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ABSTRACT

Devising principles for systems representation and analysis that can cope with the
complexity of the interactions between programmable components and human agents
in modern computing applications is a challenging and fundamental problem.
Understanding the role of human and inanimate components within a reactive system,
for instance, involves not only input-output transformations, but also communication
and stimulus-response issues. This paper proposes novel computer-based interactive
situation models to assist systems development. Such models provide an environment
within which the human interpreter can explore the relationships between observables
and the patterns of behaviour associated with a system component with particular
reference to its external real-world semantics. They are constructed using principles
based upon observation, agency and dependency ("Empirical Modelling") that have
been developed at the University of Warwick. This paper describes and illustrates the
characteristics of interactive situation models in detail, and concludes with a brief
discussion of their potential significance for systems development.

1. INTRODUCTION

As modern computing applications continue to become more sophisticated, the
interactions between computers, human agents, interfacing devices and other
electronic devices such as sensors and actuators are ever more significant.
Mathematical abstractions such as predicates and functional relationships can be
effective in the context of sequential interaction between the user and the computer,
but are insufficient as mental representations for state-of-the-art computer
applications. The need for new concepts and abstractions to address modern software
development has been discussed at length by F P Brooks [15] and Harel [18]. Brooks
has emphasised the particular need for principles that can bring conceptual integrity to
large-scale software development. Reactive systems, characterised (cf. Pnueli [26]) by
embedded components, and concurrent real-time interaction, pose particular
challenges. In such systems, it is not possible to abstract the role of a program from
its context. Even very simple functional components can generate complex behaviour
through concurrent interaction.

This paper discusses and illustrates how Empirical Modelling can be used to construct
interactive situation models to assist reactive system development (cf [5,10,12]).
Empirical Modelling (EM) is a collection of principles, techniques and tools that have
been developed at the University of Warwick (see the EM web site' for additional
information). An interactive situation model (ISM) is a computer-based environment
constructed through situated” modelling activity. Unlike a closed-world computer
model with a fixed interface, an ISM is always open to elaboration and unconstrained

1http://www.dcs.warwick.ac.uk/modelling

* The use of the term "situated" reflects the significance of both the social and cultural context (cf.
[29]), and the specific physical environment in which the modelling is conceived.
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exploratory interaction. States within the ISM metaphorically represent pertinent
situations from the application domain, and possible transitions between states are
explicitly constructed so as to be consistent with the developer's construal of a system
in terms of agents, observables and dependencies [8]. An intimate relationship
between the structure of the ISM and the developer's evolving knowledge of the
domain and conception of the system is established in this way. The ISM is elaborated
by the developer in an open-ended manner as understanding of the domain and the
system is acquired. Interaction with the ISM serves to give empirical insight into the
domain and the developing system. ISMs give particular support to the early stages of
system development, but can in principle be useful at any stage.

The remainder of the paper is organised in three main sections. Section 2 motivates
the distinctive style of state-based modelling associated with EM. Sections 3 and 4
discuss the principles behind applying EM to the construction of interactive situation
models. These are illustrated with reference to an ISM for a digital watch. Further
issues and future research directions are examined in the concluding section.

2. CONCEPTUAL REPRESENTATIONS FOR INFORMATION SYSTEMS

2.1. Motivation

Classical computer programming (cf Harel's one-person programming [18]) relies
upon absolute guarantees about the context for human-machine interaction. These
guarantees are gained through prior empirical study of the kind that is involved in
developing hardware and testing a protocol for computer use. Even when fault-
tolerance is considered, the same programming paradigm is typically applied. The
empirical study is first extended to identify likely scenarios for human and machine
error. The program (and system) is then developed to take account of these. In
effect, classical programming is concerned with interaction in what has been
empirically identified (for example, in the process of hardware design and
development) to be a reliable and predictable framework. In such a framework,
mathematical abstractions can be exploited relatively easily and directly.

In developing a reactive system, it is no longer possible to make a sharp separation
between empirical analysis of a system and the process of programming the
components. (The term programming is here used broadly to refer to all activities that
involve specifying protocols for interaction for the state-changing agents within the
system. This includes specifying operating rules for human agents, and providing
settings for sensors and actuators, as well as conventional software development.)
Experiential and empirical issues assume much greater importance: the correct
functioning of the system relies on physical characteristics such as timing, matters of
human perception and skill, speeds of processing and environmental factors. In this
context, the developer has to act as an engineer and experimental scientist. This paper
is concerned with how, through the use of ISMs, the computer can help to provide
richer conceptual representations to support the developer in this role.

