
Compositional Software Verification Based on

Game Semantics

by

Aleksandar Dimovski

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Department of Computer Science

July 2007





Contents

List of Tables vi

List of Figures viii

Acknowledgments x

Declarations xii

Abstract xiii

Chapter 1 Introduction 1

1.1 Software Verification . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Game Semantics Approach . . . . . . . . . . . . . . . . . . . . 6

1.3.1 The Idea . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Advantages . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.4 Methodological Considerations . . . . . . . . . . . . . . 13

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2 The Programming Language 16

iii



2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Observational Safety . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 3 Game Semantics 27

3.1 Background: Category Theory . . . . . . . . . . . . . . . . . . 28

3.2 Translating AIA into EIAA . . . . . . . . . . . . . . . . . . . 31

3.3 Games and Strategies . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3 A Cartesian Closed Category . . . . . . . . . . . . . . 47

3.4 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Definability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Full Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Quotient Game Semantics . . . . . . . . . . . . . . . . . . . . 65

Chapter 4 The CSP Game Semantics Model 67

4.1 The Second-Order Language Fragment . . . . . . . . . . . . . 69

4.1.1 Syntactic Sugar . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Regular-language Representation . . . . . . . . . . . . . . . . 72

4.3 CSP Representation . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Background: CSP . . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Representation . . . . . . . . . . . . . . . . . . . . . . 84

4.3.3 Correctness and Property Verification . . . . . . . . . . 91

4.3.4 Type Inference System . . . . . . . . . . . . . . . . . . 97

4.3.5 Compiler and Applications . . . . . . . . . . . . . . . . 99

iv



Chapter 5 Abstraction Refinement 108

5.1 Interaction Game Semantics . . . . . . . . . . . . . . . . . . . 111

5.2 Conservativity of Abstraction . . . . . . . . . . . . . . . . . . 114

5.3 Abstraction Refinement . . . . . . . . . . . . . . . . . . . . . 117

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.1 Representing Game Models in CSP . . . . . . . . . . . 122

5.4.2 Implementing Abstraction Refinement Procedure . . . 123

5.4.3 Using the Tool . . . . . . . . . . . . . . . . . . . . . . 128

5.4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 128

Chapter 6 Compositional Verification 134

6.1 The Learning Algorithm . . . . . . . . . . . . . . . . . . . . . 137

6.2 Compositional Verification . . . . . . . . . . . . . . . . . . . . 141

6.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.2 Assume-Guarantee Algorithm . . . . . . . . . . . . . . 145

6.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Chapter 7 Conclusions 154

Appendix A CSP Scripts for Case Studies 157

A.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.2 Stack Implementation . . . . . . . . . . . . . . . . . . . . . . 163

v



List of Tables

2.1 Typing rules of AIA . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Reduction rules for AIA (part 1) . . . . . . . . . . . . . . . . 24

2.3 Reduction rules for AIA (part 2) . . . . . . . . . . . . . . . . 25

3.1 Translating AIA into EIAA . . . . . . . . . . . . . . . . . . . 34

4.1 Regular-language representation . . . . . . . . . . . . . . . . . 75

4.2 Representation of language constructs . . . . . . . . . . . . . . 76

4.3 Copy-cat processes for free identifiers . . . . . . . . . . . . . . 85

4.4 Processes for expressions . . . . . . . . . . . . . . . . . . . . . 86

4.5 Processes for op construct . . . . . . . . . . . . . . . . . . . . 87

4.6 An implementation of the equality operation . . . . . . . . . . 88

4.7 An implementation of the addition operation . . . . . . . . . . 89

4.8 Processes for commands . . . . . . . . . . . . . . . . . . . . . 90

4.9 Processes for command constructs . . . . . . . . . . . . . . . . 91

4.10 Processes for variables . . . . . . . . . . . . . . . . . . . . . . 92

4.11 Processes for variable constructs . . . . . . . . . . . . . . . . . 92

4.12 Processes for functionals . . . . . . . . . . . . . . . . . . . . . 93

4.13 Type inference system . . . . . . . . . . . . . . . . . . . . . . 98

vi



4.14 Model generation of IA2 bubble sort . . . . . . . . . . . . . . 103

4.15 Checking safety for an erroneous IA2 bubble sort . . . . . . . 104

5.1 Experimental results for checking a stack implementation . . . 133

6.1 Experimental results for checking a stack implementation . . . 152

vii



List of Figures

2.1 Graphical representation of some integer abstractions . . . . . 18

3.1 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 A strategy as a finite automaton . . . . . . . . . . . . . . . . 78

4.2 A labelled transition system . . . . . . . . . . . . . . . . . . . 83

4.3 A strategy as a labelled transition system . . . . . . . . . . . 97

4.4 Source code of AIA2 bubble sort . . . . . . . . . . . . . . . . . 101

4.5 LTS for AIA2 bubble sort with k = 2 . . . . . . . . . . . . . . 101

4.6 LTS for IA2 bubble sort with k = 2 . . . . . . . . . . . . . . . 102

4.7 Effects of compressions for IA2 bubble sort with k = 20 . . . . 104

4.8 A stack implementation . . . . . . . . . . . . . . . . . . . . . 105

4.9 LTS for the stack with k = 2 . . . . . . . . . . . . . . . . . . . 106

5.1 Verification procedure . . . . . . . . . . . . . . . . . . . . . . 109

5.2 A possible definition of v . . . . . . . . . . . . . . . . . . . . 118

5.3 Abstraction refinement procedure . . . . . . . . . . . . . . . . 120

5.4 A screen-shot of the tool . . . . . . . . . . . . . . . . . . . . . 129

5.5 The tool architecture . . . . . . . . . . . . . . . . . . . . . . . 130

viii



6.1 The L∗ algorithm for learning assumptions . . . . . . . . . . . 140

6.2 Compositional verification procedure . . . . . . . . . . . . . . 145

6.3 The strategy for the running example . . . . . . . . . . . . . . 148

6.4 Strategies at AR iteration 0: (a) Jf ` M [−]K(α) (b) Jf , x `
f (x := x + 1)K . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5 Observation table and assumption at AR iteration 0 . . . . . . 150

6.6 Strategies at AR iteration 1: (a) Jf ` M [−]K(α) (b) Jf , x `
f (x := x + 1)K . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.7 Assumption at AR iteration 1 . . . . . . . . . . . . . . . . . . 151

ix



Acknowledgments

First of all, I would like to thank my supervisor, Ranko Lazić, for being so
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Abstract

One of the major challenges in computer science is to put programming
on a firmer mathematical basis, in order to improve the correctness of computer
programs. Automatic program verification is acknowledged to be a very hard
problem, but current work is reaching the point where at least the foundational
aspects of the problem can be addressed and it is becoming a part of industrial
software development.

This thesis presents a semantic framework for verifying safety proper-
ties of open sequential programs. The presentation is focused on an Algol-like
programming language that embodies many of the core ingredients of impera-
tive and functional languages and incorporates data abstraction in its syntax.
Game semantics is used to obtain a compositional, incremental way of gener-
ating accurate models of programs. Model-checking is made possible by giving
certain kinds of concrete automata-theoretic representations of the model. A
data-abstraction refinement procedure is developed for model-checking safety
properties of programs with infinite integer types. The procedure starts by
model-checking the most abstract version of the program. If no counterexam-
ple, or a genuine one, is found, the procedure terminates. Otherwise, it uses
a spurious counterexample to refine the abstraction for the next iteration.
Abstraction refinement, assume-guarantee reasoning and the L∗ algorithm for
learning regular languages are combined to yield a procedure for compositional
verification. Construction of a global model is avoided using assume-guarantee
reasoning and the L∗ algorithm, by learning assumptions for arbitrary subpro-
grams. An implementation based on the FDR model checker for the CSP
process algebra demonstrates practicality of the methods.
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Chapter 1

Introduction

Software verification is one of the most important problems in computer science

today. There is hardly any aspect of our lives where software systems do

not play an often silent but yet crucial role. Failure of these systems has

already caused serious consequences, including fatal accidents, shutdown of

vital systems, and loss of money. Thus, erroneous software becomes a threat

for the economy and even for human lives. The increasing dependence on

software systems has ensured that their correctness is no longer a luxury but

an urgent necessity.

Modern software systems are rarely monolithic entities that are single-

handedly developed at one time. A number of groups of programmers, some-

times located in different places, work on developing different parts of programs

(components). Software systems also evolve over time, with different compo-

nents reaching maturity at different points. Assuring that all components

will successfully work together is a nontrivial task. It is thus not surprising

that verifying components independently, i.e. ensuring that every component

performs correctly under all circumstances, has become crucial.

1



2 CHAPTER 1. INTRODUCTION

1.1 Software Verification

Software verification addresses the problem of checking that programs satisfy

certain properties. There are two main classes of program properties of in-

terest: safety and liveness. The safety properties demand that the program

never performs an undesirable operation. For example, it never divides by

zero. The liveness properties demand that the program eventually performs

desirable operations. For example, it eventually terminates. In general, both

problems are undecidable but, in the past decades, significant advances have

been made by developing methods which show that verification problems are

becoming increasingly feasible.

To improve software correctness, testing has traditionally been the main

debugging technique in industry. Testing [88] is the process of sampling the

executions of a system according to some criterion, and checking the given

property for each execution. However, exhaustive testing is usually infeasible

as the number of possible executions is too large (or even infinite). Thus,

testing can be used to find errors, but it can not be used to show correctness

of a software program.

In order to overcome the problem mentioned above, the scientific com-

munity has proposed the use of formal methods. This term covers all verifica-

tion approaches based on mathematical formalisms. Their aim is to establish

software correctness with mathematical rigour. As opposed to testing, formal

verification methods trace every possible program execution as they work on

a symbolic and abstract level. Thus, when a program is found to be correct

by a formal verification method, it implies that all its executions have been

explored, and the question of missed executions becomes irrelevant. Most ap-
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proaches to formal software verification can be classified as belonging to two

major categories: deductive verification and model checking.

In deductive verification [45, 69], the property to be established is ex-

pressed as a formula φ in some suitable logic. The meaning of elementary

programming-language constructs is expressed by axioms, and that of larger

constructs by inference rules in some proof system in the same logic as φ.

Denoting the program to be verified by P , its correctness is shown by con-

structing a proof that P ` φ within this system. This is done using a theorem

prover. Deductive verification is a comprehensive approach for establishing

correctness, which can be used to verify programs with infinitely many states

and with data from infinite domains (such as integers and reals). However,

the main limitations are that it is highly time consuming and involves a lot of

manual effort. Furthermore, it yields no diagnostic feedback that can be used

for debugging if the property is found not to be correct.

1.2 Model Checking

In model checking [94, 28, 32], the program to be verified is represented by

a model M . The model consists of a description of all possible program exe-

cutions (behaviours) in a mathematical structure like a finite state transition

system. The property to be established is a formula φ in a logic that is inter-

preted over such structures (e.g. temporal logic). Program correctness is then

shown by computing that the formula is satisfied by the model, i.e. M |= φ.

This check is performed by exhaustively exploring the entire state space of

the model to ensure that all possible behaviours generated indeed satisfy the

property.
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Compared to other approaches, model checking has two important ad-

vantages. It is fully automatic, and so its application requires no user super-

vision or expertise in logic and theorem proving. When the model fails to

satisfy a desired property, it provides useful diagnostic feedback in the form of

counterexamples, which trace some example program executions that violate

the property of interest. Owing to these and other factors, the past couple of

decades have witnessed the emergence of model checking as the eminent for-

mal verification technique. Starting with relatively small finite state systems,

by developing techniques like symbolic model checking [83], bounded model

checking [20], compositional reasoning [29], abstraction [30] and others, it was

made possible to verify systems with enormous state spaces.

The initial success of model checking has been mainly in the verifica-

tion of hardware and communication protocols. The major reason for this is

that model checking can only be used if a finite model of the system to be

verified is available, and it is computationally demanding. While the mod-

elling process is often straightforward for hardware, since hardware designs

are typically finite state, it is much more involved for software. This is due to

the complexity of general purpose programming languages (C, Java, ML, etc)

as compared to hardware description languages (VHDL, Verilog, etc). Also,

industrial software programs are large and have infinite state spaces. Thus,

extracting a finite model often involves a process of abstraction as well.

The traditional approach to building models of software is based on op-

erational semantics. The notion of a program state is central to this approach.

The state captures the values of the program variables at a certain moment in

the execution of the program. The models are then obtained by representing

the state and the way it changes in the course of execution. By applying pred-
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icate abstraction [58] on the state, i.e. by using truth assignments for a set

of chosen predicates to abstractly represent the set of states where the truth

assignments are satisfied, the models become finite and can be model checked.

This modelling technique has been applied successfully to verifying re-

alistic industrial software. At the heart of many such tools, like SLAM [17],

BLAST [66] and Magic [24], are algorithms based on counterexample guided

abstraction refinement [31]. In this approach, the entire verification procedure

is captured by the following three step loop:

Abstract A finite set of predicates is chosen, and a finite-state abstract

model is extracted from the given program using predicate abstraction.

Since abstractions are conservative over-approximations, additional be-

haviours, which are absent in the concrete program, are introduced in

the abstract model (such behaviours are called spurious).

Verify A model checker is used to verify whether the abstract model satisfies

the desired property. If the model is error free, then so is the original

program; otherwise a counterexample is produced which demonstrates

how the model violates the property.

Refine It is checked whether the counterexample is an actual behaviour of

the original program. If so, then a program error has been found; oth-

erwise, the chosen set of predicates does not contain enough information

for proving program correctness and new predicates must be added. The

selection of such predicates is guided by the failure to concretise all pre-

vious spurious counterexamples. The whole procedure is then repeated.
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1.3 Game Semantics Approach

Denotational semantics [61, 101] is a syntax-independent approach of mod-

elling a software program of a given language as a mathematical object in

a fully compositional manner. The intention is that mathematical methods

for reasoning about the model can be employed to understand and explain

how programs behave. In particular, this approach can be used to deduce

properties of programs, such as that two programs are equivalent, or that a

program satisfies its specification. It is generally concerned with static prop-

erties, such as what a given program computes as opposed to exactly how the

actual computations are performed.

There are two desirable features of such a denotational model: sound-

ness and completeness. A model is sound iff all equivalences in the model are

reflected in the language, so it can be used to prove properties of programs. A

model is complete iff all equalities in the language are reflected in the model, so

every observable program property is captured by the model. A model which

is both sound and complete is called fully abstract.

The search for a syntax-independent fully abstract model of a very sim-

ple sequential functional language, PCF [92, 85], started in 1970’s by the work

of Scott and Strachey on a domain-theoretic model based on continuous func-

tions [99, 92]. It was followed by Berry’s bidomains model based on stable

functions [18], the Bucciarelli-Ehrand model based on strongly stable func-

tions [23], and the Berry-Curien model based on sequential algorithms [19]. In

each case, the model is sound but fails to capture definability : there are ele-

ments of the model which are not definable in the language. Therefore, there

are some equalities in the language which are not validated by the model [85],
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i.e. the model is not complete. The solution of the long-standing full abstrac-

tion problem for PCF emerged in the past decade, when the game-theoretical

model was developed independently by Abramsky, Jagadessan, and Malacaria

on one hand [1], and by Hyland and Ong [74] (as well as by Nickau [90]) on

the other hand. The two teams presented each a model of PCF in which types

are interpreted by games and programs by strategies. The two models are

now commonly referred to as the AJM and the HO model. Since then, game

semantics has been employed to construct the first syntax-independent fully

abstract models for a range of programming languages incorporating many

other features such as block-allocated variables [3, 7], call-by-value evalua-

tion [4, 72], control primitives [76], general references [6], recursive types [82],

polymorphism [9], non-deterministic [63, 64] and probabilistic constructs [35],

concurrency [52], etc.

Game theory was founded in the beginning of the past century with

works by Zermelo [104] and von Neumann [100] on parlour games. Nash

[89] then created a theory of economics based on parlour games. The game-

theoretical methods were also used in logic [21], in models of reactive systems

[84], natural language semantics [68], etc. The use of game theory in the

semantics of programming languages is based on Lorenzen game models of

logic [44, 47, 77]. There, a logical formula is interpreted by a two player

game between a Player trying to prove the formula and an Opponent trying

to disprove it. This is done inductively on the structure of the given formula.

The Curry-Howard isomorphism is then used to translate the Lorenzen game

models of logic to the game models of programming languages, such that

formulas are considered as types and proofs for a formula A as programs of

type A.
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1.3.1 The Idea

Game semantics is a particular kind of denotational semantics which con-

structs models of programs by looking at the ways in which a program can

observably interact with its context (environment). In this approach, a kind of

game is played by two participants. The first, Player, represents the program

under consideration, while the second, Opponent, represents the environment

in which the program is used. The two take turns to make moves, each of

which is either a question (a demand for information) or an answer (a supply

of information). Opponent always plays first. What these moves are, and when

they can be played, is determined by the rules of each particular game. For

example, in the game for integers, Opponent has a single move, the question

“What is the number?”, and Player can then respond by playing a number.

The game involved in modelling a function of type Z → Z is formed

from “two copies of the game for Z”, one for input, and one for output. In

the output copy, Opponent can demand output and Player can provide it. In

the input copy, the situation is reversed, Player demands input and Opponent

provides it. A play in this game when Player is playing the successor function

might look like this:

Opponent “What is the output?”

Player “What is the input?”

Opponent “The input is 5”

Player “The output is 6”

So, the successor function becomes a strategy for Player: “When Opponent

asks for output, Player responds by asking for input; when Opponent provides

input n, Player supplies n + 1 as output”. This is the key idea in game
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semantics. Types are interpreted as games, and programs are interpreted as

strategies for Player to respond to the moves Opponent can make.

The idea of using game semantics to explore the space of programming

languages is based on the following considerations [5]. PCF is modelled by a

category of games and highly restricted strategies which correspond to the dis-

cipline of purely functional programming. These restrictions are determinism,

innocence, visibility, and bracketing. The relaxation of one of these restric-

tions on strategies leads to a larger category which can be used to model an

extension of PCF by some non-functional features, such as state or control.

For example, relaxing the restriction of innocence allows local state (block-

allocated variables) to be modelled, relaxing determinism allows nondetermin-

istic constructs to be modelled, relaxing visibility allows general references to

be modelled, while relaxing bracketing allows control to be modelled. More-

over, definability for the model of the extended language can be reduced to

definability in the restricted language by using a technique of factorization

theorems. That is, every strategy in a larger category can be factored as

the composition of a restricted strategy and a “generic” unrestricted strategy.

Thus the original definability result for PCF can be transferred to a much

richer class of languages.

Game semantics integrates denotational and operational semantics, re-

taining good structural properties of denotational semantics while capturing

aspects of operational semantics. This is similar to the program of the ge-

ometry of interaction [57] carried out by Girard in the framework of linear

logic [56], the work on interaction categories [2] giving rise to type systems

for concurrency, and the Brookes model based on infinite stuttering sequences

[22] providing full abstraction result for parallel programming languages.
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In addition to being used to construct accurate semantics for a variety

of programming languages, game models have also been used in program veri-

fication. The first steps in this direction were taken by Hankin and Malacaria

who have applied the game models to program analysis, i.e. for data flow anal-

ysis [79, 80, 62] and for certifying secure information flows in programs [81].

The first application to model checking was proposed by Ghica and McCusker

[51]; they show that the game models of second-order finitary Idealized Algol

(IA) [95] can be represented in a remarkably simple form by regular languages.

Subsequently, a tool based on these ideas was implemented in [10]. This thesis

is a further investigation into this area. Specifically, we develop a new more

efficient verification tool where game models are given concrete representa-

tion using the CSP process algebra [70, 98], and we propose novel algorithms

for compositional modelling and verification of safety properties of open IA

programs which can contain infinite integer data types.

Another interesting direction of research is using game-theoretical ideas

in compositional design. Interface models [36, 37] can support interface com-

patibility checking and interface refinement checking [26], and therefore com-

positional design. Many aspects of interface models, such as compatibility

and refinement checking between interfaces, are properly viewed in a game-

theoretical setting, where the input and output values of an interface are chosen

by different players.

1.3.2 Advantages

Several features of game semantics make it very promising for software model

checking. Compared with the traditional state-based approach, game seman-

tics based model checking has the following important advantages:
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Modularity There is a model for any open program with free (undefined)

identifiers in a high-level language with procedures, local variables and

data types. Since modern software programs are not monolithic enti-

ties, this approach enables building models of software components and

compositional reasoning about their properties.

Correctness The generated model is correct (sound and complete), and it

is set on a firm theoretical foundation. Thus, two programs have the

same models if and only if they can not be distinguished with respect

to operational tests (such as abnormal termination) in any program con-

text. For example, all sorting algorithms have the same models in this

setting. Moreover, the model can be adapted relatively easily for a quan-

titative analysis of programming languages, such as comparing programs

for efficiency [54].

Compositionality Models are constructed inductively on the structure of

programs, i.e. the model of a program is constructed from the models of

its subprograms, using a notion of strategy composition. This feature is

the key for achieving scalability, i.e. the possibility to break up a larger

program into smaller subprograms which can be modelled and verified

independently.

Efficiency Programs are modelled by how they observationally interact with

their environments, and the details of local-state manipulation are not

recorded, i.e. they are abstracted, which results in small models with a

maximum level of abstraction. Moreover, since the model construction

process is compositional all intermediate models are also observationally

abstracted, and local reductions can be applied at every step of composi-
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tion. For example, the program newint x := 0 in x := !x + 1; !x 1 and the

constant 1 have the same models. The variable x is not represented in

the model because it is local and so invisible to the outside world.

1.3.3 Challenges

Model checking tools, such as FDR [46], SPIN [71], NuSMV [27], are complex

programs that have been crafted over many years by experts in the specific

formalisms employed by the tools. They offer a number of algorithms for

property specification and efficient verification. A re-implementation of these

algorithms would likely produce inferior performance. For this reason, the

focus in software verification tools is on the problem of extracting finite-state

models and their concrete representation in formalisms which are supported

by powerful model checkers. For example, the Bandera tool [34, 91] extracts

finite-state models from Java programs for checking with SPIN and NuSMV.

On the other hand, SLAM-like tools [17, 66, 24] use a different strategy: they

use a dedicated model checking engine to process a model which is derived

on-the-fly from a program. Since in this thesis we focus almost exclusively on

the problem of model extraction and concrete representation, we choose the

first strategy as more appropriate to our approach.

Challenge 1 Game models of finitary open programs of 2nd-order IA are

regular languages. Can we give concrete representation of these models

in a convenient formalism which is expressive enough so that the models

can be readily encoded and supported by a powerful model checker highly

optimised for verification of compositional models?

1!x denotes de-referencing
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As was mentioned earlier, the current state-based tools implement ab-

straction refinement algorithms for automatic verification of industrial size

programs.

Challenge 2 Can we adapt counterexample guided abstraction refinement

ideas to the setting of game models and thus enable verification of open

programs with infinite integer data types?

One of the main problems in software model checking is the state ex-

plosion problem: industrial programs are large and the size of state spaces

grows exponentially with the size of the programs, making model checking

computationally demanding. Therefore, the tendency is to look for composi-

tional methods, which attempt to verify different parts of a program separately,

and then make conclusions about the program as a whole. In compositional

verification, properties of the program are decomposed into properties of its

components (subprograms), so that if each component satisfies its respective

property, then so does the whole program. Compositional verification is thus

very desirable.

Challenge 3 Can we utilise the compositional nature of the building of game

models to achieve compositional verification?

1.3.4 Methodological Considerations

We now discuss some important methodological assumptions which will be

used throughout this thesis. As a main presentation vehicle is considered

the metalanguage AIA (Abstracted Idealized Algol). AIA is an expressive se-

quential programming language which combines the fundamental features of

imperative and higher-order functional languages. We develop a framework
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for verifying safety properties of open programs of second-order recursion-free

fragment of AIA with iteration. Safety properties are specified by a desig-

nated unsafe command abort whose executability in a given program will be

checked. The game semantics presented in this thesis is known as HO-style

game semantics (after Hyland-Ong).

1.4 Contributions

The material contained in this thesis presents a framework for verifying safety

properties of sequential open programs of IA with specific emphasis on ad-

dressing the challenges mentioned above. Challenge 1 is addressed in Chapter

4 by showing how game models can be represented compositionally in the

CSP process algebra. This enables observational safe-equivalence and a range

of safety properties of open programs to be checked using the FDR model

checker [46]. Experimental results confirm the effectiveness of this approach.

Then, in Chapter 5, a data-abstraction refinement procedure is proposed as a

solution to Challenge 2. The procedure applies to open programs which can

contain infinite integer types and is guaranteed to discover an error if it exists.

Finally, a fully compositional verification procedure is presented in Chapter 6

to address Challenge 3. It combines counterexample guided abstraction refine-

ment, assume-guarantee reasoning [75, 93] and the L∗ algorithm for learning

regular languages [14]. Overall model construction of a program is avoided

using assume-guarantee reasoning and the L* algorithm, by learning assump-

tions and reasoning about arbitrary subprograms.

The thesis is organised in the following way:

Chapter 2 introduces the language considered in this thesis, Abstracted Ide-
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alized Algol (AIA) which incorporates data-abstraction in its syntax. The

syntax and operational semantics of the language are presented, as well

as the notion of observational safety.

Chapter 3 defines a game semantics model of the language we consider and

contains a proof of full abstraction for the model.

Chapter 4 shows how game models of an interesting fragment of AIA can

be represented by CSP processes. It is then illustrated how, using this

translation, several classes of verification problems can be decided.

Chapter 5 presents a data-abstraction refinement procedure for verifying

safety properties and a tool which implements this procedure.

Chapter 6 extends the abstraction refinement procedure to allow composi-

tional verification.

Chapter 7 contains a retrospective view of the goals and achievements of the

work presented as well as discusses possible extensions.

Origin of the chapters. Although the material contained in this thesis has

been published in the form of articles, it has been restructured and extended.

Chapter 4 is based on [38, 39, 42], which are joint work with Ranko Lazić.

Chapter 3 and Chapter 5 contain material from [40, 41], which are the result

of a collaboration with Dan Ghica and Ranko Lazić. Chapter 6 is a revision

of [43], which is a joint work with Ranko Lazić.



Chapter 2

The Programming Language

The standard approach in denotational semantics is the utilisation of met-

alanguages for the description of certain kinds of computational behaviour.

The semantic model is defined for a metalanguage, and a real programming

language (C, Java, ML, etc.) can then be studied by translating it into this

metalanguage and considering the induced model. This approach allows the

same metalanguage and the semantic model for it to be used in the study of

many real languages. Moreover, the same metalanguage can also be used for

building many different semantic models.

