustration of Runs

Figure I: Neural Net Output

10

4.3 Testing

Our software has been used for several courses:

e an introductory programming course (in Pascal) for Computing students;

e an introductory programming course (in Pascal) run as a service course for
the Mathematics Departments.

e adata structures course attended by computing students (again, using Pascal
as the programming language);

e a course in functional programming (in Miranda) for first year Computing
students;

e a course on UNIX shell and utilities, and
e asecond year software engineering course using C++.

Each course is attended by over 100 students. We thus had a useful environ-
ment in which we could implement and test software which might assist us in
detecting unauthorised collusion. Adapting the software to handle a different lan-
guage has been done comfortably in a single afternoon. A number of instances of
copied work have been detected in all of these courses.

It is not possible to demonstrate exactly what proportion of plagiarised pro-
grams such software will detect, for the reasons outlined at the start of this paper.
However, we are confident that SHERLOCK has enabled that proportion to be high,
and to demonstrate this we performed two tests.

4.3.1 First Test: Attempted Deception

We selected a program of medium length and good quality (2:1 standard) submit-
ted for a later assignment in the Pascal course for Computing students. This we
felt was a typical program which might lend itself to being copied. We then passed
this to two postgraduate students who are skilled in Pascal, and requested them to
attempt to edit the program with the intention of fooling SHERLOCK. Neither was
able to do so without making substantial changes requiring a good understanding
of Pascal and of the solution — a student with such knowledge would be unlikely
to be motivated to plagiarise.

4.3.2 Second Test: Comparison with Plague

The software was tested on a suite of {54 programs written in Modula-2 [9], and
on which Plague had been run. Ol 22 instances of plagiarism initially detected
by SHERLOCK, Plague found 21, and detected 2 others missed by SHERLOCK.
“Fine-tuning” the parameters to SHERLOCK improved its performance and it then
detected all 24 cases. We claim that SHERLOCK 1s capable of achieving a similar
level of performance as Whale’s Plague.

4.4 Some Statistics

Another measure of the effectiveness of our approach is to ask the question: “has
it decreased the volume of plagiarism?” Of course, this cannot be unequivocally
answered, but the number of detected instances has decreased substantially since
we began to use the software. and our students became aware of it. In Table 2,
we present the numbers of students suspected of plagiarism and detected by our
software for whom the suspicion was well-founded. This 1s tabulated against the
total number of students submitting assignments in which the software was used,
and the ratio as a perentage.

There were, of course, “false hits”, but the numbers of them are similar to
the numbers of students actually detected copying work. and would be filtered
manually.

3, Year 1 Suspects | Toral % ;
1 1996/7 | 22751073
| 1995/6 15 484 310
| 1994/5 341 564 603,

Table 2: Statistics

It is clear that the volume of detected plagiarism has decreased substantially.
This is due either to a reduced level of plagiarism, or to a greater proportion of
students being able to hide the changes they have made. The latter, as we have
already remarked, 1s a difficult exercise, and we therefore claim that the incidence
of plagiarism has decreased.

5 Conclusions

We have designed a simple method which assists us with the detection of in-
stances of plagiarism in computer programs. Our scheme is easy to adapt for the
large variety of programming languages in use, and is sufficiently robust to be
highly effective in an educational environment. Whilst having a detection rate
as good as other more complex software, it presents its report as a simple graph,
enabling large numbers of programs to be checked quickly and effficiently. By
using “runs”, SHERLOCK provides straightforward documentation which can be
used as clear and convincing evidence should a suspected instance of plagiarism
be disputed.

6 Acknowledgements

The authors wish to thank Geoff Whale for providing the test data and William
Smith for the initial software development.

References

[1] Faidhi, JJA.-W and Robinson, S.K.. “An Empirical Approach for Detecting
Program Similarity within a University Programming Environment”, Com-
puter Education 11 pp. 11-19 (1987).

[2] Grier, S., “A Tool that detects Plagiarism in Pascal Programs”, in /2th
SIGCSE Technical Symposium, St. Louis, Missouri, pp. 15-20 (1931).

[3] Harrison, W.A. and Magel, K.L., “A Complexity Measure Based on Nesting
Level”, ACM SIGPLAN Notices 16(3), pp. 63-74 (1981).

[4] Kohonen, T., Self-Organization in Associative Memory, Springer-Verlag,
Berlin (1988).

[5] Magel, K., “Regular Expressions in a Program Complexity Metric”, ACM
SIGPLAN Notices 16(7), pp. 61-65 (1981).

[6] McCabe, T.J., “A Complexity Measure”. IEEE Transactions on Software En-
gineering SE-2(4). pp. 308-320 (1976).

13

[7] Rambally, G.K. and Le Sage, Mauricio, “An Inductive Inference Approach
to Plagiarism Detection in Computer programs”, Proceedings of the National
Educational Computing Conference, Nashville, TN, ISTE, Eugene, OR, pp.
23-29 (1990).

[8] Robinson, S.S. and Soffa, M.L., “An Instructional Aid for Student Programs”,
ACM SIGCSE Bulletin 12(1), pp. 118-129 (1980).

[9] Smith, W.O., “A Suspicious Program Checker”, BSc Dissertation, Depart-
ment of Computer Science, University of Warwick (1994).

[10] Verco, Kristina L. and Wise, Michael J., “Plagiarism & la Mode: A Compar-
ison of Automated Systems for Detecting Suspected Plagiarism”, The Com-
puter Journal 39(9), pp. 741-750 (1997).

[L1] Whale, G., “Identification of Program Similarity in Large Populations”,
Computer Journal 33(2), pp. 140-146 (1990).

[12] Whale, G., “Software Metrics and Plagiarism Detection”, Journal of Systems
and Software 13, pp. 131-138 (1990).

[13] Wise, M.J., “Detection of Similarities in Student Programs: YAP ing may be
preferable to Plague’ing”, ACM SIGCSE Bulletin 24(1), pp.268-271 (1992).