An ISM is conceived as a counterpart for system comprehension to Pennington's
situation model for program comprehension [25]. Pennington's situation model was
introduced by analogy with Kintsch and van Dijk's theory of text comprehension [22].
Both these models are text documents, rather than interactive and computer-based.
There are several potential advantages to introducing an interactive situation model:
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The role of interactive simulation in system development: In complex interactions
within a reactive system, communication of state is very significant (cf. Deutsch's
concern for stimulus-response patterns between agents [16]). It is helpful to be able to
study such communications interactively, as practical tools for debugging have shown.
On a related theme, Harel [18] contends that visual formalisms are needed to
apprehend the semantics of complex systems.

The importance of empirical elements in an engineering context: Reliable
knowledge about the interactions between agents in a system is an essential
prerequisite to programming its components. An engineer wishing to explain a
product with a view to maintenance or modification typically has to make use of
artefacts to share the knowledge that informed the product development and the
experimental activity that led to particular design decisions and structural features.

The pragmatic nature of program comprehension: Research by Good and Brna
[17] has shown that - even for relatively simple programs - program comprehension
can have many different complementary interpretations. An interactive situation model
that can be subjective and is open to exploration, extension and revision is better
suited as a program comprehension model than a document such as a program
summary. In any complex system, there are typically many different perspectives on a
design, and a variety of demands for intelligible representations.

2.2. Distinctive Characteristics of Interactive Situation Models

The principal characteristics of ISMs have been summarised in the introduction.
Throughout this paper, the ISM concept will be discussed and illustrated with
reference to modelling a digital watch. By way of illustration, Figure 1 depicts an ISM
that has been constructed from the perspective of a proficient digital watch user.
Before looking in greater detail at the principles used to construct this ISM, it is
important to explain its distinctive character in more abstract terms. The nature of the
domain knowledge that informs the ISM is particularly significant (as discussed in [14]
and [24], closely related connections between knowledge and experience have been
explored by William James e.g. in [21]):

e an ISM does not necessarily represent goal-oriented knowledge

The idea behind the ISM is best understood by imagining a person (the modeller)
observing and interacting with a real digital watch. In broad terms, the purpose of
the ISM is to provide computer support for the modeller's conception of the
watch. For the modeller, the ISM captures knowledge about the watch in a
metaphorical fashion. In this context, "knowledge about the watch" refers broadly
to anything the modeller can observe about the watch through interaction with it.
This can range from naive and ephemeral observations about its current state ("the
face of the watch is shining in the sun"), to sophisticated expectations about its
responses that have been acquired over a long period of interaction ("the watch
keeps good time"). In particular, it need not be oriented towards a particular goal
for interaction with the watch.

e an ISM represents subjective knowledge

Unlike a conventional mathematical model, such as a finite state machine, the ISM
is primarily subjective in character. Though a particular ISM may be useful in
communication between one modeller and another, it reflects the perception and
experience of a particular person of a particular watch in a particular context. To
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appreciate the scope for subjectivity, contrast the likely conceptions of a digital
watch for a child, an electronic engineer, a well-educated user, a naive user, and a
medizval mystic.

e an ISM represents knowledge about interaction in particular contexts

Constructing a computer model of a system typically means acquiring
comprehensive objective knowledge about its behaviour in relation to a specified
goal. An ISM is necessarily different in character. A child's naive conception of a
watch may exclude objective knowledge about its intended functionality and
modes of user interaction. The knowledge captured in an ISM accordingly has a
different ontological status, and requires another mode of representation. In an
ISM, the computer is used to generate a direct metaphorical representation of a
particular system state, and to animate the modeller's expectations about what
latent state-changing actions are available, and what immediate consequences
result.