In this thesis, the focus is on the metalanguage: Idealized Algol with

active expressions (IA for short) introduced by Reynolds in [95]. IA is similar to

Core ML [86]. It is a compact language which combines imperative and higher-

order functional programming. The basis of IA is a simply-typed call-by-name

λ-calculus in which the standard constructs of imperative programming and

locally-scoped variables can be represented. Storage allocation in IA obeys

a stack discipline (sometimes called block structure), without any form of

garbage collection. This means that after execution of a command, the values

16
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of all variables declared within the command have no further effects on the

program term. In order to obtain finite semantic models, the main presentation

vehicle is a particular variant of IA, called Abstracted Idealized Algol (AIA for

short). The key feature of this language is the use of abstraction schemes

at the level of data types, which allows the writing of (finitely) abstracted

programs in a syntax similar to that of concrete programs. In fact, a concrete

program is a particular abstracted program, in which all the abstractions are

identities.

In this chapter, we first introduce the syntax and operational semantics

of AIA, and then define the notion of observational safety of program terms.

2.1 Syntax

The data types of AIA are abstracted integers and booleans,

D ::= intπ | bool

The abstractions π range over computable partitionings of the integers Z. Any

such partitioning consists of partitions, i.e. sets of integers, which are called

abstracted integers. To say that m, n ∈ Z are in the same partition of π, we

write m ≈π n. In particular, we use the following finitary abstractions:

[ ] = {Z} [n,m] = {<n, {n}, {n + 1}, . . . , {0}, . . . , {m − 1}, {m}, >m}

where <n = {n ′ | n ′ < n}, and >n = {n ′ | n ′ > n}. Instead of {n}, we

may write just n. A graphical representation of the abstractions is shown in

Figure 2.1.

The base types are then

B ::= expD | varD | com
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¾ -
Z

[ ]

¾ -[n,m]
>mmm−1· · ·<n n n+1

Figure 2.1: Graphical representation of some integer abstractions

where expD is the type of expressions which yield values in D , varD is the

type of assignable variables at which values of D can be stored, and com is the

type of commands.

The general phrase types of AIA are defined by

T ::= B | T → T

We say that a type is concrete if it contains no abstractions other than

the identity abstraction κ =
{{i} | i ∈ Z}

. For any type T , we write T̃ for

the concrete type obtained by replacing all abstractions with κ. For simplicity,

we write intκ as simply int.

The terms of the language are inductively defined as follows:

M ::= x | nπ | b | v | λ x : T .M | MM | YM | M opD M

skip | abort | M ; M | ifB M thenM elseM | whileM doM

M := M | !M | newD x := v inM | mkvarD MM

where x ranges over a countable set of variables, nπ over abstracted integers

intπ, b over booleans and v over constants of type D . The standard functional

constructs are defined for forming and applying functions as well as recur-

sion (λ x : T .M , MM , and YM , respectively). The usual arithmetic-logic
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operations (opD) are employed. The command constants are the “do noth-

ing” command which always terminates successfully (skip), and a command

which causes abnormal termination (abort). The imperative constructs are:

sequencing ( ; ), conditional (ifB), iteration (while), assignment (:=), and de-

referencing (!). Block-allocated local variables are introduced by newD x :=

v inM , where the local variable x is initialised to v and it is bound in M . Vari-

ables are considered as pairs of two objects: an acceptor (or write method)

of type expD → com, which is a function from expressions to commands, i.e.

it takes a value as input and executes a command to store that value in the

variable, and a de-referencing operation (or read method) of type expD , which

returns the current value stored in the variable. The constructor mkvarD then

takes an acceptor M and a de-referencing operation N and creates a variable

mkvarD MN .

Well-typed terms are given by typing judgements of the form Γ ` M : T .

Here Γ is a type context consisting of a finite number of typed free identifiers,

i.e. of the form

x1 : T1, . . . , xk : Tk

where all identifiers xi are distinct. In the rest of this thesis, typing judgements

of the form Γ ` M : T are referred to as terms, and identifiers xi : Ti in a

context Γ are referred to as free identifiers. The typing rules of the language

are defined in Table 2.1.

Note that opD stands for any arithmetic-logic operator whose concrete

type is expD̃1 × expD̃2 → expD̃ . For example, for any abstractions π1 and π2,

AIA contains an equality operator =bool of type expintπ1 × expintπ2 → expbool.

For the cases of arithmetic-logic operations, conditional, assignment,

newD and mkvarD , it is required that their corresponding types of subterms
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x1 : T1, . . . , xk : Tk ` xi : Ti , i ∈ {1, . . . , k}

Γ ` nπ : expintπ Γ ` b : expbool, b ∈ {tt ,ff }
Γ, x : T ` M : T ′

Γ ` λ x : T .M : T → T ′
Γ ` M : T → T ′ Γ ` N : T

Γ ` MN : T ′

Γ ` M : T → T
Γ ` YM : T

Γ ` M : expD1 Γ ` N : expD2
D̃1 = D̃2, op ∈ {+,−, <, . . .}

Γ ` M opD N : expD

Γ ` skip : com Γ ` abort : com

Γ ` M : com Γ ` N : B B ∈ {expD , com}
Γ ` M ; N : B

Γ ` M : expbool Γ ` Ntt : B1 Γ ` Nff : B2
B̃1 = B̃2 = B̃Γ ` ifB M thenNtt elseNff : B

Γ ` M : expbool Γ ` N : com
Γ ` whileM doN : com

Γ ` M : varD1 Γ ` N : expD2
D̃1 = D̃2Γ ` M := N : com

Γ ` M : varD
Γ ` !M : expD

Γ, x : varD ` M : B Γ ` v : expD1
D̃ = D̃1,B ∈ {expD ′, com}

Γ ` newD x := v inM : B

Γ ` M : expD1 → com Γ ` N : expD2
D̃1 = D̃2 = D̃Γ ` mkvarD MN : varD

Table 2.1: Typing rules of AIA
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have equal concretisations, but their abstractions can be different. For exam-

ple, for any abstractions π1 and π2, we can assign expressions of type intπ2 to

variables of type intπ1 . This flexibility enables abstractions within a term to

be changed independently of each other while preserving well-typed-ness.

Whenever a term Γ ` M : T is derivable using the typing rules above,

there is a unique such derivation and the type T is unique with respect to Γ

and M . For example,

x : varint[0,4] ` x := !x +[0,3] 1[0,1] : com

means that the operator + was used with type expint[0,4]×expint[0,1] → expint[0,3].

Although the syntax of terms is presented with the type annotations, we may

omit them for succinctness if they are clear from the context or irrelevant.

Compared with Reynolds’ original definition of Idealized Algol [95], in

the language presented here, commands can be sequenced not only with com-

mands but also with expressions. This means that evaluation of an expression

can update a variable, i.e. active expressions or expressions with side effects

such as

x : varint ` x :=!x + 1; !x : expint

are allowed. So, active expressions can perform assignments to non-local vari-

ables in Γ. This is a common feature of most real imperative languages.

A term is concrete if it contains no abstractions other than the identity

abstraction κ. For any term Γ ` M : T , we write Γ̃ ` M̃ : T̃ for the concrete

term obtained by replacing all abstractions with κ. An abstraction π is finitary

if it has finitely many partitions. A term is finitely abstracted if it contains

only finitary abstractions. Finally, we say that a term M of type T is closed

if ` M : T is derivable.
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2.2 Operational Semantics

Operational semantics is a clear and convenient way to specify a programming

language, so it is common to use it as a benchmark by which to measure a

denotational semantics. There are two standard ways of defining operational

semantics: the small-step or structural operational semantics, and the big-step

or natural semantics. We present here the latter.

We proceed by defining a notion of state. Given a context Γ = x1 :

varD1, . . . , xk : varDk where all free identifiers are variables, which is called

var-context, we define a Γ-state s as a function assigning data values to the

variables {x1, . . . , xk}. Given a Γ-state s, we write (s | x 7→ v) for the state

identical to s but that variable x is mapped to v . We use (s | x 7→ v) both to

update a Γ-state and to extend a Γ-state to a {Γ, x}-state where x is initialised

to v , depending on whether x occurs in Γ or not.

The canonical forms (values) are defined by:

V ::= x | nπ | b | λ x : T .M | skip | mkvarDMN

The operational semantics is now defined by a big-step reduction rela-

tion

Γ ` M , s =⇒ K

where Γ ` M : T is a term, Γ is a var-context, s is a Γ-state, and K is a

final configuration. The final configuration can be either a pair V , s′ with V

a canonical form and s′ a Γ-state, or a special error configuration E .

The reduction rules are presented in Tables 2.2 and 2.3. We extend the

≈π notation to data types as follows. Let ≈bool be the identity (i.e. equality)

relation, and ≈intπ mean the same as ≈π. The notation M [N /x ] denotes the
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capture-free substitution of term N for all free occurrences of x in the term

M . Note that the λ-abstraction is the only binder in our language.

The reduction rules for AIA have the following characteristics. Firstly,

whenever an integer n needs to be treated as belonging to a data type intπ, n

is altered nondeterministically to any n ′ such that n ≈π n ′. Note that integers

are nondeterministically altered to other integers in the same partition only

in places in the syntax of terms where, instead of equal types, there are types

which have equal concretisations. Secondly, the abort program with any state

reduces to E , and a composite program can reduce to E if a subprogram is

reduced to E .

If M is a closed term then we abbreviate the relation ` M , ∅ =⇒ V , ∅
with M =⇒ V .

2.3 Observational Safety

Since we are interested in verifying safety properties, we want to define the

notion of equivalence of programs in terms of an observational safety. The

property of programs that should be observable in order to define this equiva-

lence, is the termination (convergence) of a program. But in AIA, it is possi-

ble that a term evaluates to more than one final configuration. For example,

the constant 1[0,0] may evaluate to 1, 2, 3, . . ., i.e. to any integer n such that

n ≈[0,0] 1. Thus, if Γ ` M , s =⇒ K then we can only say that M in state s

may evaluate to final configuration K. This means that we will be interested

in defining may-termination equivalence. Note that in this setting, two pro-

grams are considered equivalent if they can produce the same range of output

values. However, this notion of equivalence gives no account of the possibility
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Γ ` nπ, s =⇒ n ′, s (n ≈π n ′)

Γ ` V , s =⇒ V , s (ifV 6= nπ) Γ ` abort, s =⇒ E
Γ ` M , s =⇒ E

Γ ` MN , s =⇒ E
Γ ` M , s =⇒ λ x : T .M ′, s′ Γ ` M ′[N /x ], s′ =⇒ E

Γ ` MN , s =⇒ E
Γ ` M , s =⇒ λ x : T .M ′, s′ Γ ` M ′[N /x ], s′ =⇒ V , s′′

Γ ` MN , s =⇒ V , s′′

Γ ` M (YM ), s =⇒ E
Γ ` YM , s =⇒ E

Γ ` M (YM ), s =⇒ V , s′

Γ ` YM , s =⇒ V , s′

Γ ` M , s =⇒ E
Γ ` M opD N , s =⇒ E

Γ ` M , s =⇒ v1, s
′ N , s′ =⇒ E

Γ ` M opD N , s =⇒ E
Γ ` M , s =⇒ v1, s

′ Γ ` N , s′ =⇒ v2, s
′′

v1 op v2 ≈D v
Γ ` M opD N , s =⇒ v , s′′

Γ ` M , s =⇒ E
Γ ` M ; N , s =⇒ E

Γ ` M , s =⇒ skip, s′ Γ ` N , s′ =⇒ E
Γ ` M ; N , s =⇒ E

Γ ` M , s =⇒ skip, s′ Γ ` N , s′ =⇒ V , s′′

Γ ` M ; N , s =⇒ V , s′′

Γ ` M , s =⇒ E
Γ ` ifB M thenNtt elseNff , s =⇒ E

Γ ` M , s =⇒ b, s′ Γ ` Nb, s′ =⇒ E
Γ ` ifB M thenNtt elseNff , s =⇒ E

Γ ` M , s =⇒ b, s′ Γ ` Nb, s′ =⇒ v , s′′
v ≈D v ′

Γ ` ifexpD M thenNtt elseNff , s =⇒ v ′, s′′

Γ ` M , s =⇒ b, s′ Γ ` Nb, s′ =⇒ skip, s′′

Γ ` ifcom M thenNtt elseNff , s =⇒ skip, s′′

Γ ` M , s =⇒ b, s′ Γ ` Nb, s′ =⇒ V , s′′

Γ ` ifvarD M thenNtt elseNff , s =⇒ mkvarD(λ x : expD .V := x )(!V ), s′′

Table 2.2: Reduction rules for AIA (part 1)
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Γ ` M , s =⇒ E
Γ ` whileM doN , s =⇒ E

Γ ` M , s =⇒ tt , s′ Γ ` N ; whileM doN , s′ =⇒ E
Γ ` whileM doN , s =⇒ E

Γ ` M , s =⇒ tt , s′ Γ ` N ; whileM doN , s′ =⇒ skip, s′′

Γ ` whileM doN , s =⇒ skip, s′′

Γ ` M , s =⇒ ff , s′

Γ ` whileM doN , s =⇒ skip, s′

Γ ` N , s =⇒ E
Γ ` M :=N , s =⇒ E

Γ ` N , s =⇒ v , s′ Γ ` M , s′ =⇒ E
Γ ` M :=N , s =⇒ E

Γ ` N , s =⇒ v , s′ Γ ` M , s′ =⇒ x , s′′
v ≈D1 v ′

Γ ` M :=N , s =⇒ skip, (s′′ | x 7→ v ′)

Γ ` M , s =⇒ E
Γ `!M , s =⇒ E

Γ ` M , s =⇒ x , s′
s′(x ) = v

Γ `!M , s =⇒ v , s′

Γ ` M , (s | x 7→ v ′) =⇒ E
v ≈D v ′

Γ ` newD x := v inM , s =⇒ E
Γ ` M , (s | x 7→ v ′) =⇒ V , (s′ | x 7→ v ′′)

v ≈D v ′
Γ ` newD x := v inM , s =⇒ V , s′

Γ ` N , s =⇒ v , s′ Γ ` M , s′ =⇒ mkvarD LL′, s′′ Γ ` Lv ′, s′′ =⇒ E
v ≈D v ′

Γ ` M :=N , s =⇒ E
Γ ` N , s =⇒ v , s′ Γ ` M , s′ =⇒ mkvarD LL′, s′′ Lv ′, s′′ =⇒ skip, s′′′

v≈Dv ′
Γ ` M :=N , s =⇒ skip, s′′′

Γ ` M , s =⇒ mkvarD NN ′, s′ Γ ` N ′, s′ =⇒ E
Γ `!M , s =⇒ E

Γ ` M , s =⇒ mkvarD NN ′, s′ Γ ` N ′, s′ =⇒ v , s′′
v ≈D v ′

Γ `!M , s =⇒ v ′, s′′

Table 2.3: Reduction rules for AIA (part 2)
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of divergence. Therefore, it is sufficient for reasoning about safety properties,

but not liveness properties.

Given a term Γ ` M : com where Γ is a var-context, we say that M may

terminate in state s if there exists a configuration K such that Γ ` M , s =⇒ K
where K = E or K = skip, s′ for some state s′. We say that M is safe if and

only if it cannot be reduced from any state to E .

Next, we define a program context C [−] : com with hole to be a term

with (possibly several occurrences of) a hole in it, such that if Γ ` M : T is

a term of the same type as the hole then C [M ] is a well-typed closed term of

type com, i.e. ` C [M ] : com. Then, we say that a term Γ ` M : T is a safe-

approximate of a term Γ ` N : T , denoted by Γ ` M @∼ N , if and only if for

all program contexts C [−] : com, if C [M ] may terminate successfully (resp.,

abnormally) then C [N ] may also terminate successfully (resp., abnormally),

i.e. we have

Γ ` M @∼ N iff ∀C [−] : com.

if C [M ] =⇒ skip then C [N ] =⇒ skip ∧ if C [M ] =⇒ E then C [N ] =⇒ E

If two terms safe-approximate each other they are considered safe-

equivalent, denoted by Γ ` M ∼= N .

A context is safe if it does not include occurrences of the abort command.

A term Γ ` M : T is safe if for any safe context Csafe[−], program ` Csafe[M ] :

com is safe (i.e. it cannot be reduced to E); otherwise the term is unsafe.



Chapter 3

Game Semantics

In this chapter we present the game semantics model for AIA. Introductory

accounts of game semantics can be found in [74, 5, 8], and the presentation

here draws from all of them.

Game semantics is a denotational semantics which models types as

games, computation as plays of a game, and programs as strategies for a

game. Strategies compose, much like CSP-style processes, which makes it

possible to define denotational models. Games and strategies form a cartesian

closed category, which represents a (fully abstract) model of AIA.

AIA can be expressed as syntactic sugar for IA with Erratic choice

(EIA) [64, 63] and exceptions (IAx) [76]. EIA is IA extended with a simple

erratic choice operator (or), which encompasses nondeterminism in the lan-

guage. Nondeterminism can be explained intuitively in the following way [64]:

if, in the course of evaluating some expression, there is a choice between two

possible continuations, the program picks one at random to decide which way

to go. IAx is an extension of IA with dynamically bound, locally declared ex-

ceptions. These languages have been studied separately before, and combining

27
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their key features is a straightforward exercise. For the purposes of this thesis

we work with IA enriched with erratic choice operator and restricted global

exceptions which can be only raised but they cannot be caught by any handler

(EIAA for short).

After a short introductory section containing background information

on category theory and in particular cartesian closed categories, we begin

in Section 3.2 by describing how AIA can be translated into EIAA. We then

proceed by introducing the basic notions of arenas, games and strategies. This

leads to construction of a cartesian closed category, i.e. a fully abstract model

for EIAA, which is essentially the model of AIA. This model can be used for

proving safety of AIA programs.

3.1 Background: Category Theory

This section gives a brief introduction to some background material which

will be used throughout this chapter. The notion of category theory, and

in particular cartesian closed category, is commonly used in construction of

denotational semantic models of programming languages. Here we introduce

the most basic definitions of category theory. The standard references for

category theory and its applications in denotational semantics are [78, 16].

Definition A category C consists of

• A set of objects.

• A set of arrows (often called morphisms).

• Operations assigning to each arrow f an object dom(f ), its domain, and

an object cod(f ), its codomain. We write f : A → B or A
f // B to
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show that dom(f ) = A and cod(f ) = B . We write C(A,B) for the

collection of all arrows with domain A and codomain B .

• A composition operator assigning to each pair of arrows f and g , with

cod(f ) = dom(g), a composite arrow f o
9 g : dom(f ) → cod(g) satisfying

the following associative law:

(f o
9 g) o

9 h = f o
9 (g o

9 h) for any f : A → B , g : B → C , h : C → D .

• For each object A, an identity arrow idA : A → A satisfying the following

identity law:

idA
o
9 f = f = f o

9 idB for every f : A → B .

Definition An object 1 is called a terminal object in a category C if, for

every object A, there is a unique arrow from A to 1.

In categorical terms, an arrow from a terminal object to an object A is called

a constant of A.

Definition Let C be a category. A product of a pair of objects A and B is an

object A×B and two projection arrows π1 : A×B → A and π2 : A×B → B ,

such that for any object C and a pair of arrows f : C → A and g : C → B

there is a unique arrow (f , g) : C → A× B making the following diagram

C

(f ,g)
²²Â
Â
Â

f

wwnnnnnnnnnnnnnnn
g

''PPPPPPPPPPPPPPP

A A× Bπ1

oo
π2

// B

commute, i.e. (f , g) o
9 π1 = f and (f , g) o

9 π2 = g .
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If a category C has a product for every pair of objects, we say that C has

(finite) products.

In some categories, the collection of arrows from an object A to an

object B can be reflected as itself an object BA of the category.

Definition Let C be a category with all products. An exponential of a pair

of objects A and B is an object BA and an arrow evalA,B : (BA × A) → B ,

such that for any object C and arrow g : (C ×A) → B there is a unique arrow

Λ(g) : C → BA making the following diagram

BA × A
evalA,B // B

C × A

Λ(g)×idA

OOÂ
Â
Â

g

77nnnnnnnnnnnnnn

commute, i.e. (Λ(g)× idA) o
9 evalA,B = g .

If a category C has an exponential for every pair of objects, we say that C

has exponentiation.

Definition A cartesian closed category (CCC) is a category with a terminal

object, products, and exponentiation.

A partial order is a set D equipped with a binary relation ≤ on D that

is reflexive, antisymmetric, and transitive, i.e. for all x , y , and z in D , we have:

• x ≤ x (reflexivity).

• if x ≤ y and y ≤ x then x = y (antisymmetry).

• if x ≤ y and y ≤ z then x ≤ z (transitivity).

An upper bound of X ⊆ D is an element x ∈ D , such that y ≤ x for each

y ∈ X . A least upper bound of X ⊆ D is an upper bound
⊔

X of X , such
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that
⊔

X ≤ y for any other upper bound y of X . A subset X ⊆ D is directed

if every nonempty finite subset of X has an upper bound. A partial order D

is complete (or a cpo) if D has a least element ⊥ and every directed subset

X ⊆ D has a least upper bound. A function is monotone if x ≤ y implies

f (x ) ≤ f (y). Given cpo’s D and E , a monotone function f : D → E is said to

be continuous if f (
⊔

X ) =
⊔{f (x ) | x ∈ X } for any directed X .

Definition A cartesian closed category is cpo-enriched if:

• The collection of arrows C(A,B) between every two objects A and B

forms a cpo with respect to an ordering ≤.

• Arrow composition is monotone and continuous with respect to the or-

derings on arrows.

3.2 Translating AIA into EIAA

The data types of EIAA are infinite integers and booleans, and the base types

are extended with the empty type (0).

D ::= int | bool

B ::= 0 | expD | varD | com

T ::= B | T → T

The term constructors of EIAA are those of AIA plus constructors for erratic

choice ‘or’ and for raising exceptions ‘raise’:

M ::= . . . | M or M | raiseM

Note that no type annotations are needed now for integer constants, op, if and

mkvar constructs. The typing rules and operational semantics for EIAA are



32 CHAPTER 3. GAME SEMANTICS

similar to those of AIA (see Chapter 2) with the differences imposed by using

infinite rather than abstracted integers. We have already discussed them in

Section 2.2. The typing rules for ‘or’ and ‘raise’ are the following:

Γ ` M : expD Γ ` N : expD
Γ ` M or N : expD

Γ ` M : 0
Γ ` raiseM : B

The reduction relations are given by:

Γ ` M , s =⇒ K
Γ ` M or N , s =⇒ K

Γ ` N , s =⇒ K
Γ ` M or N , s =⇒ K

Γ ` M , s =⇒ h

Γ ` raiseM , s =⇒ raise h

Γ ` M , s =⇒ E
Γ ` raiseM , s =⇒ E

where K is a final configuration, which can be either a pair V , s′ or an exception

E = raise h for some exception name h. Evaluation takes place in a type context

Γ = E ,L, where E = e1 : 0, . . . , en : 0 is called exn-context and L is a var-

context, and a L-state s. By convention, mention of the exn-context will be

omitted where possible.

Finally, the may-termination safe-equivalence is defined as: E ,L ` M ∼=
N if and only if for all contexts C [−] : com,

E ` C [M ] =⇒ skip iff E ` C [N ] =⇒ skip ∧
E ` C [M ] =⇒ E iff E ` C [N ] =⇒ E

For any integer abstraction π, let blurexpintπ : expint → expint denote an

EIAA term which, given an integer n, returns a nondeterministically chosen

integer m such that m ≈π n. Since abstractions are assumed computable, such

terms are definable in EIAA by iteratively testing all integers m. However, in

addition to the possibilities to choose any m with m ≈π n nondeterministically,

there is the possibility of divergence. Therefore, this approach works only for

may-termination semantics, which is sufficient here. For all AIA types T , we
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define EIAA terms blurT : T̃ → T̃ as follows:

blurexpintπ = λ n : expint.newbool b := tt in newint m := 0 in

while (b) do

{if (!m ≈π n) then b := tt or ff else skip;

if (!m > 0) then m :=−!m else m :=−!m + 1; }
; !m

blurexpbool = λ x : expbool.x blurcom = λ x : com.x

blurvarD = λ x : varD̃ .mkvar (λ y : expD̃ .x := blurexpDy) (blurexpD(! x ))

blurT→T ′ = λ f : T̃ → T̃ ′. λ x : T̃ .blurT ′(f (blurTx ))

For any AIA type T , its translation pTq into EIAA is T̃ . The translation of

any AIA term into EIAA is defined in Table 3.1, where a context Γ = x1 :

T1, . . . xk : Tk is translated into pΓq = x1 : T̃1, . . . , xk : T̃k , abort : 0.

The semantic model of AIA is therefore essentially a straightforward

combination of the may-termination models of EIA, which is presented in detail

in [64], and of IAx presented in [76]. Since we only consider a sublanguage of

IAx, where exceptions are defined in global scope and they can be only raised

but they cannot be caught, the additional contingency pointers which track

the flow of control in the model of IAx are not needed here. So we only use a

simplified form of the model of IAx. In the next subsections, we give a formal

presentation of this model.

First of all, we show a correspondence between operational semantics

and observational safe-equivalence of AIA and those of EIAA.

Proposition 3.2.1 Let Γ ` M : T be an AIA term where Γ is a var-context,

pΓ ` M : Tq be its translation into EIAA, and s be a Γ-state. If Γ ` M , s =⇒
V , s′ then pΓq ` pM q, s =⇒ pV q, s′, and vice versa. If Γ ` M , s =⇒ E then
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pΓ ` x : Tq = pΓq ` blurTx : T̃ , x is a free identifier

pΓ ` k : Tq = pΓq ` blurTk : T̃ , k is a constant (n, b, skip)
pΓ ` abort : comq = pΓq ` raise abort : com

pΓ ` λ x : T .M : T → T ′q = pΓq ` λ x : T̃ .pM : T ′q : T̃ → T̃ ′

pΓ ` M N : T ′q = pΓq ` pM : T1 → T ′qpN : T2q : T̃ ′

pΓ ` YM : Tq = pΓq ` Y pM : Tq : T̃

pΓ ` M opD N : expDq = pΓq ` blurexpD(pM :expD1q op pN :expD2q) :expD̃

pΓ ` M ; N : Bq = pΓq ` pM : comq ; pN : Bq : B̃
pΓ ` ifB M thenNtt elseNff : Bq =

pΓq ` blurB(if pM : expboolq then pNtt : B1q else pNff : B2q) : B̃
pΓ ` whileM doN : comq = pΓq ` while pM : expboolq do pN : comq : com
pΓ ` M :=N : comq = pΓq ` pM : varD1q := blurexpD1pN : expD2q : com

pΓ `!M : expDq = pΓq `! pM : varDq : expD̃
pΓ ` newD x := v inM : Bq =

pΓq ` newD̃ x := blurexpDpv : expD1q in pM : Bq : B̃
pΓ ` mkvarD MN : varDq =

pΓq ` blurvarD(mkvar pM : expD1 → comq pN : expD2q) : varD̃

Table 3.1: Translating AIA into EIAA

pΓq ` pM q, s =⇒ E, and vice versa.

Proof Suppose that Γ ` M , s =⇒ K. The proof is by induction on the

derivation of Γ ` M , s =⇒ K.

The result is immediate for the command constants: skip and abort.

Consider the case of any integer constant nπ. We have Γ ` nπ, s =⇒
n ′, s for some n ′ ≈π n.

On the other hand, pnπq = blurexpintπn = blurexpintπn
′. Thus, pΓq ` pnπq, s =⇒

n ′′, s for any n ′′ ≈π n ′.

Consider the case of any arithmetic-logic operator opD . The first rule

is

Γ ` M , s =⇒ E
Γ ` M opD N , s =⇒ E
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By the inductive hypothesis, we have that pΓq ` pM q, s =⇒ E . Then, pΓq `
pM opD N q, s =⇒ E . The proof for the second rule

Γ ` M , s =⇒ v1, s
′ Γ ` N , s′ =⇒ E

Γ ` M opD N , s =⇒ E is similar.

The third rule is

Γ ` M , s =⇒ v1, s
′ Γ ` N , s′ =⇒ v2, s

′′
v1 op v2 ≈D v

Γ ` M opD N , s =⇒ v , s′′

By the inductive hypothesis, we have pΓq ` pM q, s =⇒ pv1q, s′ and pΓq `
pN q, s′ =⇒ pv2q, s′′. So, pΓq ` pM q, s =⇒ v1, s

′ and pΓq ` pN q, s′ =⇒ v2, s
′′.

Since pM opD N q = blurexpD(pM q op pN q), we have pΓq ` pM opD N q, s =⇒
pvq, s′′ for any v ≈D v1 op v2.

Consider the case of application. The first rule is

Γ ` M , s =⇒ E
Γ ` M N , s =⇒ E

By the inductive hypothesis, we have that pΓq ` pM q, s =⇒ E . Then, pΓq `
pM N q, s =⇒ E .

The second rule is

Γ ` M , s =⇒ λ x : T .M ′, s′ Γ ` M ′[N /x ], s′ =⇒ K
Γ ` M N , s =⇒ K

By the inductive hypothesis, we have pΓq ` pM q, s =⇒ pλ x : T .M ′q, s′

and pΓq ` pM ′[N /x ]q, s′ =⇒ pKq. Since pλ x : T .M ′q = λ x : T̃ .pM ′q,

pM ′[N /x ]q = pM ′q[pN q/x ], and pM N q = pM q pN q, we have that pΓq `
pM N q, s =⇒ pKq. The proofs for the remaining cases are similar.

The proof for the converse is similar.

Proposition 3.2.2 For any AIA terms Γ ` M ,N : T,

Γ ` M @∼ Γ ` N iff pΓ ` M q @∼ pΓ ` N q
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Proof Let Γ ` M ,N : T be two AIA terms and C [−] : com be a program

context. Suppose that pΓ ` M q @∼ pΓ ` N q.

Let C [M ] may terminate successfully (resp., abnormally). Then by

Proposition 3.2.1, pC [M ]q may also terminate successfully (resp., abnormally).

Using the fact that pΓ ` M q @∼ pΓ ` N q and Proposition 3.2.1, we obtain

that C [N ] may terminate successfully (resp., abnormally). Therefore, we have

Γ ` M @∼ Γ ` N .

For the opposite direction, the proof is analogous.

3.3 Games and Strategies

In this section, we construct a cartesian closed category which can be used to

interpret EIAA.

3.3.1 Games

In game semantics, a game is played in an arena which can be thought of as a

playing area setting out certain basic conditions and rules for the game. The

game has two participants: Player, which represents the program, and Op-

ponent, which represents its environment (context). Opponent always moves

first, and thereafter the two make moves alternately. Each of the moves can

be either a question (a demand for information) or an answer (a supply of

information).

Definition An arena A is a triple 〈MA, λA,`A〉 where

• MA is a countable set of moves.

• λA : MA → {O, P} × {Q, A} is a labelling function which indicates
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whether a move is by Opponent(O) or Player(P), and whether it is a

question(Q) or an answer(A). We write the set {O, P} × {Q, A} as

{OQ, OA, PQ, PA}, and use λOP
A to mean the composite of λA with the

left projection, so that λOP
A (m) = O if λA(m) = OQ or λA(m) = OA.

λQA
A is defined as λA followed by the right projection in a similar way.

So, we have that λA = (λOP
A , λQA

A ). We denote by λA the labelling with

the O/P part reversed, i.e. λ
OP

A (m) = O iff λOP
A (m) = P.

• `A is a binary relation between MA + {∗} (where + is a disjoint union

and ∗ is a dummy symbol) and MA, called enabling (if m `A n we say

that m enables move n), which satisfies the following conditions:

(i) ∗ `A m ⇒ λA(m) = OQ ∧ for all n, n `A m ⇔ n = ∗

(ii) m `A n ∧ λQA
A (n) = A ⇒ λQA

A (m) = Q

(iii) m `A n ∧ m 6= ∗ ⇒ λOP
A (m) 6= λOP

A (n)

The enabling relation defines, when a move is played, what moves are enabled

to be made subsequently. A move enabled by the special enabler ∗ is called

initial. Condition (i) says that initial moves are Opponent questions, and they

are not enabled by any other moves besides ∗. Conditions (ii) and (iii) say

that answers are enabled by questions, and that two participants always enable

each other’s moves, never their own (i.e. an Opponent move can only enable

a Player move and vice versa).

Before proceeding further with the presentation, we introduce some

notation. If Σ is an alphabet, then we denote by Σ∗ the set of all finite

sequences over Σ. If s and t are such sequences, then we write st or s · t
for their concatenation. We also write sm or s · m for the sequence s with
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element m ∈ Σ appended. The empty sequence is written as ε, and v denotes

the prefix ordering on sequences. We use meta-variables m, n to range over

moves, mQ over question moves, and mA over answer moves.

Definition A justified sequence s in arena A is a finite sequence of moves of

A together with a pointer from each non-initial move n to an earlier move m

such that m `A n. We say that the move n is (explicitly) justified by m or

that m justifies n.

Note that the first move in any justified sequence must be an initial move.

It is also important to note that justification refers to particular instances of

moves occurring in a justified sequence.

Definition A justified sequence s in arena A is a legal play if it satisfies the

following alternation condition: Opponent and Player moves strictly alternate

in s , i.e. if s = s1mns2 then λOP(m) 6= λOP(n). We write LA for the set of all

legal plays in arena A.

Definition We say that a move n is hereditarily justified by a move m in a

legal play s if there is a subsequence of s starting with m and ending in n such

that every move is justified by the preceding move in it, i.e.

s = · · · m · · · mk
yy · · ·ÄÄ · · · m1

££ · · · n
yy · · ·

We write sdm for the subsequence of s containing all moves hereditarily jus-

tified by m. We similarly define sdI for a set I of initial moves in s to be the

subsequence of s consisting of all moves hereditarily justified by a move in I .

Definition A game is a structure A = 〈MA, λA,`A,PA〉 where
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• 〈MA, λA,`A〉 is an arena, and

• PA is a non-empty, prefix-closed subset of LA, called the valid plays, such

that if s ∈ PA and I is a set of initial moves of s then sdI ∈ PA.

Example The simplest game is the empty game I = 〈∅, ∅, ∅, {ε}〉. The only

valid play of I is the empty sequence ε, because there are no moves. The next

simplest game has a single Opponent question move abort 1 and is denoted by

o.

The base types are interpreted by the following games.

J0K = o = 〈Mo , λo ,`o ,Po〉

where

Mo = {abort},
λo(abort) = OQ

∗ `o abort

Po = {ε, abort}

JexpDK = 〈MJexpDK, λJexpDK,`JexpDK,PJexpDK〉

where

MJexpDK = {q, v | v ∈ D}

λJexpDK(q) = OQ, λJexpDK(v) = PA

∗ `JexpDK q, q `JexpDK v

PJexpDK = {ε, q, q · v | v ∈ D}
1In [76], this move is referred to as raise, but here we call it abort since only one exception can

be raised.
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In the game for expressions, there is an initial move q (a question: “What is

the value of the expression?”) and corresponding to it a value from D (an

answer to the question).

JcomK = 〈MJcomK, λJcomK,`JcomK,PJcomK〉

where

MJcomK = {run, done}

λJcomK(run) = OQ, λJcomK(done) = PA

∗ `JcomK run, run `JcomK done

PJcomK = {ε, run, run · done}

In the game for commands, there is an initial move run to initiate a command,

and an answer move done to signal successful termination of a command.

JvarDK = 〈MJvarDK, λJvarDK,`JvarDK,PJvarDK〉

where

MJvarDK = {read, v ,write(v), ok | v ∈ D}

λJvarDK(read,write(v)) = OQ, λJvarDK(v , ok) = PA

∗ `JvarDK read, ∗ `JvarDK write(v), read `JvarDK v , write(v) `JvarDK ok

PJvarDK =
{
ε, read,write(v), read · v ,write(v) · ok | v ∈ D

}

In the game for variables, for each v ∈ D there is an initial move write(v) to

initiate an assignment, and an answer move ok to signal successful completion

of the assignment. For de-referencing, there is an initial move read, to which

Player may respond with any element of D .
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Given games A and B , we define new games A×B , A⊗B , and A ( B

as follows:

MA×B = MA + MB (disjoint union)

λA×B = [λA, λB ], the source tupling

∗ `A×B n ⇔ ∗ `A n ∨ ∗ `B n

m `A×B n ⇔ m `A n ∨ m `B n

PA×B = PA + PB

MA⊗B = MA + MB

λA⊗B = [λA, λB ]

∗ `A⊗B n ⇔ ∗ `A n ∨ ∗ `B n

m `A⊗B n ⇔ m `A n ∨ m `B n

PA⊗B = {s ∈ LA⊗B | s ¹ A ∈ PA, s ¹ B ∈ PB}

MA(B = MA + MB

λA(B = [λA, λB ]

∗ `A(B n ⇔ ∗ `B n

m `A(B n ⇔ m `A n ∨ m `B n ∨ (∗ `B m ∧ ∗ `A n
)
, for m 6= ∗

PA(B = {s ∈ LA(B | s ¹ A ∈ PA, s ¹ B ∈ PB}

Here, s ¹ A denotes the subsequence of s consisting of moves from MA; s ¹ B

is analogous. A valid play of A×B is either a valid play from A or a valid play

from B . In contrast, each play in PA⊗B is an interleaving of a valid play from

A with a valid play from B , and only Opponent can switch between interleaved

plays. Since initial moves of A are enabled by initial moves of B in A ( B ,

an Opponent (resp., a Player) move of A is considered to be a Player (resp.,

an Opponent) move of A ( B . Hence, valid plays of A ( B are interleavings
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of single plays from A and B , and each such play has to begin in B and only

Player can switch between the interleaved plays.

From now on, we sometimes omit the justification pointers in the valid

plays, especially when they are clear from the context.

Example In the game JexpDK × JexpDK, a valid play is either from the left-

hand or the right-hand component.

JexpDK × JexpDK
O q

P v

66

JexpDK × JexpDK
q

v

55

In diagrams such as the above, time flows downwards and every move is aligned

with the type component in which it occurs. Here, Opponent starts by playing

q in a component, and at the next step Player answers with a value v in the

same component.

In the game JexpDK⊗ JexpDK, valid plays are shown below.

JexpDK ⊗ JexpDK JexpDK ⊗ JexpDK
O q q

P v

66

v

66

O q q

P v ′
66

v ′
66

In the game JexpDK ( JexpDK, Opponent starts in the right-hand

component, and Player may choose to switch to the left-hand component or

not.

JexpDK ( JexpDK JexpDK ( JexpDK
O q q

P q

44hhhhhhhhhhh v

66

O v ′
66

P v

OO
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Given a game A, the game !A is defined as:

M!A = MA

λ!A = λA

`!A =`A

P!A = {s ∈ L!A | for each initial move m, sdm ∈ PA}
Valid plays of !A are interleavings of a finite number of plays from PA, and only

Opponent can switch between the interleaved plays. The following identities

are easy to show: !(A× B) =!A⊗!B and !I = I .

Finally, the game A ⇒ B is defined as !A ( B . A valid play of A ( B

can contain a single play of A, and so it is similar to linear implication. On the

other hand, a valid play of A ⇒ B (i.e. !A ( B) can contain a finite number

of plays of A, and so it is similar to classical implication.

Definition A game A is well-opened if and only if, for all sm ∈ PA, if m is

initial then s = ε.

So, in a well-opened game, initial moves can only happen at the first move.

Note that although !A is not usually well-opened for any game A, the games

A ( B and !A ( B are well-opened whenever B is.

3.3.2 Strategies

Every term of the language can be interpreted by a strategy.

Definition A strategy σ for a game A (written as σ : A) is a prefix-closed

non-empty set of even-length plays in PA.

A strategy specifies what options Player has at any given point of a play, and it

does not restrict the Opponent moves. We say that a play in σ is complete if it
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is maximal and either all questions have been answered or the play terminates

in abort.

Example The only strategy for the empty game I is the empty strategy

⊥= {ε}.
For the game JexpintK, there is the empty strategy, and one strategy for

each integer n, namely {ε, q · n}.
A strategy for a successor function succ : expint → expint 2 is as follows:

JexpintK ⇒ JexpintK
O q

P q

44hhhhhhhhhhh

O n

66

P n + 1

OO

So, this strategy can be described as: “When Opponent asks for output of

succ, Player will replay asking for input. When Opponent provides input n

(which can be any integer since a strategy does not restrict O moves), Player

will give output (n + 1).”

A strategy for addition + : expint× expint → expint looks like this:

JexpintK × JexpintK ⇒ JexpintK
O q

P q

11ddddddddddddddddddddddd

O n

66

P q

==zzzzzzzzzzzzzz

O m

66

P n + m

OO

Note that since the empty game I has no moves, strategies for a game

A and strategies for I ⇒ A are the same.

2Because strategies are prefix-closed, it suffices to give their sets of complete plays.
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The identity strategy idA : A ⇒ A for a game A is given by the copy-cat

strategy:

{s ∈ PA⇒A | ∀ s ′ veven s . s ′ ¹ Al = s ′ ¹ Ar}

where we use the l and r tags to distinguish between the two occurrences of A,

and s ′ veven s means that s ′ is an even-length prefix of s . So, in any identity

strategy idA, a move by Opponent in either occurrence of A is immediately

copied by Player to the other occurrence.

Example The identity strategies idJexpDK and ido are as follows.

JexpDK ⇒ JexpDK o ⇒ o

O q abort

P q

44iiiiiiiiiii abort

55kkkk
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The notion of composition of strategies is central to game semantics:

just as small programs can be put together to form large ones, so strategies

can be composed to form new strategies. Strategies compose in a way which

is reminiscent of the two stage procedure of “parallel composition plus hiding”

in CSP [70].

Given a strategy σ : A ⇒ B , we define its promotion σ† : !A ( !B ,

which can play several interleaved copies of σ, by:

σ† = {s ∈ L!A( !B | for all initialm, sdm ∈ σ}

Let σ : A ⇒ B and τ : B ⇒ C be two strategies. Then the composition

σ o
9 τ : A ⇒ C is defined as σ† ; τ , where ; is linear composition of strategies.

Given strategies σ : A ( B and τ : B ( C , the linear composition

σ ; τ : A ( C is defined in the following way. For a sequence u of moves
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from games A, B , C with justification pointers, we define u ¹ B ,C to be the

subsequence of u consisting of all moves from B and C (if a pointer from one

of these points to a move of A, delete that pointer). Similarly define u ¹ A,B .

We say that u is an interaction sequence of A, B , C if u ¹ A,B ∈ PA(B and

u ¹ B ,C ∈ PB(C . The set of all such sequences is written as int(A,B ,C ).

The parallel composition is defined by

σ ‖ τ = {u ∈ int(A,B ,C ) | u ¹ A,B ∈ σ, u ¹ B ,C ∈ τ}

So σ ‖ τ consists of interaction sequences generated by playing σ and τ in

parallel, making them synchronise on moves in B . When σ plays a move in

B , it becomes a stimulus for τ to move, and vice versa.

Suppose u ∈ int(A,B ,C ). Define u ¹ A,C to be the subsequence of

u consisting of all moves from A and C , but where there was a pointer from

a move mA ∈ MA to an initial move m ∈ IB extend the pointer to the initial

move in C which was pointed to from m. Thus, we complete the definition of

composition by hiding the interaction between σ and τ in B .

σ ; τ = {u ¹ A,C | u ∈ σ ‖ τ}

The motivation for this definition comes from the geometry of interac-

tion [57], interaction categories [2], and the CSP process algebra [70].

Example The strategy for the term 1 + 4 : expint is obtained by composing

the strategy for addition + : expint × expint → expint with the strategy for

the constant pair (1, 4) : expint × expint. The parallel composition makes the

strategies synchronise on the moves in the type of the arguments, expint ×
expint.
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I ⇒ JexpintK × JexpintK ⇒ JexpintK
q

q

11ccccccccccccccccccccccc

1

66

q
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4

66

5

OO

Hiding eliminates all the moves from the type of the arguments. Thus, we

obtain the strategy for 1 + 4 : expint,

I ⇒ JexpintK
q

5

77

Given σ : A ( B and τ : C ( D , we define σ⊗τ : (A⊗C ) ( (B⊗D)

as follows:

σ ⊗ τ = {s ∈ L(A⊗C )((B⊗D) | s ¹ A,B ∈ σ ∧ s ¹ C ,D ∈ τ}.

3.3.3 A Cartesian Closed Category

We now introduce several restrictions on strategies that are needed for the

game-semantics model of EIAA. They rely on the following definition of the

Player view of a non-empty valid play.

Definition The Player view psq of a non-empty valid play s ∈ PA is defined

by:

psmq = m ifm is initial (∗ `A m)

psmq = psqm ifm is a P move

psmtnq = psqmn if n is a O move andm justifies n
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The restrictions we consider are the visibility condition and the brack-

eting condition.

Visibility condition A strategy σ satisfies Player visibility iff

for all smn ∈ σ, the justifier of the P-move n occurs in psmq.

We say that an answer move n answers a question move m in a valid play

s ∈ PA iff n is justified by m in s .

Bracketing condition A strategy σ satisfies Player bracketing iff

for all smn ∈ σ, if n is an answer P-move then n answers the pending

question of psmq, i.e. the most recently asked but not answered question in

psmq.

It is shown in [64, pp. 57–58] that the strategies satisfying the above

restrictions are closed under composition. From now on, we proceed to work

only with strategies that satisfy both restrictions.

We can now define a category C of games as follows:

Objects are well-opened games.

Arrows σ : A → B are strategies for A ⇒ B which satisfy the above two

conditions.

For any well-opened game A, the strategy idA : A ⇒ A is the identity arrow

on A, and the composition of arrows σ : A → B and τ : B → C is defined to

be σ o
9 τ = σ†; τ .

Proposition 3.3.1 The category C of games is a cartesian closed category.

Proof
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Terminal object. 1
def.
= I where I = 〈∅, ∅, ∅, {ε}〉 is the empty game.

Product. A×B
def.
= A×B , with projections π1 : A×B → A and π2 : A×B →

B defined by the obvious copy-cat strategies:

π1 = {s ∈ PA×B⇒A | ∀ s ′ veven s .s ′ ¹ Al = s ′ ¹ Ar}
π2 = {s ∈ PA×B⇒B | ∀ s ′ veven s .s ′ ¹ Bl = s ′ ¹ Br}

Exponential. BA def.
= A ⇒ B . Note that the only difference between the

games A× B ⇒ C and A ⇒ (B ⇒ C ) is in the tagging of the moves in

the appropriate disjoint union, i.e. C(A×B ,C ) ∼= C(A,B ⇒ C ). Given

a strategy σ : A × B ⇒ C , we define Λ(σ) : A ⇒ (B ⇒ C ), called

currying, as the strategy corresponding to σ across this isomorphism.

Then, the evaluation strategy is defined as: evalA,B = Λ−1(idA⇒B).

Further details of the construction of CCC are handled in the same way as in

the proof in [64, pp. 61–73].

The set of all strategies for A ⇒ B which satisfy the above two condi-

tions forms forms a cpo, where the ordering relation on strategies is defined

by:

σ ≤ τ iff σ ⊆ τ for any σ, τ : A ⇒ B

The least element is ⊥= {ε}, and the least upper bound is given by unions,

i.e. σ t τ = σ ∪ τ for any σ, τ : A ⇒ B . It is easy to check that composition

of strategies is monotone and continuous [64, pp. 54]. Therefore, the category

C is also cpo-enriched.
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3.4 The Model

In this section we construct the model of EIAA. Since the category C of games

is cartesian closed, it can be used to model a typed λ-calculus. We begin

by reviewing the interpretation of a typed λ-calculus in a cartesian closed

category and then show how constants and constructs of the language can be

interpreted.

A type T will be interpreted as a game (object) JT K in the category C,

and a well-typed open term Γ ` M : T , where Γ = x1 : T1, . . . , xk : Tk , as a

strategy (arrow) JΓ ` M : T K for the game:

JΓ ` T K = JT1K× . . .× JTkK⇒ JT K

If M is a closed term, then it is interpreted by J` M : T K : I ⇒ JT K. The

context Γ = x1 : T1, . . . , xk : Tk is interpreted by JΓK = JT1K× . . .× JTkK.
The base types have already been interpreted as games in the Example

on page 39. The interpretation of other types is defined by induction: JT →
T ′K = JT K⇒ JT ′K.

Free identifiers are interpreted using projections:

Jx1 : T1, . . . , xk : Tk ` xi : TiK = πi : JT1K× . . .× JTkK⇒ JTiK, 1 ≤ i ≤ k

Abstraction is modelled using the currying isomorphism:

JΓ ` λ x : T .M : T → T ′K = Λ(JΓ, x : T ` M : T ′K) : JΓK⇒ (JT K⇒ JT ′K)

Application is interpreted using the evaluation strategy:

JΓ ` MN : T ′K =
(JΓ ` M : T → T ′K, JΓ ` N : T K) o

9 evalJT K,JT ′K : JΓK⇒ JT ′K

Recursion Γ ` YM : T is interpreted in the following way. Given that

the term Γ ` M : T → T is modelled by a strategy JΓ ` M : T → T K, we
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define a chain of strategies (fi)i∈N for the game JΓK⇒ JT K, such that fn ≤ fm

whenever n ≤ m, as:

f0 = ⊥: JΓK⇒ JT K
fn+1 =

(
idJΓK, fn

)
o
9 Λ−1(JΓ ` M : T → T K) : JΓK⇒ JT K

Since the category C is cpo-enriched there exists a least upper bound of this

chain, and it represents the interpretation of recursion, i.e.

JΓ ` YM : T K =
⊔

i∈N
fi

Constants are interpreted as follows.

Jn : expintK : I ⇒ JexpintK = {ε, q · n}

Jb : expboolK : I ⇒ JexpboolK = {ε, q · b}

Jskip : comK : I ⇒ JcomK = {ε, run · done}

The semantics of arithmetic-logic operations is defined as

JΓ ` M opN K =
(JΓ ` M K, JΓ ` N K) o

9 σop : JΓK⇒ JexpDK

where the strategy σop : JexpDK× JexpDK⇒ JexpDK is given by:

JexpDK × JexpDK ⇒ JexpDK
q

q

11dddddddddddddddddddddd

v1

66

q
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v2
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v1opv2

OO

Sequencing is interpreted by:

JΓ ` M ; N K =
(JΓ ` M K, JΓ ` N K) o

9 σseq : JΓK⇒ JBK

where σseq is
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JcomK × JBK ⇒ JBK
mQ

run

22eeeeeeeeeeeeee

done

88

mQ

AA¥¥¥¥¥¥¥¥¥¥

mA

EE

mA

OO

Conditional is interpreted as

JΓ ` if M thenNtt elseNff K =
(JΓ ` M K, JΓ ` NttK, JΓ ` Nff K

)
o
9 σif : JΓK⇒ JBK

where the strategy σif : JexpboolK × JBK × JBK ⇒ JBK is represented by its

complete plays:

JexpboolK × JBK × JBK ⇒ JBK JexpboolK × JBK × JBK ⇒ JBK
mQ mQ

q

11dddddddddddddddddddddd q

11dddddddddddddddddddddd

tt

66

ff

66

mQ
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mQ

EĒ
¯̄

¯̄
¯̄

¯̄
¯

mA

==

mA

==

mA

OO

mA

OO

Assignment and de-referencing are defined by:

JΓ ` M :=N K =
(JΓ ` M K, JΓ ` N K) o

9 σassign : JΓK⇒ JcomK
JΓ ` !M K = JΓ ` M K o

9 σderef : JΓK⇒ JexpDK

where the strategies σassign : JvarDK × JexpDK ⇒ JcomK and σderef : JvarDK ⇒
JexpDK are:
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JvarDK × JexpDK ⇒ JexpDK JvarDK ⇒ JexpDK
run q

q

44hhhhhhhhh read

44hhhhhhhhh

v

66

v
HH

write(v)

==

v

OO

ok
KK

done

OO

The constructor ‘mkvar’ is interpreted by:

JΓ ` mkvar MN K =
(JΓ ` M K, JΓ ` N K) o

9 σmkvar : JΓK⇒ JvarDK

where the transformation strategy σmkvar is

(JexpDK ⇒ JcomK) × JexpDK ⇒ JvarDK
write(v)

run

11dddddddddddddddddd

q
33gggggggggg

v

55

done

OO

ok

OO

(JexpDK ⇒ JcomK) × JexpDK ⇒ JvarDK
read

q
44hhhhhhhhh

v

55

v

OO

The ‘new’ constructor is interpreted using a “storage cell” strategy cell :

I ⇒ !JvarDK, whose plays are of the form

read · v0 · write(v1) · ok · read · v1 . . .

where each read and write(−) move is initial, and all other moves are justified

by the immediately preceding move. So, cell responds to a write(v) with ok,
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and to read with the last value written, if any. If there has been no value

written yet, an initialised cell cellv0 will respond to read with v0. Now, we can

interpret the new constructor as

JΓ ` newD x := v inM K =
(
id †JΓK ⊗ cellv

)
; JΓ, x : varD ` M K : JΓK⇒ JBK

Erratic choice operator is defined by:

JΓ ` M or N K =
(JΓ ` M K, JΓ ` N K) o

9 σchoice : JΓK⇒ JexpDK

where σchoice : JexpDK×JexpDK⇒ JexpDK is the only nondeterministic strategy

in the model given by:

JexpDK × JexpDK ⇒ JexpDK JexpDK × JexpDK ⇒ JexpDK
q q

q

11dddddddddddddddddddddd q
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v
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The semantics of the raise operator is defined by:

JΓ ` raiseM K = JΓ ` M K o
9 σraise : JΓK⇒ JBK

where σraise : J0K⇒ JBK is the strategy which responds to the initial question

in JBK with the unique question in J0K(= o):

o ⇒ JBK
mQ

abort

55kkkkk

Iteration can be represented using recursion:

whileM doN = Y
(
λ c : com . if M then {N ; c} else skip

)
.
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3.5 Soundness

We now show the soundness of this model with respect to safe-equivalence, i.e.