The distinction between an ISM and a formal model of the behaviour of a digital watch
can be elaborated with reference to Figure 1. Outside the context of the ISM, the
statechart in Figure 1 specifies the watch as a finite state machine at an appropriate
level of abstraction. For instance, each mode of display for the watch is represented
by a node in the statechart, and each transition between display modes is represented
by an edge that is coloured according to which input button is pressed. The statechart
is then viewed as representing reliable knowledge about how the watch will react to
input. From the modeller's perspective, specification of this nature is appropriate
because the associated pattern of behaviour of the watch has been empirically
established beyond any room for doubt.

The ISM has a different interpretation. Its semantics is defined with reference to both
the mind of the modeller and the behaviour of the computer model. The modeller has
in mind an explanatory account of how a digital watch operates, expressed in terms of
observables, agency and dependency. The computer model metaphorically represents
a particular state of the watch, together with latent state transitions that reflect what
the modeller expects to happen in response to a particular action. There is an intimate
relationship between the modeller's explanatory account and the construction and
structure of the ISM, as is explained in more detail in later sections.

Within the ISM, the statechart serves as a metaphorical representation of the current
mode of display of the watch. It also represents the modeller's expectations about how
the mode of display will be affected by button inputs. In this context, the statechart
does not specify that the behaviour of the ISM conforms absolutely to the pattern of a
finite state machine. There is no circumscribed pattern of operational behaviour
associated with the ISM. All the changes of state within the ISM are at the discretion
of the modeller, though they can be delegated to automatic agents if desired, and can
be executed without interference in order to simulate particular observed behaviours.

The essential idea behind using an ISM is to act within an empirical framework in
which no absolute knowledge about system response is presumed. A digital watch
may not always respond reliably and predictably to button presses, and the modeller
retains the discretion to act as a rogue agent to simulate malfunction. The most
intriguing aspect of this power to act outside the scope of any preconceived interaction
is that the modeller can in principle simulate any behaviour, however outrageously
unexpected. For instance, should a medieval mystic presume that a particular
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incantation can transform the digital watch into a four-legged beetle, this behaviour
can be metaphorically realised.

As will be illustrated later, the close relationship between the modeller's causal account
of the system and the structure of the ISM is especially significant when putting such
open-ended behaviours into perspective. An ISM is based on a good explanatory
model if system behaviours commonly observed in practice are easily derived from it,
and if plausible singular behaviours can be readily simulated. In effect, an ISM
implicitly attaches some measure of plausibility to the potential responses of the
system.

This is consistent with the way in which different people assess the credibility of claims
about observed behaviour of digital watches. From the perspective of an educated
contemporary mind, it is inconceivable for a digital watch to be transformed into a
beetle, since all the empirical evidence used to construe the behaviour of the watch has
to be overwritten. In the broad context of ISMs for reactive systems modelling, there
is still a place for modelling even the most unlikely transformations. For a robot
trained to discriminate between objects, or for the squeamish human agent, there may
be dangers in mistaking the image of a digital watch for that of a large beetle.

3. EMPIRICAL MODELLING PRINCIPLES AND SYSTEM COMPREHENSION

3.1. Observation and Explanation in Empirical Modelling

Constructing models to represent the interactions between the agents in a reactive
system has been a central focus for research in the EM project for some time. In this
context, an agent refers broadly to any component of the system that can be
responsible for changes of state: for example, a computer, a sensory device, an
actuator, a clock, a switch or a human agent. The digital watch and statechart
simulation in Figure 1 is one example of a model constructed using EM principles (cf
[13]). Other examples described in previous papers [5,8,12] include a vehicle cruise
controller, a billiards game simulation, and a railway simulation. The term "interactive
situation model" has been introduced subsequently as a synonym for "model generated
using EM principles and tools".

EM supplies a framework for concurrent systems conception in which the basic
abstractions are observables, dependencies between observables, and agents that act
through changing observables and dependencies. Simple informal definitions for these
concepts are:

e an observable is some feature of a system to which a value or status can be
attributed in a system state. There are empirical procedures and conventions
associated with identifying a particular observable and assigning its value. Not all
the observables associated with a system need be present in a particular system
state.

e an agent is a family of observables whose presence and absence in system states is
correlated in time, that is typically deemed to be responsible for particular changes
to observables within the system. All changes to the values of observables within a
system are typically construed as due to actions on the part of agents.

e adependency is a relationship between observables that pertains in the view of a
particular agent. It expresses the empirically established fact that when the value
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of a particular observable x is changed, other observables (the dependants of x) are
of necessity changed in a predictable manner as if in one and the same action. The
changes to the values of x and its dependants are indivisible in the view of the
agent. That is: no action or observation on the part of the agent can take place in a
context in which x has changed, but the dependants of x have yet to be changed.