JΓ ` M K ≤ JΓ ` N K ⇒ Γ ` M @∼ N

First, we show the consistency result that any term which may converge

has an appropriate play in its semantics.

Let L = x1 : varD1, . . . , xk : varDk be a var-context and s be a L-state.

The state s can be modelled by a strategy σs : I ⇒ !(JvarD1K× . . .× JvarDkK)
consisting of a tuple of suitably initialised cell strategies, i.e. σs = cells(x1) ⊗
. . .⊗ cells(xk ). We define a strategy JsK : JE K⇒!(JE K× JLK) as JsK = id †JEK⊗ σs.

The interpretation of a term E ,L ` M : T in a L-state s is defined by the

linear composition JsK ; JE ,L ` M : T K : JE K ⇒ JT K. We will also consider

the interaction sequences JsK ‖ JE ,L ` M : T K. For any sequence it ′t ∈ JsK ‖
JE ,L ` M : T K, where i is an initial question, t ′ is an even-length sequence of

moves in !JLK, and t is a sequence of moves, we say that t ′ leaves state s′ if for

each xi in L, the last write move of t ′ in varDi sets xi to s′(xi), and if there is

no write in varDi then s′(xi) = s(xi).

Proposition 3.5.1 Let E ,L ` M : T be a term and s be a L-state. If E ,L `
M , s =⇒ V , s′ then for each i · t ∈ Js′K ‖ JV K, there exists some i · t ′ · t ∈ JsK ‖
JM K such that t ′ plays solely in JLK and leaves state s′. If E ,L ` M , s =⇒ E
then there exists some i · t ′ · abort · abort ∈ JsK ‖ JM K such that t ′ plays solely

in JLK.

Proof Suppose E ,L ` M , s =⇒ V , s′. Then the proof is by induction on the

derivation of E ,L ` M , s =⇒ V , s′, and it is handled in the same way as the

proof in [64, pp. 90–91].
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Suppose E ,L ` M , s =⇒ E . The proof is a straightforward induction on

the derivation of E ,L ` M , s =⇒ E . We consider the case of any arithmetic-

logic operator op. The first rule ending in E ,L ` M opN , s =⇒ E is:

E ,L ` M , s =⇒ E
E ,L ` M opN , s =⇒ E

By the inductive hypothesis, we have q · t ′ · abort · abort ∈ JsK ‖ JM K, where

t ′ is a play in JLK. By the definition of JM opN K, we must have a play of the

following form:

JE K ⇒ (JE K × JLK) ⇒ (JexpDK × JexpDK) ⇒ JexpDK
q

q

t ′

abort
abort

So, we have that q · t ′ · abort · abort ∈ JsK ‖ JM opN K where t ′ plays solely in

JLK.
The second rule is:

E ,L ` M , s =⇒ v1, s
′ E ,L ` N , s′ =⇒ E

E ,L ` M opN , s =⇒ E
By the inductive hypothesis, we have q ·t ′ ·v1 ∈ JsK ‖ JM K, where t ′ leaves state

s′ and q · t ′′ · abort · abort ∈ Js′K ‖ JN K. Then, by the definition of JM opN K,
there is a play:

JE K ⇒ (JE K × JLK) ⇒ (JexpDK × JexpDK) ⇒ JexpDK
q

q

t ′
v1

q

t ′′

abort
abort
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So, we have q · t ′ · t ′′ · abort · abort ∈ JsK ‖ JM opN K where t ′ and t ′′ play solely

in JLK. The other cases in the inductive proof are similar.

Corollary 3.5.2 (Consistency) Let E ` M : com be a term. If E ` M =⇒
skip then run · done ∈ JM K, and if E ` M =⇒ E then run · abort ∈ JM K.

Next, we prove that the converse of this result is also true, i.e. if a term’s

game semantics contains an appropriate play then the term may converge.

This result is known as computational adequacy. The proof of this result

makes use of logical relations [92].

Let E ,L, ∆ ` M : T be a term where E is a exn-context, L is a var-

context, and ∆ is arbitrary. We say that E ,L | ∆ ` M : T is a split term.

Split terms with empty ∆ are called semi-closed, and we denote them as E ,L |
` M : T . We now define a predicate of computability on split terms.

Computability • E ,L | ` M : com is computable iff, for any L-state s,

if run · t · done ∈ JsK ‖ JM K where t leaves s′ then E ,L ` M , s =⇒ skip, s′,

and if run · t · abort · abort ∈ JsK ‖ JM K then E ,L ` M , s =⇒ E .

• E ,L | ` M : expD is computable iff, for any L-state s, if q·t ·v ∈ JsK ‖ JM K
where t leaves s′ then E ,L ` M , s =⇒ v , s′, and if q · t · abort · abort ∈
JsK ‖ JM K then E ,L ` M , s =⇒ E .

• E ,L | ` M : 0 is computable iff, for any L-state s, if abort ·abort ·abort ∈
JsK ‖ JM K then E ,L ` M , s =⇒ E .

• E ,L | ` M : varD is computable iff, E ,L | `!M : expD is computable,

and E ,L | ` M := v : com for all v ∈ D is computable.

• E ,L | ` M : T → T ′ is computable iff, E ,L | ` M N : T ′ is computable

for all computable E ,L | ` N : T .
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• E ,L | x1 : T1, . . . , xk : Tk ` M : T is computable iff, for all computable

E ,L | ` Ni : Ti , E ,L | ` M [N1/x1, . . . ,Nk/xk ] : T is computable.

Proposition 3.5.3 All split terms are computable.

Proof The proof is by induction on the structure of M .

The cases when a play corresponds to successful termination of a term

are handled in the same way as in the proof in [64, pp. 92–93].

Suppose a play corresponds to abnormal termination. Consider the case

of sequencing. Let E ,L | ∆ ` M ; N : com be a term, and let M ′ and N ′ be M

and N with the free identifiers from ∆ instantiated by semi-closed, computable

terms. By the inductive hypothesis, M and N are both computable, and so

are M ′ and N ′. If run · t · abort · abort ∈ JsK ‖ JM ′ ; N ′K then either t = t1t2

where run · t1 · done ∈ JsK ‖ JM ′K and run · t2 · abort · abort ∈ Js′K ‖ JN ′K, or

run · t · abort · abort ∈ JsK ‖ JM ′K, i.e. we have two plays of the following form:

JE K ⇒ (JE K × JLK) ⇒ (JcomK × JcomK) ⇒ JcomK
run

run
t1

done
run

t2
abort

abort

run
run

t
abort

abort

In the first case, by the inductive hypothesis, E ,L ` M ′, s =⇒ skip, s′ for the

s′ left by t1 and E ,L ` N ′, s′ =⇒ E . So E ,L ` M ′ ; N ′, s =⇒ E . In the second
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case, E ,L ` M ′, s =⇒ E , and so E ,L ` M ′ ; N ′, s =⇒ E . It follows that

M ′ ; N ′ and M ; N are computable. The other cases are similar.

Corollary 3.5.4 (Adequacy) Let E ` M : com be a term. If run · done ∈
JM K then E ` M =⇒ skip, and if run · abort ∈ JM K then E ` M =⇒ E .

The consistency and adequacy results give us a soundness theorem.

Theorem 3.5.5 (Soundness) For any terms Γ ` M ,N : T, if JΓ ` M K ≤
JΓ ` N K then Γ ` M @∼ N .

Proof Let C [−] be any program context and suppose that C [M ] may termi-

nate successfully (resp., abnormally), so that by Corollary 3.5.2, run · done ∈
JC [M ]K (resp., run · abort ∈ JC [M ]K). Since JΓ ` M K ≤ JΓ ` N K, we have

that JC [M ]K ≤ JC [N ]K by the compositionality of game semantics (i.e. mono-

tonicity of composition of strategies), and so run · done ∈ JC [N ]K (resp.,

run · abort ∈ JC [N ]K). By Corollary 3.5.4, C [N ] may terminate successfully

(resp., abnormally). Therefore, Γ ` M @∼ N .

3.6 Definability

Next, we want to show that every element of this model is the interpretation

of some term of EIAA. We assume that all strategies mentioned below satisfy

both the visibility and bracketing conditions. First, let us introduce some

definitions.

Definition A strategy σ : A is deterministic iff, if smn, smn ′ ∈ σ then n = n ′

and the justifier of n is the same as that of n ′.
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Definition A deterministic strategy σ : A is innocent iff

smn ∈ σ ∧ t ∈ σ ∧ tm ∈ PA ∧ ptmq = psmq ⇒ tmn ∈ σ

In other words, how σ plays depends only on the current Player view.

Definition For any deterministic, innocent strategy σ : A, we define the view

function of σ to be the partial function f from Player views to Player moves

defined by:

f (v) = n ⇔ ∃ sm.smn ∈ σ ∧ psmq = v

The compact strategies are those with finite view functions.

The definability proof relies on three things: two factorization theorems,

which reduce the question of definability for nondeterministic strategies to

that for innocent strategies, and the innocent definability result, which shows

that any innocent strategy with finite view function is definable in IAA−new.

We refer to the sublanguage of EIAA obtained by omitting the or and new

constructs as IAA−new.

Proposition 3.6.1 If σ : A is a nondeterministic strategy then there exists

a deterministic strategy det(σ) : JexpintK ⇒ A and a strategy oracle : I ⇒
JexpintK such that σ = oracle o

9 det(σ). Furthermore, if σ is compact then so is

det(σ).

Proof The proof is given in [64, pp. 73–76].

Proposition 3.6.2 If σ : A is a deterministic strategy then there exists an

innocent strategy inn(σ) : JvarDK ⇒ A and a strategy cell : I ⇒!JvarDK such

that σ = cell; inn(σ). Furthermore, if σ is compact then so is inn(σ).
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Proof The proof is given in [64, pp. 82–84].

Proposition 3.6.3 Suppose that T1, . . . ,Tn are IAA types interpreted respec-

tively by games A1, . . . ,An and let σ : (A1×. . .×Ai) ⇒
(
(Ai+1 ⇒ . . . ⇒ An) ⇒

B
)

be a compact, innocent strategy where B is o, JexpDK, JcomK, or JvarDK.
Then there exists an IAA−new term x1 : T1, . . . , xi : Ti ` M : Ti+1 → . . . →
Tn → T such that σ = JM K.

Proof The proof is by induction on the view function of σ. In the base case,

σ = {ε} so we can set M = Y (λ x : T .x ). Next, we analyse the answer of σ

to the initial question in B .

• The cases when B is JexpDK, JcomK, or JvarDK and σ replies with an

answer move in B are handled as in [64, pp. 94–95].

• If B is o and there is no response from σ, then M = Y (λ x : 0.x ).

Let σ responds to the initial question i by playing a question ij in some Aj .

We uncurry σ, obtaining a strategy σ′ : (A1 × . . . × An) ⇒ B . We separate

out all moves in Aj which will be hereditarily justified by ij into an extra copy

of Aj , obtaining a strategy σ′′ : (A1 × . . .×An ×Aj ) ⇒ B , which responds to

the initial question i with ij in this new copy of Aj .

Consider the view psmnq for some smn ∈ σ′′. It either contains an

immediate answer to ij , or no answer to ij at all. In the latter case, psmnq =

iij s
′ in which ij is not answered. Since σ satisfies bracketing condition, i is

not answered either. Therefore the sequence s ′ consists entirely of moves in

A1, . . . ,An and the extra copy of Aj . Suppose that Aj is of the form A′
1 ⇒

. . . ⇒ A′
l ⇒ Bj . Then s ′ in the extra copy Aj is restricted to A′

1, . . . ,A
′
l . So we

consider s ′ as a play in (A1× . . .×An) ⇒ (A′
1× . . .×A′

l). The set of all Player
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views of this form induces an innocent strategy for this game, (σ′1, . . . , σ
′
l). The

view function of each σ′i is smaller than that of σ, so σ′i = JM ′
i K for some term

M ′
i by the inductive hypothesis. We analyse the structure of Bj .

• The cases when Bj is JexpDK, JcomK, or JvarDK are handled as in [64, pp.

94–95], obtaining a term M such that σ′ = JM K.

• If Bj is o, then σ′ = Jraise xjM
′
1 . . .M ′

l : BK.

We obtain the term defining σ by λ abstracting xi+1, . . . , xn .

Proposition 3.6.4 If σ : JΓK ⇒ JT K is a compact, deterministic strategy

satisfying visibility and bracketing, then σ is definable in IAA.

Proof By Proposition 3.6.2, σ can be decomposed as the cell strategy com-

posed with a compact, innocent strategy σ′ for (JΓK × JvarDK) ⇒ JT K, de-

finable in IAA−new by some Γ, x : varD ` M : T . Then σ is definable by

Γ ` newD x := 0 in M .

Theorem 3.6.5 (Definability) If σ : JΓK ⇒ JT K is a compact strategy sat-

isfying visibility and bracketing, then σ is definable in EIAA.

Proof By Proposition 3.6.1, σ can be decomposed as the oracle strategy com-

posed with a compact, deterministic strategy σ′ for (JΓK × JexpintK) ⇒ JT K,
definable in IAA by some Γ, x : expint ` M : T . Then σ is definable by

Γ ` λ x : expint.MΘ, where Θ = Y (λ y : expint.0 or 1 + y).

3.7 Full Abstraction

The full abstraction result will in fact hold not in the category C, but in

the quotient of the game model described so far with respect to the intrinsic
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preorder -.

Let α : o ⇒ (A ⇒ JcomK) be tests on strategies for o ⇒ A. Given a

strategy σ : o ⇒ A, we define

σ • α =
(
ido , σ

)
o
9 Λ−1(α) : o ⇒ JcomK

A strategy σ : o ⇒ A passes the test if σ • α = >done or σ • α = >abort where

>done = {ε, run ·done} and >abort = {ε, run ·abort}. The intrinsic preorder for

strategies on o ⇒ A is then defined as follows:

σ - τ iff ∀α : o ⇒ (A ⇒ JcomK) .

if σ • α = >done then τ • α = >done ∧ if σ • α = >abort then τ • α = >abort

So σ - τ iff τ passes every test passed by σ.

Theorem 3.7.1 [Full abstraction of EIAA] For any EIAA terms Γ ` M ,N :

T,

JΓ ` M K - JΓ ` N K iff Γ ` M @∼ N

Proof Without loss of generality we can assume that M and N are terms of

type T with only one global identifier e : 0.

Suppose JM K - JN K and C [M ] may terminate successfully (resp., ab-

normally) for some context C [−] : com where the hole is of type T . This

context corresponds to some test α : o ⇒ (JT K⇒ JcomK) such that JC [P ]K =

JPK • α for all suitably typed terms e : 0 ` P : T . We have JC [M ]K =

JM K • α = >done (resp., >abort), so since JM K - JN K, we also have JC [N ]K =

JN K • α = >done (resp., >abort). But C [N ] is computable, by Corollary 3.5.4

C [N ] may terminate successfully (resp., abnormally).

For the converse, we prove the contrapositive. Suppose JM K 6- JN K.
Then for some α : o ⇒ (JT K ⇒ JcomK), JM K • α = >done (resp., >abort) and
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JN K•α =⊥= {ε}. By Theorem 3.6.5, α = Je : 0, x : T ` C [x ] : comK for some

term C [x ]. We therefore have a context C [−], such that JC [M ]K = >done

(resp., >abort) and JC [N ]K =⊥. By Corollary 3.5.4, C [M ] may terminate

successfully (resp., abnormally) but not C [N ]. Therefore, M 6@∼ N , as required.

As a corollary we obtain the full abstraction result for AIA.

Corollary 3.7.2 (Full abstraction of AIA) For any AIA terms Γ ` M ,N :

T,

JΓ ` M K - JΓ ` N K iff Γ ` M @∼ N

Proof It follows from Theorem 3.7.1, Proposition 3.2.1, and Proposition 3.2.2.

Let us call a play safe if it does not terminate in abort, and a strategy

safe if it consists only of safe plays. Otherwise, we will call plays and strategies

unsafe. From the full abstraction result, it follows that:

Corollary 3.7.3 (Safety) An AIA term Γ ` M : T is safe iff JΓ ` M : T K
is safe.

Proof Without loss of generality we can assume that M is a closed term of

type T .

Suppose JM K is a safe strategy and Csafe[−] : com is a safe context.

This context corresponds to some safe strategy σ : JT K ⇒ JcomK, such that

JCsafe[M ]K = JM K•σ. By Corollary 3.5.2, if Csafe[M ] may terminate abnormally

then run · abort ∈ JCsafe[M ]K. But σ and JM K are safe. Therefore, Csafe[M ]

cannot terminate abnormally and Γ ` M : T is safe.

The proof for the converse is similar.
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This result ensures that model checking a term’s strategy for safety is

equivalent to proving safety of the term.

3.8 Quotient Game Semantics

Given a base type expintπ or varintπ of AIA, we can quotient the arena and

game for JexpintK or JvarintK (respectively) in a standard way, by replacing

any integer n with its partition {m | m ≈π n}. This extends compositionally

to any type T of AIA: we can quotient the arena and game for JT̃ K by the

abstractions in T . For any play t of the game for JT̃ K, let t denote the

image play of the quotient game, obtained by replacing each integer in t by

its partition in the corresponding abstraction in T .

It is straightforward to check that, for any term Γ ` M : T of AIA, and

plays t and t ′ of the game for JΓ̃ ` T̃ K, such that t = t ′, we have

t ∈ JΓ ` M : T K ⇔ t ′ ∈ JΓ ` M : T K

Therefore, the quotient of the strategy JΓ ` M : T K by the abstractions in Γ

and T loses no information.

Example Consider the term 3

` 1 +[0,1] 1 : expint[0,1]

Its strategy and the quotient of its strategy are shown in Fig. 3.1 (a) and (b),

respectively.

Moreover, the quotient strategies can be defined compositionally. The

strategy σ o
9 τ : A ⇒ C is obtained by composing the strategies σ : A ⇒ B1

3For simplicity, we sometimes write intπ as simply π.
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q 3

2

4

(a)

q >1

(b)

Figure 3.1: Strategies

and τ : B2 ⇒ C , where B1 and B2 are games for types which have equal

concretisations. Since the abstractions in the types interpreted by B1 and

B2 may be different, we need to allow a move which contains a partition c

to interact with any move obtained by replacing c with some c′ such that

c∩ c ′ 6= ∅. Hence, even if the quotient strategies for σ and τ are deterministic,

the one for σ o
9 τ may be nondeterministic.

In the rest of the thesis, for any term Γ ` M : T of AIA, JΓ ` M : T K
will denote its quotient game strategy.

Example Consider the quotient strategy

Jx : varint[0,4] ` x := !x +[0,3] 1[0,1] : comK

If the value 3 is read from the variable x , the result of the addition is > 3,

because it belongs to the abstraction [0, 3]. When > 3 is assigned to x which

is abstracted by [0, 4], it is nondeterministically converted to either 4 or > 4.

Thus, the following are two possible complete plays:

run readx 3x write(4)x okx done, run readx 3x write(>4)x okx done



Chapter 4

The CSP Game Semantics

Model

We have seen so far that game semantics gives fully abstract models for AIA

(see Chapter 3). The full abstraction result means that the model validates

all observable program properties, but unfortunately the model as described

involves complex technical constructions, and calculating and reasoning within

it is difficult. However, most of the complexity in the model is used to handle

arbitrary higher-order functions. If the attention is restricted to the second-

order recursion-free fragment of AIA, then the game semantics model can be

significantly simplified. For this language fragment, programs define strategies

for which justification pointers are uniquely determined by plays, and they can

be disregarded. Thus, it has been shown in [48, 51] that the strategy of any

second-order recursion-free IA term with finite data types can be represented

by a regular language. This gives a decision procedure for a range of verification

problems to be solved algorithmically, such as: program equivalences (∼=) and

inequivalences, approximations ( @∼ ), assertions, invariants and other safety

67
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properties.

In this chapter, we start by describing the second-order recursion-free

fragment of AIA we are addressing. Then, we review the regular-language rep-

resentation of the game model for the AIA fragment. We illustrate this model

with several examples and show how it can be used for automatic verification.

Next, we describe the representation of the game model using the CSP process

algebra. For any term, we compositionally define a CSP process whose traces

are exactly all the plays of the strategy for the term. A range of properties

can then be decided by checking traces refinements between CSP processes.

Compared with the representation by regular languages [51, 10], the

CSP representation brings several benefits:

• CSP operators preserve traces refinement (e.g. [98]), which means that a

CSP process representing a term can be optimised and abstracted com-

positionally at the syntactic level (e.g. using process algebraic laws), and

its set of traces will be preserved or enlarged.

• The ProBE and FDR tools [46] can be used to explore CSP processes

visually, to check refinements automatically, and to debug interactively

when a refinement does not hold.

• Compositional state-space reduction algorithms in FDR [97] enable smaller

models to be generated before or during refinement checking.

• Composition of strategies, which is used in game semantics to obtain

the strategy for a term from strategies for its subterms, is represented in

CSP by renaming, parallel composition and hiding operators, and FDR

is highly optimised for verification of such networks of processes.
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• FDR has a special debugging feature which allows identification of hidden

events only in counterexample traces rather than in full models. This

“uncovering” feature of FDR is essential in efficiently implementing the

abstraction refinement procedure (see Chapter 5).

We also present a prototype compiler which, given any term, outputs

a CSP process representing its game semantics. The effectiveness of this ap-

proach is evaluated on two examples: a sorting algorithm, and an abstract

data type implementation. The experimental results show that, for model

generation, the CSP approach can outperform the approach which uses regu-

lar languages [10].

4.1 The Second-Order Language Fragment

In the rest of the thesis, we proceed to work with the second-order recursion-

free fragment of AIA.

The order of types is defined by:

ord(B) = 0 ord(T → T ′) = max{ord(T ) + 1, ord(T ′)}

We say that a term is of i -th order if in its typing derivation the types of all

free identifiers are of order less than i and the type of the term is of order at

most i . The set of all i -th order AIA terms will be denoted by AIAi . Hence,

the second-order restriction means that the function types are restricted to

T ::= B | B → T

We also add a new binding construct let to the language fragment.

Without this construct, the fragment is only sufficient for reasoning about
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program fragments, but not whole programs. Namely the fragment contains

identifiers of function types, but no mechanism to bind them to actual func-

tions.

The typing rule for let is:

Γ ` N : T Γ, x : T ` M : T ′

Γ ` let x beN inM : T ′

The operational semantics is given by:

Γ ` M [N /x ], s =⇒ E
Γ ` let x beN inM , s =⇒ E

Γ ` M [N /x ], s =⇒ V , s′

Γ ` let x beN inM , s =⇒ V , s′

Programs involving the let construct can be reduced to programs without let

by beta reduction. For the majority of the rest of this thesis, we will consider

this construct. But if the use of the let construct causes some additional

difficulties in the presentation, which cannot be handled in an uniform and

consistent way, we will restrict ourselves to terms in β-normal form, i.e. to the

let-free fragment.

In addition to the AIA2 fragment, we will also consider IA2 with bounded

integers (or finitary IA2). The reason we consider this variant of IA is that

the regular-language representation [51] was originally developed for it and

subsequently a model-checking tool using finite-state machines [10] was im-

plemented for it. So, by working with terms of this language fragment we

can compare the efficiency of tools based on CSP and regular-languages (see

Section 4.3.5).

The finitary IA2 has bounded integers and booleans as basic data types,

D ::= intn | bool

where intn = {0, . . . , n−1}. In order to implement arithmetic-logic operations,

we use congruence arithmetic modulo n. For example, the expression 1+2 eval-

uates to 3 if its type is int4, or to 0 for int3. All integer free identifiers and local
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variables in a term are annotated by an abstraction, and the type annotations

of every arithmetic operation and constant are inferred using the following

rules. An integer constant n is implicitly of type intn+1. An operation be-

tween values of types intn1 and intn2 produces a value of type intmax{n1,n2}. The

operation is performed modulo max{n1, n2}. This data-abstraction scheme

is very informal and the obtained abstracted programs are not always con-

servative over-approximations of their concrete counterparts, i.e. safety of an

abstracted program does not imply safety of the concrete program. However,

the abstractions can be useful in detecting many errors.

Actually, AIA can be considered as an extension of IA with bounded

integers. In Chapter 5, we show that data-abstractions used in AIA are con-

servative over-approximations and safety of any finitely abstracted program

implies safety of the corresponding concrete program.

4.1.1 Syntactic Sugar

Arrays of length k > 0 can be introduced in the language by using the existing

term formers. They do not contribute semantically, being only what is called

syntactic sugar. They can be expressed by the following abbreviations:

newD x [k ] := v in M ≡
newD x [0] := v in

. . .

newD x [k − 1] := v in M

x [E ] ≡
if E = 0 then x [0] else

. . .

if E = k − 1 then x [k − 1] else abort
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The command abort is executed whenever an array out-of-bounds error occurs,

i.e. there is an attempt to access elements out of the bounds of an array.

4.2 Regular-language Representation

We now give an overview of the regular-language representation of the game

semantics model for recursion-free AIA2. More technical details of the repre-

sentation can be found in [48, 51].

In this setting, types are represented as alphabets of moves, plays of

a game as words (sequences) over an alphabet, and strategies as regular-

languages over an alphabet. The languages, denoted by L(R), are specified

using extended regular expressions R. They are defined inductively over finite

alphabets A using the following operations:

∅ ε a R · R′ R∗ R + R′ R ∩ R′

R |A′ R[R′/w ] R〈a〉 R′ o
9B R R ./ R′ R̃

where R,R′ ranges over extended regular expressions, A,B over finite alpha-

bets, a ∈ A, A′ ⊆ A and w ∈ A∗.

Constants ∅, ε and a denote the languages ∅, {ε} and {a}, respectively.