The identification of observables, dependencies and agents is arguably a process that
underlies all system construction, whatever the nature of the programming activity and
paradigm is used, even if this process is not explicitly addressed. This paper argues for
an intimate connection between comprehending a system and interpreting it in terms of
these fundamental abstractions.

As explained in section 2, an ISM is a subjective model to be interpreted with
reference to the modeller's explanatory account of the system. In effect, there are two
complementary aspects to the situated modelling process:

e describing the abstract explanatory account of the situation that the modeller has in
mind;

e constructing an ISM to imitate the observed responses to experimental and
exploratory interaction.

The description of the explanatory account involves agent-oriented analysis based on a
special-purpose notation called LSD. This analysis generates a text document: an LSD
account of the situation. The LSD account captures the modeller's conception of the
situation with reference to what observables and dependencies are significant, what
agents are present, and how observables are classified with respect to these agents. A
number of tools have been developed (and are still under development) for the
construction of the ISM: the one that has been most extensively used, and that was
used to construct the ISM for the digital watch in Figure 1 is the eden interpreter (also
known as tkeden). Brief details of LSD and tkeden will be given here: for other details
consult [5,6,14] and the EM web site.

3.2. An LSD account of the Digital Watch

The principles of LSD specification will be sketched with reference to a particular
example. Listing 1 is an outline of the LSD account for the digital watch that is
associated with Figure 1. (This account is deliberately modelled on the analysis of a
digital watch that informs Harel's statechart (cf [19,13]).) The account can be read as
expressing the modeller's belief about how the watch operates. The physical watch is
represented in each state by instantiations of agents specified in the LSD account. The
watch agent can be regarded as representing the watch and the power agent its power
supply.

Within the specification of each agent the identifiers refer to observables that are
significant for the agent. Some of these observables are associated with the agent
itself, and do not exist when the agent is absent. Such an observable is classified as a
state for an agent. For instance, power s represents the voltage that is supplied to
the watch: this is not a meaningful observable in the absence of the battery, and can
otherwise take on three values, according to whether its charge is strong, weak or
Zer0.
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Within an agent, the special observable LIVE indicates whether the agent is present or
absent. A derivate for an agent declares a dependency between observables in the
view of that agent, so that for example:

LIVE = (power s >= 1)
indicates that the watch is operative whilst the power is non-zero.

The specifications of the watch and main agents include subagents. The pattern of
instantiation of these subagents determines how they contribute to the functionality of
the agent in which they appear. In the case of the watch agent, the subagents are
instantiated whilst it is instantiated, as is explicitly indicated by the LIVE derivates for
the subagents main and alarm st. In the case of the displays agent, precisely
one of the subagents is instantiated whilst displays is active, according to which
mode of display (as determined by the values of the observable displays s)
currently pertains. These two ways of composing families of subagents are closely
related to the concepts of orthogonality and depth in a statechart (cf. [13] and [19]).

The behaviour of agents within a system is construed as determined by a protocol for
action. Each action in the protocol is expressed by a possible stimulus-response
pattern. For example, for the alarm st agent, the interpretation of the action

displays s == A & alarm s == D & !d — alarm s = E

is: when the alarm time is being displayed and the alarm is currently disabled, a
possible response to pressing button d is to enable the alarm. An observable that is
deemed to influence the behaviour of an agent (such as displays s or alarm s in
this context) is classified as an oracle. An observable that can be redefined by an
agent in the course of an action is classified as a handle.

The LSD account should not be mistaken for a formal model of system behaviour.
The operational inadequacy of the LSD account is apparent in many aspects:

e The actions within an agent protocol are not obligations to act according to a rigid
stimulus-response pattern. If an LSD agent to represent the user of the watch is
introduced, their protocol will feature an action to silence the alarm. There can be
no guarantee about how soon a user will perform this action, or even whether they
will.

e The interpretation of agent actions is subject to any dependency relationships that
pertain in the view of the observer of the system. By way of illustration, an agent
that is responsible for ringing the alarm may have as an observable a derivate

ring alarm = (alarm s == E) & (time == alarm time)

The action of enabling the alarm (alarm s = E) may then be deemed to affect
the observable ring alarm indivisibly via a dependency.

e As the use of the term 'oracle' suggests, the knowledge that an agent has of an
observable is subject to all manner of qualifications concerning the mode and
accuracy of observation. As a simple example, the communication between the
button interface and the display can vary from function to function. A button press
may be registered as a signal for exactly one state-change, or be interpreted as one
or more signals according to its duration. In contrast, the light on the display
typically shows whilst a button is depressed.
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e The synchronisation of agent actions in concurrent interaction is ambiguous. For
instance, the effect of pushing two buttons simultaneously is unspecified. The
protocols for the displays and disp alarm agents potentially give conflicting
responses to changes to the boolean 2-min, which registers 2 minutes since the
last input.

These unresolved issues highlight the fact that LSD agents are not conceived as
closed-world abstractions. The context for their interaction, and the viewpoint of an
objective external observer are conspicuously absent. The identifiers in the
specification are intended to reference agents and observables in the situation that
informs the situated modelling activity. As discussed in section 1, the stance of the
modeller in framing an explanatory account and in constructing an ISM is an empirical
one. The LSD account reflects what the modeller construes to be causal connections
between changes to system state on the basis of empirical evidence. The ISM is
constructed as a metaphorical representation for the system that is consistent with the
modeller's construal. The purpose of the ISM is to enable the modeller to assess the
quality of their explanatory account by exploring the implications of particular patterns
of agency and interaction.

4. THE ROLE OF INTERACTIVE SITUATION MODELS IN SYSTEM
COMPREHENSION

4.1. Constructing an Interactive Situation Model

The distinctive qualities of ISMs outlined in the introduction stem from the way in
which states and transitions are represented in EM. The key idea is that the ISM is a
model of the relationship between a situation and an observer, so that a modification
of the model can either reflect a development in the situation ("an external change of
state") or a new realisation on the part of the observer ("an internal change of mind").
The character of an ISM in this respect is similar to a spreadsheet, where the semantics
of possible actions that might be performed by the user include:

e the update of a cell to reflect a change in the external situation;

e the correction of a cell value to make the spreadsheet consistent with the current
situation;

e the modification of a defining formula to reflect a new insight into the situation,
either to correct or to refine;

e the introduction of a new cell and defining formula to record additional
information about the situation.

In an ISM, the situation is represented by a script of definitions (a definitive script)
resembling the defining formule in a spreadsheet. In this context, the term definition
is used in a technical sense to refer to an expression of the form q=1(x,y, z, ..., t),
where q, X, y, z, ..., t are variables in the script. Each variable in the script represents
an observable in the situation. Each definition represents a dependency between
observables. The current values of variables in the script should conform to the
current observations made of the corresponding observables in the situation. These
values metaphorically represent the current situation. Transitions within the ISM are
associated with redefinitions of variables (possibly performed in parallel). Changes to

Page 8



values of variables are propagated in an indivisible fashion via the dependencies
associated with definitions.

The principal tool that has so far been developed for EM, the tkeden interpreter,
maintains dependencies in definitive scripts in which variables can assume many
different types. An important aspect of tkeden is that scripts can be formulated using
variables whose values are geometric in nature: these include points, lines, and
windows (cf. [8]). This is illustrated in Figure 1, where each line of the LCD display is
functionally dependent on the current time, as recorded internally as a scalar value
(viz. "the number of seconds elapsed since a reference time").

In appreciating the significance of the ISM, it is helpful to imagine an idealised state-
changing regime in which the modeller has discretionary control over every
redefinition that occurs. Conceptually, the changes of state in the ISM should reflect
as far as possible the expectations of the modeller. The dependencies in the model
should account for all changes that are indivisible and cannot be interrupted (at least
from the modeller's perspective). All other changes of state observed in the situation
should be consistent with the modeller's explanatory account of the system behaviour,
in the sense that they are plausibly attributable to the actions of agents represented in
the LSD account. The state of the ISM can then be updated by the modeller, who
performs the appropriate family of parallel redefinitions.