Concatenation R · R′, Kleene star R∗, union R + R′ and intersection R ∩ R′

are the standard operations. Restriction R |A′ removes all symbols in A′ from

all sequences in the language of R. Substitution R[R′/w ] is the language of R

where all occurrences of the subword w have been replaced by the sequences

of R′. Given two symbols a,b ∈ A, b〈a〉 is a new symbol obtained by tagging

the latter with the former. If a symbol is tagged more than once, we write:

(b〈a1〉)〈a2〉 = b〈a1,a2〉. We define the alphabet A〈a〉 = {b〈a〉 | b ∈ A} and the

regular expression R〈a〉 as the language obtained by tagging of all symbols in
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the sequences of R with a. Composition R′ o
9B R is defined as follows:

R′ o
9B R =




{w [s/a · b] | w ∈ R} if a · s · b ∈ R′

{w [s · abort/w≥a ] | w ∈ R} if a · s · abort ∈ R′

where R′ is a set of words of form a · s · b or a · s · abort , a, b ∈ B, s does

not contain symbols from B, and w≥a is the suffix of w starting from and

including a. The shuffle operation of two regular languages is defined as

L(R) ./ L(R′) =
⋃

w1∈L(R),w2∈L(R′) w1 ./ w2, where w ./ ε = ε ./ w = w and

a · w1 ./ b · w2 = a · (w1 ./ b · w2) + b · (a · w1 ./ w2). The effective alphabet

bRc of a regular expression R is the set of all symbols appearing in the language

denoted by that regular expression, i.e. bRc = {a ∈ A | a ∈ w for somew ∈
L(R)}. Then, the broadening operation R̃ shuffles the regular expression R

with all sequences not in its effective alphabet, i.e. R̃ = R ./ (A\ bRc)∗. It

is a standard result that any extended regular expression obtained from the

operations above denotes a regular language [51, pp. 11–12], which can be

recognised by a finite automaton [73].

Each type T is interpreted by an alphabet AJT K of moves. For each type

we also define alphabets of questions QJT K and answers Aq
JT K for each q ∈ QJT K.

AJint[n,m]K = {< n, n, n + 1, . . . , 0, . . . ,m − 1,m, > m} AJboolK = {tt ,ff }

QJexpDK = {q} Aq
JexpDK = AJDK

QJcomK = {run} Arun
JcomK = {done}

QJvarDK = {read,write(a) | a ∈ AJDK} Aread
JvarDK = AJDK A

write(a)
JvarDK = {ok}
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QJB1×...×Bk→BK =
∑

1≤i≤k

Q
〈i〉
JBi K ∪QJBK

Aq〈i〉
JB1×...×Bk→BK =

(
Aq
JBi K

)〈i〉
, q ∈ QJBiK, 1 ≤ i ≤ k

Aq
JB1×...×Bk→BK = Aq

JBK, q ∈ QJBK

AJT K = QJT K ∪
⋃

q∈QJTK

Aq
JT K

We use meta-variables q to range over symbols which are questions and a over

symbols which are answers.

Each term is interpreted using an evaluation function J−KR mapping a

term Γ ` M : T and an environment u into a regular language defined over

the alphabet:

AJΓ`T K =
( ∑

xi :Ti∈Γ

A〈xi 〉
JTi K

)
+AJT K + {abort}

The environment u maps free identifiers x : T ∈ Γ to the copy-cat regular

languages K x
T defined as:

K x
B1×...×Bk→B =

∑

q∈QJBK

q · q〈x〉 · (
∑

1≤i≤k

Rx ,i
Bi

)∗ ·
∑

a∈Aq
JBK

a〈x〉 · a

where Rx ,i
B =

∑
q∈QJBK

q〈x ,i〉 · q〈i〉 ·∑a∈Aq
JBK

a〈i〉 · a〈x ,i〉.

In Table 4.1 AIA2 terms are interpreted by regular expressions describ-

ing their sets of complete plays. All other plays are even-length prefixes of

the complete ones. The representation of language constructs ‘c’ is given in

Table 4.2.

Functions opD1×D2→D , which implement arithmetic-logic operations, and

the function castB ′,B , which converts a value of type B ′ into type B , are given

in Section 4.3, which describes CSP representation for AIA2. Since they are

equivalent in both representations, we do not reproduce them here.
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JΓ ` v : expDKRu = q · v
JΓ ` skip : comKRu = run · done
JΓ ` abort : comKRu = run · abort
JΓ ` c(M1, . . . ,Mk) : B ′KRu = JΓ ` M1 : B

〈1〉
1 KRu o

9A〈1〉JB1K
· · ·

· · · JΓ ` Mk : B
〈k〉
k KRu o

9A〈k〉JBk K
Jc : B

〈1〉
1 × . . .B

〈k〉
k → B ′KRu

JΓ ` MN : T KRu = JΓ ` N : BKRu o
9AJBK JΓ ` M : B → T KRu

JΓ, x : T ` x : T KRu = u(x )
JnewD x := v inM : BKRu =

(
γ̃x
v ∩ JΓ, x :varD ` M KR(u | x 7→ K x

varD)
)|A〈x〉JvarDK

γx
v = (read〈x〉 · v 〈x〉)∗ · (

∑
a∈AJDK

write(a)〈x〉 · ok〈x〉 · (read〈x〉 · a〈x〉)∗)∗

JΓ ` let x beN inM : T ′KRu = JΓ, x :T ` M : T ′KR(u | x 7→JΓ ` N : T KRu)

Table 4.1: Regular-language representation

In [51, pp. 28–32], it was shown the correctness of regular-language

representation for finitary IA2. We now prove a similar result for AIA2 by

showing that the regular-language representation is isomorphic to the game

semantics model (see Chapter 3).

We start by using the fact that for the types considered in a second-order

language fragment, the justification pointers in the game models can be ignored

[51, pp. 27–28]. Then, for any term x1 : T1, . . . , xk : Tk ` M : B1 × . . .× Bl → B

of AIA2, we define an isomorphism ρ as:

• the tagging of all moves in the game model of Tj with 〈xj 〉 and the tagging

with 〈xj , i〉 of all moves in Bj ,i where Tj = Bj ,1 × . . .× Bj ,kj → B ′
j .

• the tagging with 〈j 〉 of all moves in Bj .

We now show that the regular-language representation of a term is ρ-isomorphic

to the strategy for that term where all justification pointers are deleted.
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JopD : expD
〈1〉
1 × expD

〈2〉
2 → expDKRu =∑

a1∈AJD1K,a2∈AJD2K
a=opD1×D2→D (a1,a2)

q · q〈1〉 · a〈1〉1 · q〈2〉 · a〈2〉2 · a

J; : com〈1〉 × B 〈2〉 → BKRu =∑
q∈QJBK,a∈AJBK

q · run〈1〉 · done〈1〉 · q〈2〉 · a〈2〉 · a

JifB : expbool〈1〉 × B
〈2〉
1 × B

〈3〉
2 → BKRu =∑

q∈QJBK,a∈Aq
JB1K

b∈castB1,B (a)

q · q〈1〉 · tt 〈1〉 · q〈2〉 · a〈2〉 · b

+
∑

q∈QJBK,a∈Aq
JB2K

b∈castB2,B (a)

q · q〈1〉 · ff 〈1〉 · q〈3〉 · a〈3〉 · b

Jwhile : expbool〈1〉 × com〈2〉 → comKRu =

run · (q〈1〉 · tt 〈1〉 · run〈2〉 · done〈2〉
)∗ · q〈1〉 · ff 〈1〉 · done

J:= : varD
〈1〉
1 × expD

〈2〉
2 → comKRu =∑

a∈AJD2K
b∈castexpD2,expD1

(a)

run · q〈2〉 · a〈2〉 · write(b)〈2〉 · ok〈2〉 · done

J! : varD 〈1〉 → expDKRu =
∑

a∈AJDK
q · read〈1〉 · a〈1〉 · a

Table 4.2: Representation of language constructs

Lemma 4.2.1 For any AIA2 term

closure(JΓ ` M : T KRu)
ρ≡ JΓ ` M : T K

where u is an environment mapping all free identifiers x : T ′ ∈ Γ to copy-

cat regular languages K x
T ′, closure(R) denotes the regular language containing

even-length prefixes of all sequences in R, and JΓ ` M : T K denotes the set

of all plays in the strategy for M obtained as in Chapter 3 where justification

pointers are deleted.

Proof The proof is by induction on the derivation of Γ ` M : T and it is a
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straightforward extension of the similar proof for finitary IA2 [51, pp. 28–32].

For language constants and constructs, their sets of complete plays are

finite so we can check by inspection that their regular-language and games

interpretations are ρ-isomorphic. The correctness of all other term formers

was proved in [51].

So, the proof follows by inductive hypothesis and the correctness of the

definition of composition.

This Lemma shows that the regular-language semantics is a correct represen-

tation of the game semantics, and as a corollary we obtain the full abstraction

theorem for this representation.

Theorem 4.2.2 For any two terms of AIA2

Γ ` M ∼= N iff closure(JΓ ` M : T KRu) = closure(JΓ ` N : T KRu)

Since equality of regular languages is decidable, it follows from Lemma 4.2.1

and Theorem 4.2.2 that:

Corollary 4.2.3 (Decidability) Observational safe-equivalence of finitely ab-

stracted terms of AIA2 is decidable by equality checks of regular languages.

Example Consider the term

f : com× com → com ` newint[0,1] x := 0 in

f
(
x := !x +[0,2] 1, if (!x >bool 1) then abort

)

in which f is a non-local procedure.

The strategy for this term represented as a finite automaton is shown in

Figure 4.1. The dashed edges indicate moves of the Opponent and solid edges

moves of the Player. They serve only as a visual aid to the reader. Accepting
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run
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done
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f,1 done
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done
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done
f,1 run

f,2
abort
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done
f,1

done
f

done
f

Figure 4.1: A strategy as a finite automaton

states are designated by an interior circle. The states whose interior circles are

filled in, correspond to complete plays in the strategy. Justification pointers are

ignored since they can be uniquely determined by plays. The model illustrates

only the possible behaviors of this term: if the non-local procedure f calls its

first argument, two or more times, and afterwards its second argument then

the term terminates abnormally; otherwise the term terminates successfully.

The model does not assume that f uses its arguments, or how many times or

in what order. Notice that no references to the variable x appear in the model

because it is locally defined and so not visible from the outside of the term.

4.3 CSP Representation

The main contribution of this chapter is presented here. We show how the

game semantics model of AIA2 can be represented using the CSP process

algebra. The section starts by giving a brief introduction to CSP.
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4.3.1 Background: CSP

CSP (Communicating Sequential Processes) [70] is a language for modelling

interacting components. Each component is specified through its behaviour

which is given as a process. Here we introduce only the CSP notation and the

ideas used in this thesis. For a fuller introduction to the language the reader

is referred to [98].

CSP processes are defined in terms of the events that they can perform.

The choice of alphabets, i.e. sets of events that processes might use, is one of

the most important modelling decision that is made when representing a real

system in CSP. The set of all possible events is denoted Σ. Events may be

atomic in structure, such as c and run, or may consist of a channel name plus

a finite number of ‘data’ components, such as c.q and write.1, and are of the

form

c.x1. . . . .xn

where c is an identifier (channel name), T1, . . . ,Tn is a finite sequence of types,

and xi ∈ Ti for each 1 ≤ i ≤ n. We can define the set of all events that can

arise on any set of channels and partially defined events as follows. If c is a

channel with type T1. . . . .Tn , 0 ≤ k ≤ n and ai ∈ Ti for 1 ≤ i ≤ k , then

{| c.a1. . . . .ak |} = {c.a1. . . . .ak .bk+1. . . . .bn | bk+1 ∈ Tk+1, . . . , bn ∈ Tn}

is the set of events which can be formed as extensions of c.a1. . . . .ak .

Then, we can define the set of all events that can arise on channels

c1, . . . , ck as:

{| c1, . . . , cl |} = {| c1 |} ∪ . . . ∪ {| cl |}

We will also use the following notation: c.T1. . . . .Tn = {| c |}
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The following collection of process operators will be used:

P ::= p | STOP | SKIP | RUNA | ?x : A → P(x )

| µ p ¦ P | P1 2 P2 | if b thenP1 elseP2 | P1 ‖
A

P2

| P \ A | P [a/b] | P1
o
9 P2

where A ⊆ Σ represents a set of events, P a process expression and p is a

process name (or identifier).

The simplest process is STOP which performs no events. SKIP is a

process that successfully terminates causing the special event X (‘tick’). The

event X is not a member of Σ, emphasising that it is special. ΣX will denote

the extended alphabet Σ∪{X}. RUNA can always perform any event from A.

If for each x ∈ A, there exists a process P(x ), then the prefix choice process,

?x : A → P(x ), can perform any event a from the set A and then behaves as

the appropriate P(a). For example, ?x : {} → P(x ) is equivalent to STOP .

We can write ?x : {a} → P(x ) as a → P(a).

To define a process recursively by p = P , where P is any CSP process

involving p, we write µ p ¦ P . We consider only guarded recursions, where

each recursive call p is prefixed by an event in P . For example, RUNA and

µ p¦?x : A → p are equivalent. The external choice operator defines a process

P1 2 P2 which can behave either as P1 or as P2. Conditional if b thenP1 elseP2,

where b is a boolean test, behaves as P1 if b is true, or as P2 if b is false.

A parallel composition P1 ‖
A

P2 runs P1 and P2 in parallel, making them

synchronise on events in A and allowing interleaving of all other events. It

terminates successfully if and only if both component processes do so. A

process P \ A behaves as P except that all events from A become hidden, i.e.

they are transformed into invisible or internal events τ (‘tau’). The event τ is

also a special event and it is not in Σ. To rename an event or channel b to a in
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a process P , we write P [a/b]. A sequential composition P1
o
9 P2 runs P1, and

if it terminates successfully, runs P2. For example, for all P , SKIP o
9 P = P

but STOP o
9 P = STOP .

CSP processes can be given denotational semantics by their sets of

traces. A trace is a finite sequence of events. A sequence t is a trace of a

process P if there is some execution of P in which exactly that sequence of

events is performed. Invisible events τ are not recorded in traces. For a process

P , we define traces(P) to be the set of all its traces. The rules for calculating

the traces sets of all CSP constructs are given below.

traces(STOP) = {ε}
traces(SKIP) = {ε, X}
traces(?x : A → P(x )) = {ε} ∪ {a · s | a ∈ A, s ∈ traces(P(a))}
traces(µ p ¦ P) =

⊔

i∈N
traces(Fi), forF0 = STOP ,Fi+1 = P [Fi/p]

traces(P1 2 P2) = traces(P1) ∪ traces(P2)

traces(if b thenP1 elseP2) = traces(P1) if b evaluates to tt ;

and traces(P2) if b evaluates to ff

traces(P1 ‖
A

P2) =
⋃{s ‖

A
t | s ∈ traces(P1), t ∈ traces(P2)}

traces(P\A) = {s ¹ (Σ\A) | s ∈ traces(P)}
traces(P1

o
9 P2) = (traces(P1) ∩ Σ∗)

∪ {s · t | s ·X ∈ traces(P1), t ∈ traces(P2)}

where the notation P [Fi/p] means the substitution of the process Fi for all

free occurrences of the process identifier p in P . For a, a ′ ∈ A and b, b ′ ∈ Σ\A,
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we define a set of traces s ‖
A

t for all s , t ∈ Σ∗ as follows:

s ‖
A

t = t ‖
A

s s ·X ‖
A

t ·X = {u ·X | u ∈ s ‖
A

t}

ε ‖
A

X = {} ε ‖
A

ε = {ε} ε ‖
A

a = {} ε ‖
A

b = {b}

a · s ‖
A

b · t = {b · u | u ∈ a · s ‖
A

t} a · s ‖
A

a · t = {a · u | u ∈ s ‖
A

t}

a · s ‖
A

a ′ · t = {}, if a 6= a ′

b · s ‖
A

b ′ · t = {b · u | u ∈ s ‖
A

b ′ · t} ∪ {b ′ · u | u ∈ b · s ‖
A

t}

Note that for any process P , traces(P) is a non-empty and prefix-closed set.

Let tracesev(P) be the set of all even-length traces of P :

tracesev(P) = {t | even length(t) and t ∈ traces(P)}

A process P2 is a traces refinement of P1 if and only if any trace of P2

is also a trace of P1:

P1 vT P2 ⇔ traces(P2) ⊆ traces(P1)

Example Consider the process

P = µ p ¦ (a → p) 2 (b → SKIP)

Its traces set is traces(P) = {an , anb, anbX | n ∈ N}. Then, we have that

RUN X
{a,b} vT P , where RUN X

A = µ p ¦ SKIP 2 (?x : A → p).

CSP processes can also be given operational semantics using labelled

transition systems (LTS). The LTS of a process is a directed graph whose nodes

represent process states and whose edges are labelled by events representing

what happens when the given event is performed. LTSs have a distinguished

start state, and any edge whose label is X leads to a special terminated state

Ω.
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b

a

ü
W

Figure 4.2: A labelled transition system

Example The LTS of the process P from the previous example is shown in

Figure 4.2.

The FDR (stands for Failures/Divergences Refinement) tool [46] is a

refinement checker for CSP processes. It supports hierarchical compression

and contains several procedures for compositional state-space reduction. FDR

builds up a system gradually, at each stage compressing the subsystems to

find an equivalent process with many fewer states. The main result which

enables this technique is that the traces (denotational) semantics of CSP is a

congruence with respect to the operational semantics [98, Chapter 9]. Hence,

before generating a LTS for a context C [P1,P2, . . . ,Pn ], LTSs of its compo-

nent processes Pi can be reduced, while preserving semantics of the complete

context [97].

FDR is also highly optimised for checking refinements by processes

which consist of a number of component processes composed by operators

such as renaming, parallel composition and hiding. Namely, FDR uses a two-

level approach to calculate LTSs of processes. The low-level is fully general

but relatively inefficient, while the high-level is restricted but much more ef-

ficient. Low-level processes are fully evaluated using the low-level compiler,

which turns them into explicit LTSs (i.e. a list of states and transitions).

High-level processes, which are combinations of low-level component processes

using ‘high-level’ operators (renaming, parallel composition and hiding), are

compiled into implicit (symbolic) LTSs, which consist of efficient rules for com-
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puting the initial transitions (events) and next states of any combination of

states of low-level components that might arise. Thus a process, which is a

combination of low-level components using high-level operators, will be ex-

plored much more efficiently by FDR than an equivalent one entirely compiled

at the low-level.

4.3.2 Representation

With each type T , we associate a set of possible events: an alphabet AJT K. It

contains events q ∈ QJT K called questions, which are appended to a channel

with name Q , and for each question q, there is a set of events a ∈ Aq
JT K called

answers, which are appended to a channel with name A.

AJint[n,m]K = {< n, n, n + 1, . . . , 0, . . . ,m − 1,m, > m} AJboolK = {tt ,ff }

QJexpDK = {q} Aq
JexpDK = AJDK

QJcomK = {run} Arun
JcomK = {done}

QJvarDK = {read,write.v | v ∈ AJDK} Aread
JvarDK = AJDK Awrite.v

JvarDK = {ok}
QJB1×...×Bk→BK =

⋃

1≤i≤k

{i .q | q ∈ QJBi K} ∪QJBK

Ai .q
JB1×...×Bk→BK = {i .a | a ∈ Aq

JBiK}, q ∈ QJBi K, 1 ≤ i ≤ k

Aq
JB1×...×Bk→BK = Aq

JBK, q ∈ QJBK

AJT K = Q .QJT K ∪ A.
⋃

q∈QJTK

Aq
JT K

We shall define, for any term Γ ` M : T and environment u for Γ, a

CSP process which represents the game semantics of Γ ` M : T with respect

to u. This process is denoted JΓ ` M : T KCSPu, and it is over the alphabet
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K x
expD = Q .q → x .Q .q → x .A?a : Aq

JexpDK → A.a → SKIP

K x
com = Q .run → x .Q .run → x .A?a : Arun

JcomK → A.a → SKIP

K x
varD = (Q .read → x .Q .read → x .A?a : Aread

JvarDK → A.a → SKIP)

2 (Q .write?v : AJDK → x .Q .write.v → x .A?a : Awrite.v
JvarDK → A.a → SKIP)

K x
B1×...×Bk→B = Q?q : QJBK → x .Q .q

→ µL ¦
(

SKIP 2

(
2

k

j=1

(
x .Q .j ?qj : QJBj K → Q .j .qj → A.j ?aj : A

qj

JBj K

→ x .A.j .aj → SKIP) o
9 L

))
o
9 x .A?a : Aq

JBK → A.a → SKIP

Table 4.3: Copy-cat processes for free identifiers

AJΓ`T K defined as follows:

AJx :T K = x .AJT K AJΓK =
⋃

x :T∈Γ

AJx :T K

AJΓ`T K = AJΓK ∪ AJT K ∪ {abort}

The standard game semantics of Γ ` M : T is obtained by using the

environment u which is a mapping such that, for any x : T ∈ Γ, u(x ) is

the copy-cat process K x
T , defined in Table 4.3. The process K x

T represents

the copy-cat strategy of game semantics, and it describes the “most general”

behaviour of a sequential procedure.

Apart from defining a process JΓ ` M : T KCSPu for any term Γ ` M : T ,

we also define a process JΓ ` M : T K∗CSPu which can repeat the strategy of

Γ ` M : T arbitrarily many times. This is done as follows:

(i) for each language construct ‘c’, we define a process for its strategy Pc.

(ii) for each process Pc, we define a process P∗
c which performs the strategy

of ‘c’ arbitrarily many times:

P∗
c = SKIP 2 (Pc

o
9 P∗

c ).
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(iii) for each composite term c(M1, . . . ,Mn) consisting of a language construct

‘c’ and subterms M1, . . . ,Mn , we define Jc(M1, . . . ,Mn)K∗CSPu from the

process P∗
c and processes JMiK∗CSPu, using only renaming, parallel com-

position and hiding.

(iv) each process Jc(M1, . . . ,Mn)KCSPu is defined as Jc(M1, . . . ,Mn)K∗CSPu,

except that the process Pc is used instead of P∗
c , and for some immediate

subterms, JMiKCSPu can be used instead of JMiK∗CSPu.

For any term Γ ` M : T , we could have defined JΓ ` M : T K∗CSPu as

JΓ ` M : T K∗CSPu = µ p ¦ SKIP 2
(JΓ ` M : T KCSPu o

9 p
)

Indeed, these processes have the same finite traces. However, our definitions

of JΓ ` M : T KCSPu and JΓ ` M : T K∗CSPu use the CSP operators of hiding,

parallel composition and renaming outside any uses of recursion and prefixing.

This means that an FDR debugging feature is applicable, which enables us,

for any t ∈ traces(JΓ ` M : T KCSPu), to identify all its hidden events without

further model checking. This property will simplify the implementation of the

abstraction refinement procedure (see Chapter 5).

Expressions The representation of expressions is given in Tables 4.4 and 4.5.

JΓ ` v : expDKCSPu = Q .q → A.v → SKIP , v ∈ AJDK
JΓ ` E1 opDE2 : expDKCSPu = JΓ ` E1 : expD1KCSPu[Q1/Q ,A1/A] ‖

{|Q1,A1|}(JΓ ` E2 : expD2KCSPu[Q2/Q ,A2/A] ‖
{|Q2,A2|}

Pop:D1×D2→D \ {| Q2,A2 |}
) \ {| Q1,A1 |}

Table 4.4: Processes for expressions



4.3. CSP REPRESENTATION 87

Pop:D̃1×D̃2→D̃ = Q .q → Q1.q → A1?a1 : AJexpD̃1K →
Q2.q → A2?a2 : AJexpD̃2K → A.a1 op a2 → SKIP

for D1 = D̃1 and D2 = D̃2 and D = D̃
Pop:D1×D2→D = Q .q → Q1.q → A1?a1 : AJexpD1K →

Q2.q → A2?a2 : AJexpD2K →
(
let S = opD1×D2→D(a1, a2) within

if (| S |= 1) then
(
A?v : S → SKIP

)
else

(
if (a1 is not singleton) then

(A?v : S → nd .a1 → SKIP) else (A?v : S → nd .a2 → SKIP)
))

for D1 6= D̃1 or D2 6= D̃2 or D 6= D̃

Table 4.5: Processes for op construct

The CSP process for an integer or boolean constant replies to the ques-

tion q by the value of that constant, and then terminates. For an operator

application E1 opD E2, we compose the processes for E1 and E2, and a process

for op. As with all processes which represent strategies here, the composition is

performed by the CSP operators of renaming, parallel and hiding. The process

for op asks for values of the arguments, and after obtaining them responds by

performing the operation. For each operation of type expD1 × expD2 → expD

which contains some abstractions, there exists a function opD1×D2→D imple-

menting it. If the function of an operation returns more than one result for the

operands, then a special marker move nd .a is performed. In such an instance,

the operation necessarily has at least one abstracted integer operand which is

not a singleton, i.e. which abstracts more than one integer. The process for the

operation then performs the marker move nd .a, where a is such an operand.

This move is neither Opponent nor Player, but only marks that nondeter-

minism has occurred. It is used for implementing efficiently the abstraction

refinement procedure (see Chapter 5). In Tables 4.6 and 4.7 are shown the

functions implementing the equality and addition operation. The other op-

erations are implemented similarly and the CSP script containing functions



88 CHAPTER 4. THE CSP GAME SEMANTICS MODEL

=int[n1,m1]×int[n2,m2]→bool(v1, v2) :=

if (v1 = Z) or (v2 = Z) then {tt ,ff } else
if (v1 = >m1) then

if (v2 6= >m2) and (v2 ≤ m1) then {ff }
else {tt ,ff } else

if (v1 = <n1) then
if (v2 6= <n2) and (v2 ≥ n1) then {ff }

else {tt ,ff } else
if (v2 = >m2) then

if (v1 6= >m1) and (v1 ≤ m2) then {ff }
else {tt ,ff } else

if (v2 = <n2) then
if (v1 6= <n1) and (v1 ≥ n2) then {ff }

else {tt ,ff } else
{v1 = v2)

Table 4.6: An implementation of the equality operation

which correspond to all operations is given in Appendix A.

Commands Tables 4.8 and 4.9 show processes for the commands. For se-

quential composition, conditional and iteration, processes for the components

are composed with a process for the construct itself, similarly to how the pro-

cess for E1 opD E2 was defined above. However, in the case of the conditional,

one of the processes for Mtt and Mff will not be run, so SKIP is used for

such empty termination. For iteration, the processes for E and C may be

run arbitrarily many times, so we use the corresponding J−K∗CSP processes.