This state-changing strategy is idealised both in practice and in principle:

e in practice: It is quite impractical for the modeller to monitor every possible
redefinition in the model. It is essential to introduce mechanisms for agent actions
to be performed autonomously. In Figure 1, for instance, the current time is
automatically incremented, and all relevant dependencies maintained, every second.
This is achieved in tkeden by introducing triggered redefinitions. This mechanism
does not prevent the modeller from interacting with the model, but — in some
contexts — it can introduce an inappropriate element of oblivious execution.

e in principle: A modeller's explanatory account cannot be so comprehensive as to
deal with every scenario for interaction that can be invoked in a situation. If there
is no constraint on the scenarios the modeller can invoke, then the frame problem
applies [27]. Even when the mode of observation and the pattern of interaction is
restricted, it is still possible in general for there to be a conflict between actions (as
between the disp upalarm and displays agents when the display is timed
out)

There are two aspects to the above idealisation. The practical limitations of our tools
motivate new developments of two kinds: the design and implementation of new
architectures for EM (cf [2,4]), and the enhancement and refinement of tkeden. In the
context of this paper, the most relevant developments are the recent introduction of a
distributed tkeden architecture, based on a client-server model, and the development
of techniques for more effective high-level analysis of tkeden models. By using these
innovations in combination, it will be possible to interpret different parts or views of a
system on different client workstations, and to provide an appropriate environment for
integrating and monitoring the interaction between these on the server.

The fact that even in principle there are problems in developing an explanatory
account to reconcile interaction with the ISM and interaction with the situation is the
essential point of EM. This reconciliation is an ideal to which the modeller aspires, but
cannot in general attain. A very high degree of consistency between 'what is observed'
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and 'what is consistent with an explanatory account' is characteristic of closed-world
models. As conventional computer-based modelling illustrates, it is possible to
construct excellent closed-world models in certain contexts. One of the main reasons
for developing ISMs is to support the processes that precede the identification of such
models. Another is to provide computer assistance in contexts where there is no
realistic possibility of constructing a closed-world model. ISM construction is
essentially concerned with the creative tension between 'what can be observed' and
'what can be explained'.

4.2. An ISM for a Digital Watch

The above discussion of ISMs can be illustrated with reference to the ISM for a digital
watch in Figure 1. The history and construction of this ISM is also examined from
another perspective in [13].

The visual elements in the ISM represent current values of the observables that
establish a particular state of the watch. In constructing the ISM, the modeller works
in situated mode, in (or more realistically as if in) the presence of a real watch.
Relevant observables for the ISM include all characteristics of the actual watch that
can be reliably identified, possibly over an extended period of interaction with the
watch, perhaps using special instruments and experimental techniques. Examples of
such observables include: the appearance of the watch, the digits that appear on the
LCD display, the layout of the buttons, the presence or absence of a power supply, the
voltage currently being supplied to the watch and the current mode of display.

It is clear that the particular choice of observables in Figure 1 is to some extent
complementary to the LSD account in Listing 1. There is nothing to constrain the
choice of observables to suit a particular explanatory goal, however, and there is scope
for purely speculative and exploratory extension of the ISM. For instance, greater
realism in the visual representation of the digital watch would not entail re-engineering
the existing ISM in Figure 1. Adding new observables to the model can be viewed as
recruiting more observers in the spirit of subject-oriented programming. Just how
seamlessly this introduction can be made is constrained only by how far the conception
of the watch in the minds of these new observers is consistent with that of the original
modeller.

As Figure 1 illustrates, the metaphorical representation of observables of the watch
can be abstract rather than realistic. The depiction of the watch resembles an actual
watch only in the crude sense that (say) it is approximately rectangular in shape, has an
LCD display, and has a button located at each corner. The use of numbering and
colouring metaphorically expresses the fact that the user can distinguish the buttons.
It also suggests that the identity of the individual buttons is explicit, but in practice a
simple physical skill may have to be learned to make this identification. The presence
of a synchronised analogue clock in Figure 1 conveys the idea that the numerical
display is to be interpreted as a time. The statechart in Figure 1 is the most
sophisticated metaphorical device in the representation. Highlighting a particular
region within the statechart is a means of expressing the significance of the current
display. Notice that this addresses an aspect of the state of the actual watch that the
user cannot in general observe directly. For example: when the display mode is set to
chime, the LCD shows the time at the next hour; when the mode is set to alarm, the
LCD shows the time at which the alarm will go off. If these times coincide, the mode
of the watch can be determined only with reference to past or future interaction.
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The dependencies in the ISM of Figure 1 reflect several different types of agency. The
primary purpose of these dependencies is to bind the visual elements and invisible
internal state of the model together so to reflect interaction with the external
observables they represent. Though the ISM incorporates a simple interface through
which the modeller can simulate the button pressing behaviour of the user, it is the
textual tkeden interface that properly reflects the modeller's discretion over the model.
This interface gives scope to extend and modify all the definitions, functions and
triggered actions interactively. Changing the current time affects the displays on the
digital and analogue watches indivisibly. Moving the minute hand of the analogue
clock moves the hour hand. Changing the mode of display indivisibly affects the
highlighted state in the statechart and the watch display.

The significance of the ISM in explanatory terms is bound up with developing
mechanisms that deal as fastidiously as our present tools allow with agency and
communication between agents (contrast what Smith [28] characterises as
'promiscuous modelling'). This involves more than making a convincing simulation; it
also means applying EM principles to the models of internal state. Reconciling the
LSD account with the ISM is bound up with the process of realising the behaviour of
the system from the proposed account of its constituent agents. For instance, Listing
1 indicates that the observable displays s is dependent on upalarm s whilst the
agent disp alarm is active, and reverts to an explicit value when the agent is
dismissed.

The use of ISMs illustrated in Figure 1 and Listing 1 is biased towards what
Hirschheim et al [20] classify as a functionalist paradigm for software development.
When viewed from this perspective, EM can be seen as a modelling technique
resembling existing specification methods such as ESTEREL [3] and application
builders such as ACE [23]. The essential character of EM is better conveyed in
relation to applications where some subjective element is involved (cf[11] and [14]).

For this purpose, observables for the digital watch must take account of the
knowledge and perception of the human agent who interacts with it. Aspects of the
appearance of a watch can be subjective, and may depend upon environmental factors,
such as the ambient light. Some intelligence is needed to identify a digit rather than
pattern of illuminated segments. Reading the current time involves knowing social
conventions. Subtle ergonomic issues govern a user's perception of the buttons.
Recognising the mode of display presumes sophisticated knowledge of the range of
functions performed by the watch. Familiarity with the user manual is required to
make the association between buttons and the functionality of the watch.

By way of illustration, the ISM in Figure 1 can be simply adapted to serve as a
learning aid for a digital watch. Two models are run concurrently, in a tkeden client-
server configuration. In the client model, the image of the statechart is suppressed.
Communication between the models is set up in such a way that button input in the
client is monitored by the client. This creates an environment in which a teacher can
give instruction on the functionality of the watch. This may involve watching the way
in which the learner's actions affect the statechart, intervening to assist the learner to
restore the state of the watch, or possibly introducing the statechart incrementally into
the client ISM as the learner acquires the relevant empirical knowledge about the
functionality of the watch. The teacher might also attach agents to process the
learner's responses, perhaps in relation to certain set goals.
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As a final illustration of the support for agency that EM affords, meta-level methods of
processing ISMs have also been explored. A tool to specify and animate statecharts
interactively (using a GUI) has been developed in tkeden. The output from this tool is
a tkeden model of a statechart that can be integrated with an existing ISM through
introducing appropriate dependency relations between observables. Other recent work
has addressed generic ways of transforming the text of an ISM to create a metamodel.

By including the transformed text through the tkeden interface, an agent that (e.g.)
displays the tkeden identifier of a selected window can be introduced into any existing
ISM. Meta-agents of this nature complement the inventory of definitions and the
command history that are built-in features of tkeden.

5. CONCLUSION

This paper has focused on exposing and illustrating the essential character of
interactive situation models. It has argued the case for ISMs as novel computer-based
models whose interpretation requires a radical shift of perspective. Previous papers
have considered potential applications for ISMs in connection with a wide range of
system design and development issues. These include: requirements modelling [10],
software construction [6], concurrent engineering [1] and program comprehension [7].