The function castB ′,B converts a value a of type B ′ into type B such that if

more than one value of type B is obtained the special marker move nd .a is

performed. If B ′ = B , then castB ′,B is the identity function, otherwise its
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+int[n1,m1]×int[n2,m2]→int[n,m]
(v1, v2) =

if (v1 = Z) or (v2 = Z) then {Z} else
if (v1 = >m1) then

if (v2 ≥ m2) and (m1 + m2 ≥ m) then {>m} else
if (v2 6= <n2) and (v2 + m1 + 1 ≥ n) then {v2 + m1 + 1, . . . ,m, >m}

else {<n, n, . . . ,m, >m} else
if (v1 = <n1) then

if (v2 ≤ n2) and (n1 + n2 ≤ n) then {<n} else
if (v2 6= >m2) and (v2 + n1 − 1 ≤ m) then {<n, n, . . . , v2 + n1 − 1}

else {<n, n, . . . ,m, >m} else
if (v2 = >m2) then

if (v1 ≥ m1) and (m1 + m2 ≥ m) then {>m} else
if (v1 6= <n1) and (v1 + m2 + 1 ≥ n) then {v1 + m2 + 1, . . . ,m, >m}

else {<n, n, . . . ,m, >m} else
if (v2 = <n2) then

if (v1 ≤ n1) and (n1 + n2 ≤ n) then {<n} else
if (v1 6= >m1) and (v1 + n2 − 1 ≤ m) then {<n, n, . . . , v1 + n2 − 1}

else {<n, n, . . . ,m, >m} else
if (v1 + v2 > m) then {>m} else
if (v1 + v2 < n) then {<n} else
{v1 + v2)

Table 4.7: An implementation of the addition operation

implementation is given below.

castexpint[n′,m′],expint[n,m]
(v ′) :=

if ([n,m] = [ ]) then {Z} else

if (v ′ = Z) then {<n, n, . . . ,m, >m} else

if (v ′ = >m ′) then

if (m ′ ≥ m) then {>m} else {m ′ + 1, . . . ,m, >m} else

if (v ′ = <n ′) then

if (n ′ ≤ n) then {<n} else {<n, n, . . . , n ′ − 1} else

if (v ′ > m) then{>m} else

if (v ′ < n) then{<n} else

{v ′}
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JΓ ` skip : comKCSPu = Q .run → A.done → SKIP
JΓ ` abort : comKCSPu = Q .run → abort → STOP
JΓ ` C ; M : BKCSPu =

JΓ ` C : comKCSPu[Q1/Q ,A1/A] ‖
{|Q1,A1|}(JΓ ` M : BKCSPu[Q2/Q ,A2/A] ‖
{|Q2,A2|}

P; :B\ {| Q2,A2 |}
) \ {| Q1,A1 |}

JΓ ` ifB E thenMtt elseMff : BKCSPu =
JΓ ` E : expboolKCSPu[Q0/Q ,A0/A] ‖

{|Q0,A0|}(
(JΓ ` Mtt : B1KCSPu[Q1/Q ,A1/A] 2 SKIP) ‖

{|Q1,A1|}(
(JΓ ` Mff : B2KCSPu[Q2/Q ,A2/A] 2 SKIP) ‖

{|Q2,A2|}
Pif:expbool×B1×B2→B \ {| Q2,A2 |}

) \ {| Q1,A1 |}
)
\ {| Q0,A0 |}

JΓ ` whileE doC : comKCSPu =
JE : expboolK∗CSPu[Q1/Q ,A1/A] ‖

{|Q1,A1|}(JC : comK∗CSPu[Q2/Q ,A2/A] ‖
{|Q2,A2|}

Pwhile:com \ {| Q2,A2 |}
) \ {| Q1,A1 |}

Table 4.8: Processes for commands

Variables The processes for assignment and de-referencing are straightfor-

ward. In the definition for local-variable declarations, a ‘cell’ process UD(x , v)

is used for remembering the initial or the most-recently written value into the

variable x . It is composed with the process for the scope of the declaration,

ensuring ‘good variable’ behaviour. Tables 4.10 and 4.11 contain the details.

Functionals Table 4.12 contains the remaining process definitions: for free

identifier, function application and function declaration terms. In each case,

environments are used to access or record processes associated with free iden-

tifiers. For function application, the processes for the arguments may be run

arbitrarily many times.
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P; :B = Q?q : QJBK → Q1.run → A1?a1 : Arun
JcomK →

Q2.q → A2?a : Aq
JBK → A.a → SKIP

Pif:expbool×B1×B2→B = Q .q : QJBK → Q0.q → A0?a0 : Aq
JexpboolK →

if (a0) then
(
Q1.q → A1?a1 : Aq

JB1K →
(
let S = castB1,B(a1) within

if (| S |= 1) then (A?v : S → SKIP) else(A?v : S → nd .a1 → SKIP)
))

else
(
Q2.q → A2?a2 : Aq

JB2K →
(
let S = castB2,B(a2) within

if (| S |= 1) then (A?v : S → SKIP) else (A?v : S → nd .a2 → SKIP)
))

Pwhile:com = Q .run → µ p ¦ Q1.q → A1?a1 : Aq
JexpboolK →(

if (a1) then
(
Q2.run → A2?a2 : Arun

JcomK → p
)

else
(
A.done → SKIP

))

Table 4.9: Processes for command constructs

4.3.3 Correctness and Property Verification

For any term from AIA2, the set of all even-length traces of its CSP interpre-

tation is isomorphic to its regular language interpretation J−KR, as defined in

Section 4.2.

Theorem 4.3.1 For any term Γ ` M : T, we have:

tracesev(JΓ ` M : T KCSPu)
φ≡ closure(JΓ ` M : T KRu ′) (4.1)

where u and u ′ are the environments that map free identifiers of the term to

copy-cat processes and regular languages respectively, and φ is an isomorphism

defined by:

φ(Q .a) = a φ(A.a) = a if a ∈ AJBK

φ(Q .i .a) = a〈i〉 φ(A.i .a) = a〈i〉 if a ∈ AJBiK, 1 ≤ i ≤ l

φ(xj .Q .a) = a〈xj 〉 φ(xj .A.a) = a〈xj 〉 if a ∈ AJB ′j K, 1 ≤ j ≤ k

φ(xj .Q .i .a) = a〈xj ,i〉 φ(xj .A.i .a) = a〈xj ,i〉 if a ∈ AJBj ,iK, 1 ≤ j ≤ k , 1 ≤ i ≤ lj
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JΓ ` V := M : comKCSPu =
JΓ ` M : expD2KCSPu[Q1/Q ,A1/A] ‖

{|Q1,A1|}(JΓ ` V : varD1KCSPu[Q2/Q ,A2/A] ‖
{|Q2,A2|}

P:=:varD1×expD2→com \ {| Q2,A2 |}
) \ {| Q1,A1 |}

JΓ `!V : expDKCSPu =
JΓ ` V : varDKCSPu[Q1/Q ,A1/A] ‖

{|Q1,A1|}
P!:varD→expD \ {| Q1,A1 |}

JΓ ` newD x := v inC : comKCSPu =
JΓ, x : varD ` C : comKCSP(u | x 7→ K x

varD)[Q1/Q ,A1/A] ‖
{|Q1,A1,x |}

Pnew:D(x , v) \ {| Q1,A1 |}

Table 4.10: Processes for variables

P:=:varD1×expD2→com = Q .run → Q1.q → A1?a1 : Aq
JexpD2K →

let S = castexpD1,expD(a1) within if (| S |= 1)
then

(
Q2.write?v : S → A2.ok → A.done → SKIP

)
else

(
Q2.write?v : S → A2.ok → A.done → nd .a1 → SKIP

)
P!:varD→expD = Q .q → Q1.read → A1?a : Aread

JvarDK → A.a → SKIP

Pnew:D(x , v) = Q .run → Q1.run → UD(x , v)
UD(x , v) =

(
x .Q .read → x .A.v → UD(x , v)

)
2

(
x .Q .write?v ′ : AJDK → x .A.ok → UD(x , v ′)

)
2

(
A1.done → A.done → SKIP

)

Table 4.11: Processes for variable constructs

and φ(abort) = abort for Γ = x1 : T1, . . . , xk : Tk , Tj = Bj ,1 × . . . × Bj ,lj → B ′
j

and T =B1 × . . .× Bl → B.

Proof The proof is by a routine induction on the typing rules, by showing that

the definitions of CSP processes in Section 4.3 correspond to the definitions of

regular languages in Section 4.2.

Language constants and constructs. For any constant v ,

traces(JΓ ` v : expDKCSPu) = {ε,Q .q,Q .q · A.v ,Q .q · A.v ·X}
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JΓ ` x : T KCSPu = u(x )
JΓ ` x (M1 . . .Mk) : BKCSPu =

JΓ ` M1 : B1K∗CSPu[Q .1/Q ,A.1/A] ‖
{|Q .1,A.1|}

. . . . . . . . .(
JΓ ` Mk : BkK∗CSPu[Q .k/Q ,A.k/A] ‖

{|Q .k ,A.k |}
JΓ ` x : B1 × . . .Bk → BKCSPu \ {| Q .k ,A.k |}

)
· · · \ {| Q .1,A.1 |}

JΓ ` let x beN inM : T ′KCSPu =
JΓ, x : T ` M : T ′KCSP

(
u | x 7→ JΓ ` N : T KCSPu

)

Table 4.12: Processes for functionals

tracesev(JΓ ` vKCSPu) = {ε,Q .q · A.v} φ≡ {ε, q · v} = closure(JΓ ` vKRu ′)

The proofs for the other constants and constructs are similar.

Arithmetic-logic operations. By inductive hypothesis, we have that JΓ `
E1KCSPu and JΓ ` E1KRu ′, JΓ ` E2KCSPu and JΓ ` E2KRu ′, and Pop:D1×D2→D

and JopDKRu ′ are φ-isomorphic. Then, by the isomorphism between two

definitions of composition, we have that tracesev(JΓ ` E1 opDE2KCSPu)
φ≡

closure(JΓ ` E1 opDE2KRu ′).

Free identifiers. It can be verified by inspection that copy-cat processes and

copy-cat regular-languages are φ-isomorphic.

Local variables. The semantics of a local variable is achieved by imposing

the good variable behavior on the local variable and removing all moves

involving the variable. The first condition is imposed by intersection of

regular languages and parallel composition of processes, while the second

condition is imposed by restriction and hiding in the regular-language and

CSP representation, respectively. Hence, the isomorphism between two
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representations follows from tracesev(UD(x , v))
φ≡ closure(γx

v ). The latter

can be seen by inspection.

Representations of function application and function declaration are iso-

morphic by inductive hypothesis and the isomorphism between two definitions

of composition.

As a corollary we obtain the full abstraction result for CSP representation.

Theorem 4.3.2 For any two AIA2 terms

Γ ` M ∼= N iff tracesev(JΓ ` M : T KCSPu) = tracesev(JΓ ` N : T KCSPu)

Proof It follows from Theorem 4.3.1 and Theorem 4.2.2.

By Theorem 4.3.2, we have that observational safe-equivalence is captured by

two traces refinements:

Corollary 4.3.3 (Observational safe-equivalence)

Γ ` M ∼= N ⇔ JΓ ` M : T KCSPu vT JΓ ` N : T KCSPu

JΓ ` N : T KCSPu vT JΓ ` M : T KCSPu

Refinement checking in FDR terminates for finite-state processes, i.e.

those whose labelled transition systems are finite. Our next result confirms

that this is the case for the processes interpreting finitely abstracted terms.

As a corollary, we have that observational safe-equivalence is decidable using

FDR.

Theorem 4.3.4 For any finitely abstracted term Γ ` M : T, the CSP process

JΓ ` M : T KCSPu is finite state.
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Proof Since the copy-cat processes K x
T are finite state, the theorem is implied

by the following claim: for any term Γ ` M : T and any environment u which

maps each identifier in Γ to a finite-state process, JΓ ` M : T KCSPu is finite

state.

In the fragment of CSP we are using, the only operators which can

result in infinite-state transition systems are the infinite choice operator ?x :

A → P(x ) with an infinite set A, and recursion. The claim therefore follows

by induction on the typing rules of AIA, and these observations:

• each alphabet AJΓ`T K is finite.

• each use of the choice operator is over a finite set.

• the recursive process in the definition of K x
B1×...×Bk→B is finite state by

inspection.

• the recursive processes UD(x : varD , v : AJDK) are finite state because

AJDK is a finite set.

• the recursive processes in the definitions for iteration and function appli-

cation are finite state by the inductive hypothesis.

Corollary 4.3.5 (Decidability) Observational safe-equivalence of finitely ab-

stracted terms of AIA2 is decidable by two traces refinements between finite-

state CSP processes.

We now consider an example equivalence and prove it using the CSP

model.

Example Consider the process for the term

c : com ` newint x := 0 in c : com



96 CHAPTER 4. THE CSP GAME SEMANTICS MODEL

It has the same traces as

(Q1.run → c.Q .run → c.A.done → A1.done → SKIP)

‖
|A1,Q1,x |

(Q .run → Q1.run → Uint(x , 0))\{| Q1,A1, x |}

Simplifying further yields

Q .run → c.Q .run → c.A.done → A.done → SKIP

which is the process for the term c : com ` c : com.

By Corollary 4.3.5, we conclude that

c : com ` newint x := 0 in c : com ∼= c : com

This simple equivalence reflects the fact that a non-locally defined com-

mand cannot modify a local variable [51].

In addition to checking observational safe-equivalence of two program

terms, it is desirable to be able to check properties of terms. We focus on

verifying safety properties, and take the view that a term Γ ` M : T is safe

if and only if all traces in tracesev(JΓ ` M : T KCSPu) are safe. Recall from

Section 3.7 that a trace is unsafe if it terminates in abort; otherwise it is safe.

Corollary 4.3.6 (Decidability) Safety of a finitely abstracted term Γ ` M :

T is decidable by one traces refinement between finite-state CSP processes:

µ p ¦ SKIP 2
(
?x : AJΓ`T K\{abort} → p

) vT JΓ ` M : T KCSPu

Example Consider the term

f : com× com → com ` newint[0,1] x := 0 in

f
(
x := !x +[0,2] 1, if (!x >bool 1) then abort

)
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f.Q. .run2Q.run f.Q.run

A.done

f.Q. .run1
f.A. .done1

f.Q. .run1

f.Q. .run2

f.A. .done2

f.A. .done2

f.A. .done1
f.Q. .run2

abort

f.Q. .run1

f.A. .done1

f.A.done

f.A.done

ü
W

Figure 4.3: A strategy as a labelled transition system

in which f is a non-local procedure.

The LTS of the CSP process representing this term is shown in Fig-

ure 4.3. It contains an unsafe play: Q .run · f .Q .run · f .Q .1.run · f .A.1.done ·
f .Q .1.run · f .A.1.done · f .Q .2.run · abort. So, the term is unsafe.

4.3.4 Type Inference System

We want to simplify writing of abstracted terms in AIA by using a type in-

ference system. Given abstractions for all free identifiers and local variables,

the type inference system determines all other abstractions from the former

by inference. The judgments of the type inference system have the form:

Γ `TIS M : T

and are defined by the axioms and rules given in Table 4.13.

Abstractions [0, n] are given to integer constants n ≥ 0, and [n, 0] to

integer constants n < 0. For operations op whose concrete type is expint ×
expint → expint, the abstraction of the result type will be the most refined ab-

straction such that the operation between any concrete values of the operands

will evaluate to a concrete value as well. The rule for conditionals and mkvar

are similar. All other rules are equivalent to the typing rules of AIA. We show
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x1 : T1, . . . , xk : Tk `TIS xi : Ti , i ∈ {1, . . . , k}

Γ `TIS n : expint[0,n], n ≥ 0 Γ `TIS n : expint[n,0], n < 0

Γ `TIS b : expbool, b ∈ {tt ,ff }
Γ `TIS M : expD1 Γ `TIS N : expD2

op : expD̃1 × expD̃2 → expboolΓ `TIS M opN : expbool

Γ `TIS M : expint[n1,m1] Γ `TIS N : expint[n2,m2]
op :expint×expint→expint

Γ `TIS M opN : expint[min{x1opx2},max{x1opx2}]
n1≤x1≤m1, n2≤x2≤m2

Γ `TIS skip : com Γ `TIS abort : com
Γ `TIS M : com Γ `TIS N : B

Γ `TIS M ; N : B

Γ `TIS M : expbool Γ `TIS Ntt : B1 Γ `TIS Nff : B2
B1 = B2Γ `TIS if M thenNtt elseNff : B1

Γ `TIS M : expbool Γ `TIS Ntt : expint[n1,m1] Γ `TIS Nff : expint[n2,m2]

Γ `TIS if M thenNtt elseNff : expint[min{n1,n2},max{m1,m2}]

Γ `TIS M : expbool Γ `TIS N : com
Γ `TIS whileM doN : com

Γ `TIS M : varD1 Γ `TIS N : expD2
D̃1 = D̃2Γ `TIS M := N : com

Γ `TIS M : varD
Γ `TIS !M : expD

Γ, x : varD `TIS M : B Γ `TIS v : expD1
D̃ = D̃1Γ `TIS newD x := v inM : B

Γ `TIS N : B1 × . . .× Bk → B Γ `TIS Mi : Bi 1 ≤ i ≤ k
Γ `TIS N (M1, . . . ,Mk) : B

Γ `TIS N : T Γ, x : T `TIS M : T ′

Γ `TIS let x beN inM : T ′

Γ `TIS M : expD1 → com Γ `TIS N : expD2 D1 = D2Γ `TIS mkvar MN : varD1

Γ `TIS M : expint[n1,m1] → com Γ `TIS N : expint[n2,m2]

Γ `TIS mkvar MN : varint[min{n1,n2},max{m1,m2}]

Table 4.13: Type inference system
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that the type inference system is an extension of the underlying type system

given in Table 2.1.

Lemma 4.3.7 If Γ `TIS M : T then there exists an unique term Γ ` M : T.

Proof We explicitly annotate all types of the subterms with the abstractions

inferred using the rules of the type inference system in Table 4.13.

Example The term

f : com× com → com `newint[0,1] x := 0 in

f
(
x := !x + 1, if (!x > 1) then abort

)

produces a term with the same abstractions as the term from the previous

example.

From now on, we proceed to work with the judgments of the form

Γ `TIS M : T where the abstractions of subterms are inferred. We often

abbreviate the above notation to Γ ` M : T .

4.3.5 Compiler and Applications

We have implemented a compiler in Java [15], which automatically converts

a finitely abstracted AIA2 term into a CSP process which represents its game

semantics. The resulting CSP process is defined by a script in machine readable

CSP [98] which the compiler outputs.

The scripts output by the compiler can be loaded into the tools ProBE

for interactive exploration of labelled transition systems, and FDR for auto-

matic analysis and interactive debugging. One of the functions of FDR is to

check traces refinement between two finite-state processes. As we have seen
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before, this can be used to decide observational safe-equivalence between two

terms, and safety of a term.

FDR offers a number of hierarchical compression algorithms [97], which

can be applied during either model generation or refinement checking. The

scripts which our compiler produces normally contain instructions to apply

diamond elimination (which eliminates all τ events from a labelled transition

system) and strong bisimulation quotienting to subprocesses which model local

variable declaration subterms. This exploits the fact that game semantics hides

interactions between a local variable and its scope. The interaction events

become τ events, enabling the model to be reduced.

We now consider applications of the approach proposed here for two

kinds of example: a sorting algorithm, and an abstract data type implemen-

tation.

A sorting algorithm We first analyse the bubble-sort algorithm. The input

to the compiler is in Figure 4.4, where the array size is a meta variable k > 0.

The program first copies the input array x into a local array a, which

is then sorted and copied back into x . The local array a is not visible from

the outside of the program, so only reads and writes of the non-local array

x are seen in the model. A labelled transition system for k = 2 is shown in

Figure 4.5. The left-hand half represents reads of all possible combinations of

values from x , while the right-hand half represents writes of the same values

in sorted order.

In order to compare efficiency of the tools based on CSP and regular-

language representation [10], we have also implemented a compiler for finitary

IA2. We slightly change the bubble-sort term in Figure 4.4. The type of array
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1 x [k ] : varint[0,0] `
2 newint[0,0] a[k ] := 0 in
3 newint[0,k ] i := 0 in
4 while (i < k) do {a[i ] :=!x [i ]; i :=!i + 1; }
5 newbool flag := true in
6 while (flag) do {
7 i := 0;
8 flag := false;
9 while (i < k − 1) do {
10 if (a[i ] > a[i + 1]) then {
11 flag := true;
12 newint[0,0] temp :=!a[i ] in
13 a[i ] :=!a[i + 1];
14 a[i + 1] :=!temp; }
15 i :=!i + 1; } }
16 i := 0;
17 while (i < k) do {x [i ] :=!a[i ]; i :=!i + 1; }
18 : com

Figure 4.4: Source code of AIA2 bubble sort

Q.run x .Q.q[0] A.done üx .A.[0] 0

x .Q.q[1]

x
.A.<

[1]
0

x .A.[1] 0

x .A.>[1] 0

x .A.>[1] 0

x
.A.

[1]
0

x
.A

.<
[1]

0

x
.A.

[1]
0

x .A.<[1] 0

x .A.>[1] 0

x .Q. .>[0] 0write
x

.Q.
.

[0]

0
write

x .Q. .<[0] 0write

x
.Q.

.

[0]
0

write

x
.Q

.
.

[0
]

<0

writ
e

x
.Q

.

.<

[0
]

0

writ
e

x .A.ok[0]

x .A.ok[0]

x .A.ok[0]x .Q.q[1]

x .Q.q[1]

x .A.>[0] 0

x .A.<[0] 0

x .Q. .>[1] 0write

x .Q. .<[1] 0write

x .A.ok[1]
x .Q. .[1] 0write

W

Figure 4.5: LTS for AIA2 bubble sort with k = 2
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Q.run x .Q.q[0] A.done üx .A.[0] 1

x .Q.q[1]

x
.A.

[1]
0

x .A.[1] 1

x .A.[1] 2

x .A.[1] 2

x
.A.

[1]
1

x
.A

.
[1]

0

x
.A.

[1]
1

x .A.[1] 0

x .A.[1] 2

x .Q. .[0] write 2
x

.Q.
.

[0]
write 1

x .Q. .[0] 0write

x
.Q.

.

[0]
write

1

x
.Q

.
.

[0
]

0
writ

e

x
.Q

.

.

[0
]

0

writ
e

x .A.ok[0]

x .A.ok[0]

x .A.ok[0]x .Q.q[1]

x .Q.q[1]

x .A.[0] 2

x .A.[0] 0

x .Q. .[1] write 2

x .Q. .[1] 0write

x .A.ok[1]
x .Q. .[1] write 1

W

Figure 4.6: LTS for IA2 bubble sort with k = 2

elements is int3, i.e. it contains 3 distinct values, and the type of the index i

becomes intk+1. The model of the IA2 bubble-sort is shown in Figure 4.6.

Table 4.14 contains the experimental results for model generation. The

experiment consisted of running the compiler on the bubble-sort implemen-

tation, and then letting FDR generate a transition system (model) for the

resulting process. The latter stage involved a number of hierarchical compres-

sions, as outlined above. The transition system with maximum number of

states involved in the generation of the final model is referred to as the largest

generated transition system. We list the execution time in minutes, the size

of the largest generated transition system, and the size of the final transition

system. We ran FDR on a Research Machine AMD Athlon 64(tm) Processor

3500+ with 2GB RAM. The results from the tool based on regular languages

were obtained on a SunBlade 100 with 2GB RAM [10]. The one extra state in

the CSP models is the special terminated state Ω. The CSP approach yields

better results in time and space. This is firstly due to composition of strate-

gies being represented in CSP using the renaming, parallel composition and

hiding operators, and FDR being highly optimised for verification of such net-

works of processes. Secondly, FDR builds the models gradually, at each stage
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k CSP Regular expressions
T(min) Max Model T(min) Max Model

5 4 1 775 164 5 3 376 163

10 13 21 015 949 10 64 776 948

15 35 115 125 2 859 120 352 448 2 858

20 70 378 099 6 394 240 1 153 240 6 393

30 390 5 204 232 20 339 failed

Table 4.14: Model generation of IA2 bubble sort

compressing the subterm models.

Further information about model generation for k = 20 is shown in

Figure 4.7. FDR first produces a transition system for the subprogram which

is the scope of the declaration of the local array a. Each component of a,

which is indexed from 0 to 19, is represented by the process Uint(a.i , 0) (see

Table 4.10). FDR obtains the final model by taking the transition system for

the scope of a and composing it with transition systems for the components of

a in turn. At each step, compression algorithms are applied. In the figure, we

show numbers of states before and after compression, after every two steps.

The largest generated transition system in this case is obtained after composing

the transition system for the component a.13 (or a[13]) with the compressed

transition system for its scope.

We now turn to verifying absence of out-of-bounds errors. Let us mod-

ify the IA2 bubble sort by replacing k − 1 in line 9 in Figure 4.4 by k , which

introduces an out-of-bounds error. Table 4.15 shows some experimental re-

sults for checking the safety of this term. We did not apply compressions after

composing the last component of a with the rest of the program. Instead,

a composite model is generated on-the-fly during refinement checking. This
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0
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Before compression After compression

Figure 4.7: Effects of compressions for IA2 bubble sort with k = 20

k Total(min) Spec Impl Check

29 250.5 10 240 0.5

30 317.5 12 305 0.5

31 494.2 12.5 391 0.7

Table 4.15: Checking safety for an erroneous IA2 bubble sort

enabled us to check the property for array size 31, although the model gener-

ation did not succeed for this size. The times shown in Table 4.15 are: total

execution time needed for this check, time to process the specification, time

to process the implementation, and time to check refinement. They are all in

minutes.

An abstract data type implementation Figure 4.8 contains an implemen-

tation of a stack of maximum size k (a meta variable). There are four free iden-
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1 empty : com, overflow : com, p : exp int[],
2 ANALYSE(com, exp int[]) : com `
3 newint[] buffer[k ] := 0 in
4 newint[0,k ] top := 0 in
5 let com push(exp int[] x ) {
6 if (!top = k) then overflow
7 else {buffer[!top] := !x ; top := !top + 1}
8 } in
9 let exp int[] pop {
10 if (!top = 0) then empty
11 else {top := !top− 1; return !buffer[!top + 1]}
12 } in
13 ANALYSE(push(p), pop)
14 : com

Figure 4.8: A stack implementation

tifiers: commands empty and overflow, expression p, and command ANALYSE

which takes two arguments. After implementing the stack by a sequence of lo-

cal declarations, we export the functions push(x ) and pop by calling ANALYSE

with arguments push(p) and pop. In effect, the model contains all interleav-

ings of calls to push(p) and pop, corresponding to all possible behaviours of

the non-local expression p and non-local function ANALYSE. The CSP script

produced by our compiler for this example is provided in Appendix A.

A transition system for k = 2 is shown in Figure 4.9. For clarity, labels

push and pop are used instead of ANALYSE.1 and ANALYSE.2.