Some research has been carried out on semi-automatic translation from ISMs to
conventional programs and simulations (cf [2]). Related work by Adzhiev and
Richlinskey at the Moscow Engineering Physics Institute involves the direct
application of EM principles to generate object-oriented programs semi-automatically.
Such research points to a futuristic scenario in which an ISM 1is supplied with a
system. This could be used as an extensible basis for system comprehension, as a way
of linking requirements specification and validation, and as a knowledge base to
support maintenance.

One of the open issues concerns the size of ISMs that can be constructed in practice.
The representations for ISMs in the tkeden interpreter are relatively inefficient, but can
deliver reasonable performance whilst maintaining a script of over a thousand
definitions on a modest workstation. Scripts of this size have potentially enormous
expressive power as state-transition models. Several developments promise improved
capacity and efficiency (cf [2]). These include: the use of higher-order definitions to
eliminate repetition of patterns of observables, dependency and agency, the
distribution of ISMs across a client-server architecture; the development of new
architectures in which dependency is maintained close to the machine code level, and
optimised parallel algorithms for storing and updating dependencies.

What is clear is that EM prescribes no general method for system development. The
process of trying to reconcile the responses of an ISM with an explanatory account is
open-ended and cannot be guaranteed to lead to convergence. Progress in
constructing an ISM relies upon experimental activity in which creativity and
serendipity are intrinsically involved. To return to the themes of Brooks's seminal text
[15], EM is no more a silver bullet for software technology than the so-called
"scientific method" is a recipe for creating scientific theories. What EM offers is a
framework of principles and tools that promises to deliver greater conceptual integrity
across the entire development process. Observables, agency and dependency have
their place in the subjective realm of the modeller's experience [11], can be used to
represent the interaction between many designers [1], to account for the behaviour of
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families of diverse components within a reactive system and provide the basis for new
abstract computational models and architectures [2,4].
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Listing 1: Outline LSD account for the Digital Watch (cf. Figure 1)

agent power() { state power_s = battery_charge } // three-valued 2,1,0
agent watch() {
derivate LIVE = (power_s>=1)
oracle power_s
agent main() {
derivate LIVE = LIVEyan
oracle LIVEwateh , main_s, alarm_s
state main_s =D // an integer -- 1:Displays, 2:Beep || displays
handle  main_ s
protocol (main_s ==D) & (time == set_time) & alarm_s ==FE — main_s=B
agent displays() {
derivate LIVE = LIVEy.n
oracle LIVEmain
state displays s=T //1:Time, 2:Update, 3:Date, 4:Stopwatch, 5:Alarm, 6:Update Alarm, 7:Chime
handle  displays_s, update_ s, upalarm_s
protocol displays_s ==T & lc — update_s =1, // lc here means that button ¢ has been pressed
displays s ==T & !d — displays_s = D,
displays s == A & !c —» upalarm_s =1,
displays_s # S & displays_s # T & 2-min — displays_s =T // display timeout

agent disp_date() {
derivate LIVE = LIVEgispnys & displays s ==D,
"watch display = date as of clock()"
oracle LIVEdisplays, displays_s

agent disp_time() { ... }
agent disp_upalarm() {
derivate LIVE = LIVEgispiys & upalarm_s > 0,
displays_s = (upalarm_s % 4==0)? A: UA
"watch_display = time as of alarm setting with right digit highlighted"”
oracle LIVEdisptays, upalarm_s
state upalarm_s =M // 1:Min, 2:TenMin, 3:Hr, 4 = 0(mod 4):Alarm
handle  upalarm_s, set time
protocol b or 2-min — upalarm_s = 0,
!c — upalarm++,
"event— update set time so as to increment highlighted digit"

}
' // end displays()
agent beep() {
derivate LIVE = LIVEp,in & main_s == B
state main_s
protocol beep stop — main_s
H
} // end main()
agent alarm_st() {
derivate LIVE = LIVEpin
oracle LIVEmain, displays_s, alarm_s
state alarm_s = D, set_time = 00.00
handle alarm_s // 1:Disab, 2:Enab
protocol displays_s == A & alarm_s==D & !d —» alarm_s=E
displays_s == A & alarm_s == E & !d — alarm_s =D
3
agent chime st() { ... }
agent clock() { ... }
agent stopwatch() { ... } // ... and several other agents, such as light() etc...
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Figure 1: The digital watch Interactive Situation Model
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Figure 1.3: Harel’'s Statechart for the Digital Watch |
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