By replacing empty with abort command (resp. overflow with abort), we

can check separately for ‘empty’, i.e. reads from empty stacks, (resp. ‘over-

flow’, i.e. writes to full stacks) errors, both of which are present for any k . For

‘empty’ (resp. ‘overflow’) error, the counterexample traces which the FDR de-
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ü

Q.run

ANALYSE.A.done

A.done

pop.Q.q

empty.Q.run
empty.A.done

pop.A.Z

push.Q.run
p.Q.read p.A.Z

ANALYSE.A.done

p.Q.read p.A.Z

overflow.Q.run

overflow.A.done

ANALYSE.A.done

ANALYSE.Q.run
push.A.donepush.Q.run push.A.done

push.Q.run

pop.Q.q
pop.A.Z

pop.Q.q

W

Figure 4.9: LTS for the stack with k = 2

bugger gives correspond to: a single call of pop method (resp. k +1 consecutive

calls of push method) after which abort is executed.

In addition to checking properties of external behaviors of given terms,

we can also check assertions which refer to local data. Assertions can be added

to a term using a local function assert whose argument is a boolean expression.

If the argument is true, the assert function does nothing, but otherwise it calls

abort. For example, we can check whether, the last value pushed onto the

stack is the value at the top of the stack. We replace all int[] abstractions in

Figure 4.8 by the more refined one int[0,0], and the call to ANALYSE in line 13

by the following code:
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let com assert(expbool b) {
if b then skip else abort;

} in

let expbool validate() {
new int[0,0] y := p in

push(y);

return (pop = y);

} in

ANALYSE(push(p), pop, assert(validate()))

: com

The assertion check fails and the generated counterexample reports that

an error is caused by pushing a value onto a full stack. Indeed, if the stack is

already full, pushing a new element will be ignored, and the overflow command

is called. In that case, the top value in the stack will be different from the last

pushed one.



Chapter 5

Abstraction Refinement

Abstraction refinement has proved to be one of the most effective methods

of automatic verification of systems with very large state spaces, especially

software systems. Current state-of-the art tools implementing abstraction re-

finement algorithms [17, 66, 24] combine model checking and theorem prov-

ing: model checking is used to verify whether an abstracted program satisfies

a property, while theorem proving is used to refine the abstraction using the

counterexamples discovered by model checking. Since abstractions are conser-

vative over-approximations the safety of any abstracted program implies the

safety of the concrete program. The converse is not true, and the refinement

process may not terminate if the concrete program has an infinite state space.

This chapter introduces a purely semantic (syntax-independent) ap-

proach to (data) abstraction refinement, based on game semantics. The verifi-

cation procedure, which applies to programs which can contain infinite integer

types, is illustrated in Figure 5.1. It checks whether a program fragment is

unsafe, i.e. it may execute the designated unsafe command abort.

The procedure starts by transforming the concrete (input) program into

108
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M init(M)0 :=
Genuine unsafe play of [M ]?

i
i 0:=

Unsafe play of [M ]?
i

M := Refine(M ,u)
i+ i1

i i+:= 1

yes

UNSAFE

no

SAFE

no

yes

u

Figure 5.1: Verification procedure

the most abstract version of it, where all infinite integer types are abstracted

to the coarsest abstraction, and the game-semantic model of the finitely ab-

stracted program is fed to a model checker. Since our abstractions are safe, any

abstracted program is an over-approximation of the concrete program. If no

counterexample is found, the procedure terminates with answer SAFE. Other-

wise, the counterexamples are analysed and classified as either genuine, which

correspond to execution traces in the concrete program, or potentially spuri-

ous, which can be introduced due to abstraction. If genuine counterexamples

exist the program is deemed UNSAFE, otherwise the spurious counterexam-

ples are used to refine the abstractions. The procedure is then repeated on

the refined abstracted program. The abstraction refinement procedure is a

semi-algorithm: it terminates and reports a genuine counterexample for un-

safe programs, but it may diverge for safe programs.

The following is a simple example illustrating this procedure. Consider

the (concrete) program fragment below, which uses a local variable x and a

non-local function f . Is this program safe for all safe instantiations of f , or is

it possible for its execution to terminate abnormally?

newint x := 0 in f
(
x := !x + 1, if (!x > 1) then abort

)
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The program is not safe if function f uses its first argument two or more times,

then its second argument.

We approximate the set of integers by a finite set of partitioning inter-

vals. Let the initial abstraction have only one partition. The initial abstracted

program is:

newint[] x := 0 in f
(
x := !x + 1, if (!x > 1) then abort

)

A counterexample execution trace exists, corresponding to the function eval-

uating its second argument. During the execution of this argument, the value

of x is not 0 but, because of the abstraction, possibly any integer, chosen

nondeterministically. If the chosen value is greater than 1 then abort occurs.

Of course, this counterexample is spurious because it is made possible only

by the nondeterminism caused by over-abstraction. However, the counterex-

ample informs the refinement procedure that the abstraction of x needs to be

improved. Iterations like this one are performed until we obtain

newint[0,1] x := 0 in f
(
x := !x + 1, if (!x > 1) then abort

)

at which point a genuine counterexample is discovered, corresponding to the

behaviour resulting in abnormal termination.

The abstraction refinement procedure we described uses interaction

plays, where all internal moves are not hidden, for interpreting potentially

spurious counterexamples and computing refined abstractions for the next it-

eration. This makes the procedure highly inefficient for implementation since

it is necessary to use game models where all internal moves are exposed. Here,

we describe a tool, called GameChecker, which implements efficiently the

procedure by first identifying counterexample standard plays, where all inter-

nal moves are hidden, and then obtaining corresponding interaction plays by
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“uncovering” the hidden moves. The tool is based on representing game mod-

els in the CSP process algebra, which can be verified for safety using the FDR

refinement checker 1. We can exploit an FDR debugging feature which allows

identification of hidden events only in counterexample traces rather than in

full models, in order to implement the “uncovering” operation necessary to

compute interaction plays efficiently.

5.1 Interaction Game Semantics

In standard game semantics, which is presented in Chapter 3, to obtain the

strategy σ o
9 τ : A ⇒ C , the strategies σ : A ⇒ B1 and τ : B2 ⇒ C are

composed, and moves which interact are hidden. (Here B1 and B2 are games

for types which have equal concretisations.)

Let us define an alternative semantics, where moves which interact are

not hidden. Consider composing σ : A ⇒ B1 and τ : B2 ⇒ C to obtain

σ o
9int τ : A ⇒ C . Let r1 ∈ B1 and r2 ∈ B2 be two interacting moves, then they

are both recorded in σ o
9int τ . Indeed, since we only have B̃1 = B̃2, r1 and r2

may be different. However, if types interpreted by B1 and B2 do not contain

abstractions, i.e. they are not types of integer expressions or integer variables,

then B1 = B2 and r1 = r2. In such cases, we may record r1 and r2 only once,

for readability.

We call this the interaction game semantics, and its building blocks

interaction plays and interaction strategies.

For any term Γ ` M : T of AIA, its interaction semantics is denoted

〈〈Γ ` M : T 〉〉, and it can be easily reconciled with its standard game semantics,

1FDR is a commercial product of Formal Systems (Europe) Ltd. It is available free of charge
for academic use. See http://www.fsel.com.
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by performing all the hiding at once:

JΓ ` M : T K = 〈〈Γ ` M : T 〉〉 ¹ JΓK, JT K (5.1)

where − ¹ JΓK, JT K indicates restriction to the games corresponding to base

types occurring in Γ and T .

Standard plays are alternating sequences of Opponent and Player moves.

Interaction plays in addition contain internal moves, which do not interact in

subsequent compositions, but which record all intermediate steps taken during

the computation.

Example Consider the interaction strategy of the term given in the Example

on page 66:

〈〈x : varint[0,4] ` x := !x +[0,3] 1[0,1] : com〉〉

One of its complete interaction plays, corresponding to the second stan-

dard play in the Example on page 66, is:

run q2 q2,1 q2,1,1 readx 3x 32,1,1 32,1,1 32,1 32,1 q2,2 12,2 12,2

(>3)2 (>3)2 write(>4)1 write(>4)x okx ok1 done

We use tags on internal moves to precisely identify the coordinates of

the subterm that corresponds to each move. For instance, q2,1 is the question

to the subterm !x , which is the 1st immediate subterm of !x + 1, which in

turn is the 2nd immediate subterm of x := !x + 1. Observe also the double

occurrences of integer internal moves, in line with how interaction plays are

composed. In this example, those pairs are equal because, in any composition,

any two corresponding abstractions are equal. An abstract value needs to

be converted to another abstraction only within the strategy for assignment,
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where a value with abstraction [0, 3] is assigned to a variable with abstraction

[0, 4].

The interaction game semantics, rather than the standard semantics,

will be used for the purpose of abstraction refinement. The reason is that,

given an unsafe standard play of an abstracted term, it does not in general

contain sufficient information to decide that it can be produced by the concrete

version of the term (i.e. that it is a genuine counterexample), or to choose one

or more abstractions to be refined for the next iteration.

In traditional, state-based abstraction-refinement an abstract counterex-

ample to a safety property is guaranteed to be genuine if the computation

was deterministic (or, at least, the nondeterminism was not caused by over-

abstraction). In standard game semantics, however, all internal steps within

a computation are hidden. This results in standard strategies of abstracted

terms in general not containing all information about sources of their nonde-

terminism.

Example Consider the following abstracted term:

` newint[] x := 0 in if (!x 6= 0) then abort : com

Its complete standard plays are run · abort and run · done. In fact, its strategy

is the same as the strategy of the EIAA term abort or skip. However, the

counterexample run · abort is spurious, and the abstraction of x needs to be

refined, but internal moves which point to this abstraction as the source of

nondeterminism have been hidden.
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5.2 Conservativity of Abstraction

For safety, we want to show that a finitely abstracted program is a conservative

over-approximation of the concrete program, i.e. if the abstracted program is

safe then the concrete program is also safe.

For abstractions π and π′, we say that π′ refines π if, for any partition

(i.e. abstracted value) c ′ of π′, there exists a unique partition c of π such that

c′ ⊆ c. We say that c is the corresponding abstracted value of c′ in π. When π′

refines π, and c is a partition of π, we say that π′ splits c if c is not a partition

of π′. We extend the refine relation to data types as follows: bool refines bool,

and intπ′ refines intπ if π′ refines π.

Definition Let types D ′
1, D ′

2 and D ′ refine D1, D2 and D respectively. We

say that an abstracted operation op : expD ′
1 × expD ′

2 → expD ′ is safely ap-

proximated by abstracted operation op : expD1 × expD2 → expD iff for every

c′1,c
′
2,c

′ of type D ′
1, D ′

2, D ′ and c1, c2 of type D1,D2 respectively, if c ′1 ⊆ c1,

c′2 ⊆ c2 and c ′ ∈ opD ′1×D ′2→D ′(c
′
1, c

′
2), then there exists a unique c of type D

such that c ∈ opD1×D2→D(c1, c2) and c′ ⊆ c.

Example Abstraction [0, 1] refines [0, 0] such that [0, 1] splits >0 and >0 is

the corresponding abstracted value of 1 and >1 in [0, 0].

We note that abstracted programs may contain nondeterministic branch-

ing, because the outcome of integer conversions and arithmetic-logic operations

might not be a unique value. As interaction plays contain internal moves, we

can distinguish those whose underlying computation did not pass through any

nondeterministic branching that is due to abstraction.
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Definition (a) Given integer abstractions π and π′, and an abstracted value

(i.e. partition) c of π, we say that converting c to π′ is deterministic if

there exists an abstracted value c ′ of π′ such that c ⊆ c ′.

(b) Given an abstracted operation op : expD1 × expD2 → expD and ab-

stracted values c1 and c2 of type D1 and D2 respectively, we say that the

application of op to c1 and c2 is deterministic if there exists an abstracted

value c of type D such that ∀ v1 ∈ c1, v2 ∈ c2, v1 op v2 ∈ c2.

(c) An interaction play u ∈ 〈〈Γ ` M : T 〉〉 is deterministic if each conversion

of an abstracted integer value in u is deterministic, and each application

of an arithmetic-logic operator in u is deterministic.

We say that a term Γ′ ` M ′ : T ′ refines a term Γ ` M : T if Γ̃′ =

Γ̃, M̃ ′ = M̃ , T̃ ′ = T̃ , and each abstraction in Γ′ ` M ′ : T ′ refines the

corresponding abstraction in Γ ` M : T . For any play t of Γ′ ` M ′ : T ′, let t

denote the image play of Γ ` M : T (see Section 3.8), obtained by replacing

each abstracted integer c ′ in t by its partition c (such that c ′ ⊆ c) in the

corresponding abstraction in Γ ` M : T .

Theorem 5.2.1 Suppose Γ′ ` M ′ : T ′ refines Γ ` M : T.

(i) For any t ∈ JΓ′ ` M ′ : T ′K, we have t ∈ JΓ ` M : T K. The same is true

for the 〈〈−〉〉 semantics.

(ii) For any deterministic u ∈ 〈〈Γ ` M : T 〉〉, there exists t ∈ 〈〈Γ′ ` M ′ : T ′〉〉
such that u = t 3.

2Here we regard the abstracted values tt and ff as singleton sets {tt} and {ff}.
3This can be strengthened to apply to interaction plays which are deterministic with respect to

the abstractions in Γ′ ` M ′ : T ′. The latter notion allows nondeterministic conversions of, and
operator applications to, abstracted values which are not split by the corresponding abstractions in
Γ′ ` M ′ : T ′.
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Proof By induction on the typing rules of AIA. We only consider the most

interesting cases which involve integer abstractions. Proofs for other cases

are similar. We prove (i) for the 〈〈−〉〉 semantics since the proof for the J−K
semantics follows from the former.

Consider the case of any constant v . We have that q · c ′ ∈ 〈〈Γ′ ` v :

expD ′〉〉 and q · c ∈ 〈〈Γ ` v : expD〉〉, such that v ∈ c′, v ∈ c and c ′ ⊆ c.

Moreover, q · c is deterministic and q · c = q · c′.
Consider the case of any arithmetic-logic operator op. Let t ∈ 〈〈Γ′ `

M ′ opD ′ N
′ : expD ′〉〉 be of the form q·q1·c ′1·q2·d ′2·e ′ and let e ′∈opD ′1×D ′2→D ′(c

′, d ′).

From the induction hypothesis, there exist partitions c of type D1 and d of

type D2 such that q · c ∈ 〈〈Γ ` M : expD1〉〉, q · d ∈ 〈〈Γ ` N : expD2〉〉,
and c ′ ⊆ c, d ′ ⊆ d . From the safety of op : expD1 × expD2 → expD ,

there exists e of type D such that e ∈ opD1×D2→D(c, d) and e ′ ⊆ e. Then,

t = q · q1 · c1 · q2 · d2 · e ∈ 〈〈Γ ` M opD N : expD〉〉.
Let u = q · q1 · c1 · q2 · d2 · e be a deterministic play in 〈〈Γ ` M opD N :

expD〉〉, where e = opD1×D2→D(c, d) (i.e. ∀ v1 ∈ c, v2 ∈ d , v1 op v2 ∈ e). From

the induction hypothesis and the safety of op : expD1 × expD2 → expD , there

must be partitions c′ ⊆ c, d ′ ⊆ d and e ′ ⊆ e of type D ′
1,D

′
2 and D ′ respectively,

such that q · c′ ∈ 〈〈Γ′ ` M ′〉〉, q · d ′ ∈ 〈〈Γ′ ` N ′〉〉, and e ′ ∈ opD ′1×D ′2→D ′(c
′, d ′).

Then, t = q · q1 · c ′1 · q2 · d ′2 · e ′ ∈ 〈〈Γ′ ` M ′ opD ′ N
′ : expD ′〉〉 and u = t .

Consider the case of assignment. Let t ∈ 〈〈Γ′ ` M ′ :=N ′ : com〉〉 be

of the form run · q2 · d ′2 · write(c ′)1 · ok1 · done, where c ′, d ′ are of type D ′
1,

D ′
2 respectively and d ′ ∩ c′ 6= ∅. From the induction hypothesis, there exist

partitions d of type D2 and c of type D1 such that q · d ∈ 〈〈Γ ` N : expD2〉〉,
write(c) · ok ∈ 〈〈Γ ` M : varD1〉〉, and c′ ⊆ c, d ′ ⊆ d . Then, t = run · q2 · d2 ·
write(c)1 · ok1 · done ∈ 〈〈Γ ` M :=N : com〉〉 and d ∩ c 6= ∅.
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Let u = run · q2 · d2 · write(c)1 · ok1 · done be a deterministic play in

〈〈Γ ` M :=N : com〉〉, where d ⊆ c. From the induction hypothesis, there

must be partitions c ′ ⊆ c and d ′ ⊆ d of type D ′
1 and D ′

2 respectively, such

that q · d ′ ∈ 〈〈Γ′ ` N ′〉〉, write(c′) · ok ∈ 〈〈Γ′ ` M ′〉〉, and c′ ∩ d ′ 6= ∅. Then,

t = run · q2 · d ′2 ·write(c ′)1 · ok1 · done ∈ 〈〈Γ′ ` M ′ :=N ′ : com〉〉 and u = t .

The following consequence of Corollary 3.7.3, Theorem 5.2.1 and the

correspondence between standard and interaction game semantics (5.1) will

justify the correctness of the abstraction refinement procedure.

Corollary 5.2.2 Suppose Γ′ ` M ′ : T ′ refines Γ ` M : T.

(i) If JΓ ` M : T K is safe, then Γ′ ` M ′ : T ′ is safe.

(ii) If 〈〈Γ ` M : T 〉〉 has a deterministic unsafe interaction play, then Γ′ `
M ′ : T ′ is unsafe.

5.3 Abstraction Refinement

Recall from Section 2.1 that an abstraction π is finitary if it has finitely many

partitions, and a term is finitely abstracted if it contains only finitary abstrac-

tions. Apart from the identity abstraction κ, observe that the abstractions we

work with, [] and [n,m] where n ≤ 0 ≤ m, are finitary.

We have shown in Section 4.2 that for any finitely abstracted term Γ `
M : T of AIA2, the set JΓ ` M : T K is a regular language and an automaton

which recognises it is effectively constructible. We can show that the same is

true for the 〈〈−〉〉 semantics. To obtain an automaton for 〈〈Γ ` M : T 〉〉, the

construction is the same as for JΓ ` M : T K except that interacting moves are

tagged with subterm coordinates rather than hidden.
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Figure 5.2: A possible definition of v

Let AJΓ ` M : T K and A〈〈Γ ` M : T 〉〉 denote the automata which

recognise JΓ ` M : T K and 〈〈Γ ` M : T 〉〉 respectively. Since there is no hiding

in the construction of A〈〈Γ ` M : T 〉〉 (see the Example on page 112), this

automaton is deterministic.

Given a finite word u and a deterministic automaton A which accepts

u, we call u cycle-free if the accepting run visits any state of A at most once.

Let ≺ denote the following computable linear ordering between ab-

stracted values:

Z ≺ (<0) ≺ (>−1) ≺ (<−1) ≺ −1 ≺ 0 ≺ (>0) ≺ · · ·
(<−(n + 1)) ≺ −(n + 1) ≺ n ≺ (>n) ≺ · · ·

This ordering has the property that c ≺ c ′ whenever c ′ ⊂ c. For two moves

(possibly tagged with subterm coordinates) r and r ′ which are equal except
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for containing different abstracted integer values c and c ′, let r ≺ r ′ if c ≺ c ′,

and r ′ ≺ r if c ′ ≺ c. Now, we extend this ordering to a computable linear

ordering on all moves (in an arbitrary but fixed way), and denote it by ≺.

Let ≺ also denote the linear orderings on plays obtained by lifting the linear

ordering on moves lexicographically.

Let (n, c) v (n ′, c ′) be any computable linear ordering between pairs

of nonnegative integers and abstracted integer values which is obtained by

extending the partial ordering defined by n ≤ n ′ and c ¹ c ′, and which admits

no infinite strictly decreasing sequences, and no infinite strictly increasing

sequences bounded above (e.g., see Figure 5.2). For any play u, let |u| denote

its length, and max(u) denote the ≺-maximal abstracted integer value in u (or

Z if there is no such value). Let u v u ′ mean (|u|, max(u)) v (|u ′|, max(u ′)).

Now, let £ be the linear ordering between plays such that u £ u ′ if and only

if either u @ u ′, or |u| = |u ′|, max(u) = max(u ′) and u ¹ u ′.

Lemma 5.3.1 In the linear order of all plays with respect to £:

(i) there is no infinite strictly decreasing sequence;

(ii) there is no infinite strictly increasing sequence which is bounded above.

Proof This is due to the following two facts. Firstly, the v ordering between

pairs of nonnegative integers and abstracted integer values has the properties

(i) and (ii). Secondly, for any such pair (n, c), there are only finitely many

plays u such that |u| = n and max(u) = c.

The abstraction refinement procedure (ARP) is given in Figure 5.3.

Note that, in Step 1, the initial abstractions can be chosen arbitrarily; and in

Step 4, arbitrary abstractions can be refined in arbitrary ways, as long as the
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The procedure checks safety of a given concrete term Γ ` M : T .

1 Let Γ0 ` M0 : T0 be a finitely abstracted term obtained from Γ ` M : T
by replacing κ by finitary abstractions. Let i := 0.

2 If A〈〈Γi ` Mi : Ti〉〉 accepts a deterministic unsafe interaction play, ter-
minate with answer UNSAFE.

3 Otherwise, if A〈〈Γi ` Mi : Ti〉〉 accepts only safe plays, terminate with
answer SAFE.

4 Otherwise, let u be the £-minimal unsafe interaction play accepted by
A〈〈Γi ` Mi : Ti〉〉. Let Γi+1 ` Mi+1 : Ti+1 be obtained by refining
one or more abstractions in Γi ` Mi : Ti by finitary abstractions,
provided that at least one abstracted value which occurs in u is split.
Let i := i + 1, and repeat from 2.

Figure 5.3: Abstraction refinement procedure

refinement splits at least one abstracted value in u. These two choices do not

affect correctness and semi-termination, but they allow experimentation with

different heuristics in concrete implementations. Also, in Step 4, arbitrary

unsafe plays can be chosen. In this case, the procedure is still correct, but we

cannot guarantee the semi-termination.

Theorem 5.3.2 ARP is well-defined and effective. If it terminates with SAFE

(UNSAFE, respectively), then Γ ` M : T is safe (unsafe, respectively).

Proof For well-defined-ness, Lemma 5.3.1 (i) ensures that the £-minimal

unsafe interaction play u accepted by A〈〈Γi ` Mi : Ti〉〉 always exists. Since

the condition in Step 2 was not satisfied, u is not deterministic. Therefore,

u cannot contain only singleton abstracted values, so there is at least one

abstracted value in u which can be split.

Effectiveness follows from the fact that it suffices to consider cycle-free

plays in Step 4, and from the computability of £.
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If ARP terminates with SAFE (UNSAFE, respectively), then Γ ` M :

T is safe (unsafe, respectively) by Corollary 5.2.2, since any abstraction is

refined by the identity abstraction κ.

Theorem 5.3.3 If Γ ` M : T is unsafe then ARP will terminate with UN-

SAFE.

Proof By Corollary 3.7.3 and the correspondence (5.1), there exists an unsafe

interaction play t ∈ 〈〈Γ ` M : T 〉〉.
For each i , let Ui be the set of all unsafe u ∈ 〈〈Γi ` Mi : Ti〉〉, and let

u†i be the £-minimal element of Ui .

It follows by Theorem 5.2.1 that, for any u ∈ 〈〈Γi+1 ` Mi+1 : Ti+1〉〉,
u ∈ 〈〈Γi ` Mi : Ti〉〉. Also, we have u £ u, since they have the same length

and c ¹ c for any c. Now, Step 4 ensures that, for any i , u†i 6∈ 〈〈Γi+1 ` Mi+1 :

Ti+1〉〉.
Therefore, u†0 ¢ u†1 ¢ · · · u†i ¢ · · · . But, for each i , u†i £ t

i
£ t . By

Lemma 5.3.1 (ii), ARP must terminate for Γ ` M : T !

ARP may diverge for safe terms. This is generally the case with ab-

straction refinement methods since the underlying problem is undecidable. A

simple example is the term

e : expint ` newint x := e in if (!x =!x + 1) then abort : com

This term is safe, but any finitely abstracted term obtained from it is unsafe.

5.4 Implementation

We have seen so far how counterexample guided abstraction refinement ideas

can be adapted to the setting of game semantics models (see Section 5.3).
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However, implementing the procedure above is non-trivial because the semi-

algorithm, as described, is highly inefficient. In this section, we describe

GameChecker, a model checking tool which implements efficiently an ab-

straction refinement procedure for verifying safety properties of software, such

as assertion violations, buffer overruns or array-out-of-bounds errors. The

procedure is guaranteed to terminate for unsafe inputs.

GameChecker is available from:

http://www.dcs.warwick.ac.uk/~aleks/gamechecker.htm.

5.4.1 Representing Game Models in CSP

GameChecker includes a compiler which translates any finitely abstracted

term Γ ` M : T into a CSP process JΓ ` M : T KCSPuΓ, where uΓ maps

free identifiers to copy-cat processes, whose set of finite even-length traces

tracesev(JΓ ` M : T KCSPuΓ) is the set of all plays of the game strategy for

the term. Those processes are defined compositionally, by induction on the

structure of terms (see Section 4.3).

The abstraction refinement procedure described in Section 5.3 requires

models consisting of fully revealed plays, i.e., models in which semantic com-

position of strategies does not involve hiding of the moves involved in com-

position. The fully revealed plays allow us to discern between genuine and

spurious counterexamples by identifying the precise subterms that produce

abstracted moves. However, fully revealed models are much larger and there-

fore impractical. In GameChecker, this is overcome as follows: first we use

special marker moves to identify points in plays at which abstraction gives rise

to nondeterminism, then we use a special debugging feature of FDR that lets

us reveal only those plays which are counterexamples rather than full models.
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Nondeterminism due to abstraction happens when an arithmetic-logic

operation or a conversion produces more than one result. In such an instance,

the operation necessarily has at least one abstracted integer operand which is

not a singleton, i.e. which abstracts more than one integer. The game strategy

for the operation then performs a special marker move nd .c, where c is such

an operand. Those moves are propagated through strategy compositions, so

for any term Γ ` M : T , they appear in tracesev(JΓ ` M : T KCSPuΓ) at the

points where nondeterminism due to abstraction occurs.

Example Consider Jx : var int[0,4] ` x := !x+1 : comK. If the abstract value <0

is read from x , !x + 1 can evaluate to both 0 and <0. The following complete

play corresponds to choosing the result 0:

run readx <0x nd .(<0) write(0)x okx done

The move nd .(<0) records the non-singleton abstracted integer operand <0.

FDR offers a number of state-space reduction algorithms which preserve

finite-trace sets, and which are thus compositional. The processes represent-

ing the game strategies are particularly amenable to such reductions, because

moves which are hidden through composition of strategies become internal

(τ) process transitions. The compiler within GameChecker inserts calls to

FDR’s state-space reduction algorithms within the process scripts it outputs.

5.4.2 Implementing Abstraction Refinement Procedure

GameChecker checks safety of a given concrete term Γ ` M : T (with

infinite integer data types) by performing a sequence of iterations. The initial
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abstracted term Γ0 ` M0 : T0 uses the coarsest abstraction [ ] for any free

identifier or local variable, and the abstraction [0, n] or [n, 0] for constants

n. Other abstractions (such as those for integer expression subterms) are

determined from the former by inference.

Each iteration consists of model checking (by calling the FDR tool), slic-

ing [103], and refining abstractions. Only abstractions which occur in types of

free identifiers or local variables are explicitly refined, and others are obtained

by inference. That yields a refined abstracted term Γi+1 ` Mi+1 : Ti+1, which

is passed to the next iteration.

The following are the steps of any iteration. If t is a trace which contains

at least one special move marking a nondeterminism, let pick(t) = c, where

nd .c is the first such move 4. For ordering non-singleton abstracted integers,

we use a bijection r to the natural numbers: r(Z) = 0, r(<n) = 2|n|+ 2, and

r(>n) = 2n + 1. This has the property that r(c) < r(c′) whenever c ′ ⊆ c.

1 If JΓi ` Mi : TiKCSPuΓ \ {|nd|} is unsafe, terminate with answer UNSAFE.

2 If JΓi ` Mi : TiKCSPuΓ is safe, terminate with answer SAFE.

3 Among the counterexamples (i.e. traces of JΓi ` Mi : TiKCSPuΓ which end

in abort), select t such that r(pick(t)) is minimal 5.

4 Apply the FDR trace-reveal feature to t , obtaining a fully revealed trace s .

5 Call a slicing procedure to determine a set S of all occurrences of non-

singleton abstracted integers which were involved in causing the first

4This definition of pick(t) is currently implemented, but other definitions are possible. The
crucial property is that, if t is used to refine abstractions, then one of the refinements will split
pick(t).

5We implemented also a procedure which selects an arbitrary counterexample. It is correct, but
it might not terminate for unsafe terms.
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nd .c move in s .

6 For any data type intπ of a free identifier or a local variable which cor-

responds to an occurrence of an abstracted integer b in S , refine π by

splitting b.

Steps 2 and 3 are implemented as follows. The process JΓi ` Mi :

TiKCSPuΓ is composed in parallel with an auxiliary process Rank of pick which,

once the first move of the form nd .c has occurred, keeps in its state the value

r(c). FDR is called to model check that parallel composition, and for any

reachable state which has an abort transition , to return a trace which reaches

it. By Step 1, any such trace must contain an nd .c move. The parallel com-

position with Rank of pick ensures that, for any possible value of r(pick(t))

with t a counterexample, at least one such counterexample is returned by

FDR.

Step 5 is implemented as follows. The procedure slice(i) uses as a global

parameter s , an interaction unsafe play, and takes as argument i , the index

of the previous move in s to the first nd .c move. It returns a set of moves S ,

which are involved in computing s(i):

1 If move s(i) is an answer in expD , which contains an occurrence of non-

singleton abstracted integer, then:

(i) if s(i) corresponds to a free identifier then return s(i).

(ii) if s(i) corresponds to an arithmetic or logic operation op then return

slice(k) ∪ slice(i − 1), where k is the index of the answer of the
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first operand:

s = · · · q q · · · m · · · q · · · m ′ n · · ·
k i − 1 i

where n = m opm ′.

(iii) if s(i) corresponds to the sequencing operator then return slice(i−
1), where

s = · · · q run · · · done · · · q · · · m ′ m · · ·
i − 1 i

(iv) if s(i) corresponds to the if operator then return slice(k)∪slice(i−
1), where k is the index of the answer of the guard:

s = · · · q q · · · b · · · q · · · m ′ m · · ·
k i − 1 i

(v) if s(i) corresponds to a de-referencing then return slice(i − 1),

where

s = · · · q read · · · m ′ m · · ·
i − 1 i

2 if s(i) is an answer in varD , then:

(i) if s(i) corresponds to a free variable and s(i) is a non-singleton

abstracted integer m, i.e. an answer to read, then return s(i).

(ii) if s(i) corresponds to a local variable and s(i) is a non-singleton

abstracted integer m, i.e. an answer to read, then

return slice(k), where k is the index of the last write operation on

the variable:

s = · · · write(m ′) · · · ok · · · read · · · m · · ·
k i
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or return s(i) if there is no write operation on the variable before i .

3 if s(i) is an answer in com then:

(i) if s(i−1) is ok and it corresponds to an assignment to a local variable,

then return slice(k), where k is the answer of the right-hand side

of the assignment:

s = · · · run q · · · m ′ · · · write(m) · · · ok done · · ·
k i − 1 i

(ii) otherwise, return ∅.

4 otherwise, return ∅.

The slicing procedure can be considered as an optimisation. The ARP

will work correctly, even if we always refine all identifiers that occur in the

interaction trace prior to the first nondeterminism. However, the size of the

generated models will increase very rapidly.

Theorem 5.4.1 If the abstraction refinement procedure terminates, its an-

swer is correct. Moreover, it terminates for any unsafe term.

Proof UNSAFE answers are correct because any trace which contains no

special moves marking nondeterminism corresponds to a concrete trace. Cor-

rectness of SAFE answers is a consequence of the conservativity of abstraction

(see Section 5.2).

Suppose Γ ` M : T is unsafe. Let s be a fully revealed unsafe play

of the game strategy for Γ ` M : T , and let m be an integer in s with

maximum absolute value. For any non-singleton abstracted integer c, we define

d(c) = 2|m|+ 1− r(c). Then d(c) > 0 whenever |n| ≤ |m| for some n ∈ c.
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For any iteration i , let Di be the sum of all positive d(c) as c ranges

over the non-singleton partitions of all abstractions in Γi ` Mi : Ti . Steps 3–6

ensure that D0 > D1 > · · · > 0, so the procedure must terminate.

5.4.3 Using the Tool

GameChecker has been developed in Java [15].

The front end can be seen in Figure 5.4. The inputs are a concrete term,

given using C-like syntax 6, and a property, given as an unsafe command whose

executability will be checked. The default unsafe command is abort. The

result pane shows the iteration steps, including all reported nondeterministic

counterexamples and applied refinements. If the procedure terminates, it is

reported whether the term is safe or unsafe. In the latter case, a genuine

counterexample is returned.

By default, GameChecker executes a simpler abstraction refinement

procedure than the one presented in Subsection 5.4.2, where any shortest coun-

terexample is selected in Step 3. This variant is more efficient per iteration,

but it might not terminate for unsafe terms. The semi-terminating procedure

is run by checking the Semi-Termination box in the Options menu. Figure 5.5

shows the tool architecture.

5.4.4 Examples

The following are three progressively more involved examples. Further exam-

ples can be found at the GameChecker website:

http://www.dcs.warwick.ac.uk/~aleks/gamechecker.htm.

6We prefer the C-like syntax for the sake of its presumed familiarity to most users.
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Figure 5.4: A screen-shot of the tool

A warm-up example

Consider the term

f (com, com) : com ` newint x := 0 in f
(
x := !x + 1, if (!x > 1) then abort

)

which uses a local variable x , and a non-local function f . The program is not

safe, and this is how GameChecker will discover the bug.

The initial abstracted term is

newint[ ] x := 0 in f
(
x := !x + 1, if (!x > 1) then abort

)

A nondeterministic counterexample is identified by FDR, corresponding to a

function that evaluates its second argument:

run runf runf ,2 nd .Z abort
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Analyser

FDR

Compiler

GUI

Term

Abs to refine Output

CSP script

Figure 5.5: The tool architecture

Next, by processing the detailed output from FDR, we reconstruct a

corresponding fully revealed play:

run runf runf ,2 run2 q2,1 q2,1,1 read2,1,1,1 readx Zx

Z2,1,1,1 Z2,1,1 q2,1,2 12,1,2 tt2,1 nd .Z

The slicing procedure starts by examining the subterm with coordinates

〈2, 1〉, whose answer move precedes nd. The coordinates specify the path in

the syntax tree of the term to reach the subterm, in this case the boolean

expression of if. The nd move marks that this term has been evaluated non-

deterministically. Since this subterm represents a logic operation, the slicing

procedure is called recursively to examine its operands, i.e. terms 〈2, 1, 1〉 and

〈2, 1, 2〉. The answer move of the 〈2, 1, 1〉 term is the abstract value Z, so the

examination proceeds for its subterm 〈2, 1, 1, 1〉. Here, it will be detected that

the 〈2, 1, 1, 1〉 term is a de-referencing of x and that the abstract value Z is

read from x . Thus, the slicing procedure will indicate that the abstraction of

x needs to be refined.

The second iteration uses the refined term:

newint[0,0] x := 0 in f
(
x := !x + 1, if (!x > 1) then abort

)

Another nondeterministic counterexample is found, which represents a func-
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tion evaluating its first and then its second argument:

run runf runf ,1 donef ,1 runf ,2 nd .(>0) abort

The corresponding fully revealed play is:

run runf runf ,1 run1 q1,2 q1,2,1 read1,2,1,1 readx 0x 01,2,1,1 01,2,1

q1,2,2 11,2,2 11,2 write(1)1,1 write(>0)x okx ok1,1

ok1 donef ,1 runf ,2 run2 q2,1 q2,1,1 read2,1,1,1 readx (>0)x

(>0)2,1,1,1 (>0)2,1,1 q2,1,2 12,1,2 tt2,1 nd .(>0)

Similarly as in the previous iteration, the analyser starts exploring the

nondeterministic term 〈2, 1〉. By searching for non-singleton abstracted inte-

gers recursively through its subterms, it will detect that the abstract value >0

read from x has caused the nondeterminism. So, further refinement of x will

be recommended.

The third iteration term is:

newint[0,1] x := 0 in f (x := !x + 1, if (!x > 1) then abort)

Now, a genuine unsafe trace is detected: f increments x twice, then evaluates

its second argument:

run runf runf ,1 donef ,1 runf ,1 donef ,1 runf ,2 abort

The model generated for the third iteration term is shown in Figure 4.1.

Observe that, in this case, the model contains no nd moves.
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A semi-termination example

The term

e : expint, f (com, com) : com `
newint x := e in newint y := 0 in

if (!x = !x + 1) then abort else f
(
y := !y + 1, if (!y > 1) then abort

)

is an example of an unsafe term for which the simpler abstraction refinement

procedure, where any shortest counterexample is selected in Step 3, does not

terminate: it keeps refining the abstraction of x . If the tool is instructed to

perform the semi-terminating procedure presented in Section 5.4.2, then after

a few iterations of refining the abstraction of x , the abstraction of y will be

refined. For this particular example, a genuine counterexample is reported

after refining the abstractions of e and x to [0, 1], and the one for y to [0, 1].

A stack example

Consider the following implementation of a stack of maximum size k (see also

Figure 4.8).

empty : com, overflow : com, p : exp int,

ANALYSE(com, exp int) : com `
newint buffer[k ] := 0 in newint top := 0 in

let com push(exp int x ) {
if (!top = k) then overflow else {buffer[!top] := !x ; top := !top + 1}} in

let exp int pop {
if (!top = 0) then empty else { top := !top− 1; return !buffer[!top + 1]}} in

ANALYSE(push(p), pop)
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empty overflow oub
k Iterations Time Iterations Time Iterations Time

5 2 0.3 7 1.2 7 1.5

10 2 0.9 12 5.6 12 8

15 2 2 17 18 17 23

20 2 4 22 47 22 59

30 2 11 32 190 32 230

50 2 60 52 1570 52 1831

100 2 630 failed failed

Table 5.1: Experimental results for checking a stack implementation

We can check a range of properties of the stack implementation. By

replacing empty with abort and overflow with abort command, we can check

separately for ‘empty’ (reads from empty stacks) and ‘overflow’ (writes to full

stacks) errors, both of which are present for any k . We can also check that

array-out-of-bounds errors are not present in the term: arrays are syntactic

sugar, in which abort is executed if an array is referenced out of its bounds.

Table 5.1 contains the experimental results for checking the three prop-

erties on the stack implementation. We ran GameChecker on a Research

Machine AMD Athlon 64(tm) Processor 3500+ with 2GB RAM. We list the

number of iterations and the execution times in minutes for different values

of k . Abstraction and abstraction-refinement are crucial in generating models

that are small enough to be analysed, by ensuring that the contents of the ar-

ray can be disregarded (the initial abstraction [ ] is not refined), and that the

local variable tracking the top of the stack (top) is automatically adjusted to

a small but safe domain (in practice, [0, 0] for ‘empty’, and [0, k ] for ‘overflow’

and ‘oub’ errors).



Chapter 6

Compositional Verification

One of the main problems in model checking is the state explosion problem

[32]: the explored system states need to be stored in memory, which may be

prohibitively large for realistic systems. Given that the state explosion prob-

lem is particulary acute in software model checking, the most desirable feature

of this approach is scalability. Compositional modelling and verification (e.g.,

[60]) achieve scalability by breaking up a larger software system into smaller

systems which can be modelled and verified independently. Hence, the prop-

erties of a program can be established from the properties of its individually

checked components (subprograms) without requiring to check the whole pro-

gram as an atomic “flat” entity.

Game semantics meets the first requirement for achieving scalability:

compositional modelling. Game semantics is denotational, i.e. defined recur-

sively on the syntax, therefore the model of a larger program is constructed

from the models of its subprograms, using a notion of strategy composition.

Assume-guarantee reasoning [75, 93] addresses the second challenge:

compositional verification. To check that a property P is satisfied by a model

134
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M composed of two components M1 and M2, it suffices to find an assumption

(model) A such that

1. the composition of M1 and A satisfies P , and

2. M2 is a refinement of A

If such an assumption A can be found and it is significantly smaller than M2,

then we can verify whether M satisfies P (by checking 1 and 2) without having

to build the whole M . Developing such an assumption A is not trivial.

In this chapter, we describe an automatic procedure which generates as-

sumptions as above using the L∗ algorithm for learning a regular language. L∗

iteratively learns a minimal deterministic finite automaton, which represents

the desired assumption, from membership and equivalence queries. In each it-

eration, L∗ produces a candidate assumption A which is used to check 1 and 2.

Depending on results of the checks, we may conclude that the required prop-

erty is satisfied, or violated in which case a witness counterexample is reported,

or the current A needs to be revised. The learning-based approach to auto-

matic assumption generation builds the assumption incrementally guided by

the queries, and if it finds an appropriate assumption the procedure will stop

and use it to prove the property. This procedure is set within an abstraction

refinement loop which automatically extracts a game-semantic model from a

data-abstracted program and refines the program if a spurious counterexample

is found.

We have implemented this approach in the GameChecker tool (see

Section 5.4). We report some initial experimental results, which indicate sig-

nificant memory savings compared to a non assume-guarantee approach.

The assume-guarantee paradigm is the best studied approach to compo-
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sitional reasoning [29, 60, 67, 75, 93, 102]. The primary difficulty in applying

this approach to realistic systems is that, in general, the appropriate assump-

tions have to be constructed manually.

The work presented in this chapter is motivated by a recently proposed

approach [33], which uses learning algorithms to automate assume-guarantee

reasoning. In [33], a variant of Angluin’s L∗ algorithm [14, 96] for learning a

regular language is used to generate appropriate assumptions. Compared to

this approach, which is applied at the design level of a software system, our

work makes the following contributions.

• We apply the method at the implementation level, and verify safety prop-

erties of open program fragments.

• While in [33] the method is used for verifying multi-threaded programs by

building models and checking their constituting threads independently,

here we apply compositional verification on sequential programs where

individually checked components can be arbitrary subprograms of the

given input program.

• The L∗ algorithm is adapted to the specific game semantics setting for

learning a game assumption.

• The method is integrated with a counterexample-guided abstraction re-

finement style loop. We thus obtain a procedure which embodies both

compositional modelling and compositional verification.

The L∗ learning algorithm has found a number of applications in auto-

matic verification. For example, adaptive model checking [59] uses learning to

compute an accurate finite state model of an unknown system starting from
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an approximate model; substitutability analysis of evolving software systems

[25] verifies an upgraded software system by learning; [13] uses a symbolic im-

plementation of the L∗ algorithm for compositional reasoning about symbolic

modules; [12] uses learning along with predicate abstraction in the context of

interface synthesis, etc.

6.1 The Learning Algorithm

Central to our compositional verification procedure is an algorithm for learn-

ing assumptions, which can be represented as regular languages. We define

an assumption for a game A as a prefix-closed non-empty set of even-length

sequences which satisfy the alternation condition. The algorithm is an adapta-

tion of the L∗ algorithm introduced by Angluin [14] which learns an unknown

regular language and produces an automaton that accepts it. Since L∗ needs to

learn assumptions, the adaptation will consider only non-empty prefix-closed

sets of even-length sequences (words) in which Opponent and Player moves

alternate, thus achieving greater efficiency.

Let A = 〈MA, λA,`A,PA〉 be a game. Let OA = {m ∈ MA | λOP
A (m) =

O} and PA = {m ∈ MA | λOP
A (m) = P} denote the sets of Opponent and

Player moves in A, respectively. Since λA is a total function, {OA, PA} is a

partition of MA. Given that the sequences from an assumption for a game

A satisfy the alternation condition, it follows that they are sequences from

(OAPA)∗.

Let α be an unknown assumption for a game A. L∗ iteratively learns

the structure of α using assistance from a Teacher who can answer two kinds

of questions about α:
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Membership query Given a sequence s from (OAPA)∗, the Teacher answers

true if s ∈ α, and false otherwise.

Equivalence query Given a DFA (Deterministic Finite Automaton) D , the

Teacher replies that D is either correct, when L(D) = α, or incorrect,

and in the latter case gives a counterexample which is a sequence in the

symmetric difference of L(D) and α.

The basic data structure of the L∗ algorithm is a two-dimensional table,

called observation table (S ,E ,T ), which keeps information about a finite col-

lection of sequences over (OAPA)∗, classified as members or non-members of α.

S is a prefix-closed set of even-length sequences (and thus include the empty

sequence ε), E ⊆ (OAPA)∗ is a suffix-closed set of even-length sequences (and

thus include ε as well), and T is a function mapping (S ∪ S · OAPA) · E →
{true, false}, such that:

∀ s ∈ S ∪ S ·OAPA.∀ e ∈ E : T (s , e) = true ⇔ s · e ∈ α

The rows of the table are the elements of (S ∪ S · OAPA), while the

columns are the elements of E . Finally T denotes the table entries.

Let us define a function row(s) for any s ∈ S ∪ S ·OAPA as follows:

∀ e ∈ E : row(s)(e) = T (s , e)

A table is closed if for each s ·mOmP ∈ S ·OAPA such that T (s , ε) = true, there

is some s ′ ∈ S such that row(s ′) = row(s ·mOmP). A table is consistent if for

each s , s ′ ∈ S such that row(s) = row(s ′), either T (s , ε) = T (s ′, ε) = false, or

for each mOmP ∈ OAPA, we have that row(s ·mOmP) = row(s ′ ·mOmP). Note

that if the table is not consistent, then there are s , s ′ ∈ S , mOmP ∈ OAPA,
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and e ∈ E , such that row(s) = row(s ′) and T (s ·mOmP , e) 6= T (s ′ ·mOmP , e).

In this case we can add mOmP · e to E in order to make row(s) 6= row(s ′).

We define an equivalence relation ≡ over sequences in S ∪ S · OAPA

such that s ≡ s ′ iff row(s) = row(s ′). Denote by [s ] the equivalence class

which includes s . Given a closed and consistent table (S ,E ,T ), L∗ constructs

a candidate DFA D = (Q , q0, O
APA, δ) as follows: Q = {[s ] | s ∈ S ,T (s , ε) =

true}, q0 = [ε], and for every s ∈ S and mOmP ∈ OAPA, the transition from [s ]

on input mOmP is enabled iff T (s ·mOmP , ε) = true and then δ([s ],mOmP) =

[s · mOmP ]. For example, see Figure 6.5 for a table and its candidate DFA.

The facts that the table is closed and consistent guarantee that the transition

relation is well-defined. All states in the automaton are accepting, since the

language we learn is prefix closed. Note that every transition in this automaton

is labelled by two-letters sequence: an Opponent and a Player move.

Figure 6.1 contains the L∗ algorithm. Each iteration of this algorithm

starts with either a table with S = E = {ε}, or a table which was prepared in

the previous iteration. Then T is updated using membership queries until the

table is consistent and closed. If the table is not consistent, E is increased with

a suffix which replaces the inconsistent equivalence class with two new classes.

If the table is not closed, then S is increased with sequences that represent

missing equivalence classes. Next a candidate automaton D is proposed and

an equivalence query with D is made. If the answer for the equivalence query is

true, i.e. L(D) = α, L∗ terminates and returns the automaton D . Otherwise,

L∗ analyses the counterexample c reported by the Teacher and adds all even-

length prefixes of c to S . Then, a new iteration is started.

Let n be the number of states of the minimal DFA M equivalent to

the unknown language we learn. It was shown in [14, Theorem 1] that the
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let L∗(S ,E ) be
repeat :

Update T using queries
while (S ,E ,T ) is not consistent or not closed do

if (S ,E ,T ) is not consistant then
find s ∈ S , mOmP ∈ OAPA, e ∈ E :

row(s) = row(s ′) and T (s ·mOmP , e) 6= T (s ′ ·mOmP , e)
E = E ∪ {mOmP · e}
Update T using queries

if (S ,E ,T ) is not closed then
find s ∈ S , mOmP ∈ OAPA

s ·mOmP 6∈ [t ], for all t ∈ S
S = S ∪ {s ·mOmP}
Update T using queries

D = MakeAutomaton(S ,E ,T )
if D is correct then

return D
else

let c be reported counterexample
foreach (s ∈ even prefix(c) and s 6∈ S ) S = S ∪ {s}

Figure 6.1: The L∗ algorithm for learning assumptions

candidate automata made by L∗ strictly increase in size, i.e. each candidate

automaton must have at least one more state than the one from the previous

iteration, and all incorrect candidates are smaller than M . Hence, L∗ is guar-

anteed to construct M using at most n−1 equivalence queries (i.e. iterations).

It was also shown in [14] that L∗ terminates in time polynomial in n and the

length of the longest counterexample provided by the Teacher.

Each new call to L∗ starts normally with S = E = {ε}. But in cases

where a previously learned assumption (language) exists (and hence a table),

we want to start the algorithm for learning a new modified assumption by

reusing the information proposed in the previous table. Thus with this dy-

namic version of L∗, we try to speed up the learning by reusing the previously
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inferred sets S and E for assumption α, to learn a new modified assumption

α′ which differs slightly from α. We apply this optimisation using the fact

that if L∗ starts with any non-empty valid table (i.e. valid function T ) then

it will terminate with a correct result [25, Theorem 2]. A table is said to be

valid if the answers to the membership queries for all sequences in the table

are correct with respect to the unknown assumption α′ which is learned by L∗,

i.e. ∀ s ∈ S ∪ S ·OAPA. ∀ e ∈ E : T (s , e) = true ⇔ s · e ∈ α′.

We can apply some further optimizations to the L∗ algorithm specific

for the languages we learn. A prefix closed language has the property that

extensions of rejected sequences are rejected, i.e., if s 6∈ α, then no extension

of s is in α. Therefore, since the language we learn is prefix closed, before any

membership query s ∈ α, we first test whether it is an extension of a sequence

already observed to be rejected. If so, we add the result immediately to the

table.

6.2 Compositional Verification

In this section we describe in detail the compositional verification procedure

which combines assume-guarantee reasoning and abstraction refinement.

6.2.1 Overview

We first examine how the game semantics of β-normal AIA2 terms Γ ` M : B

is obtained. Since terms are interpreted recursively over the typing rules,

consider a derivation tree of such a term Γ ` M : B . At the leaves, we

have base subterms, which are language constants and free identifiers, and are

interpreted by appropriate constant and copy-cat strategies. At each node,
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there is a subterm obtained by a language construct c from some children

subterms M1, . . . , Mn . Then, c(M1, . . . ,Mn) is interpreted by composing the

interpretations of the subterms and of the construct σc:

Jc(M1, . . . ,Mn)K = (JM1K, . . . , JMnK) o
9 σc = (JM1K†, . . . , JMnK†) ; σc

We also note that the promotion operator † is applied only to strategies

σ for games of the form JΓK ⇒ JB ′K, where B ′ are base types. The games

JB ′K are flat, i.e. all their questions are initial and Player moves can only be

answers. So σ† consists of iterated plays of σ, such that a new play of σ can

be started only when the previous one is completed. Basically, σ† contains

plays of the form s1 . . . sksk+1 where each si is a play of σ and s1, . . . , sk are

complete. That is a regular language operation, i.e. if σ is a regular language

then σ† is a regular language as well.

Now, for any strategies σ1, . . . , σn and τ , we have
(
(σ†1, . . . , σ

†
n) ; τ

)†
=

(σ†1, . . . , σ
†
n) ; τ † [3]. By thus distributing † over linear composition ; , we

conclude that the game semantics of Γ ` M : B can be obtained by repeatedly

applying ; to promoted strategies for base subterms and language constructs.

For first-order free identifiers, the application strategy is first calculated and

then † is applied to it. In other words, † does not need to be applied to any

composite strategy, except for the application.

By the same argument, if Γ′ ` N : B ′ is a subterm of Γ ` M : B , the

game semantics of Γ ` M : B is given by:

JΓ ` M [N ] : BK = JΓ ` M [−] : BK(JΓ′ ` N : B ′K†)

where JΓ ` M [−] : BK(σ) is an operator on regular languages, which is ob-

tained from the game semantic definitions for Γ ` M : B by replacing the
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promoted interpretation of the subterm Γ′ ` N : B ′ by σ, and in which only ;

is applied to languages obtained from σ.

To check safety of JΓ ` M [N ] : BK, we use the concept of assume-

guarantee (AG) reasoning. Recall that an assumption for a game A is a prefix-

closed non-empty set of even-length sequences from (OAPA)∗.

Let α be an assumption for the game JΓ′K⇒ !JB ′K. We use the following

AG rule:

JΓ ` M [−] : BK(α) is SAFE

JΓ′ ` N : B ′K† ≤ α

JΓ ` M [N ] : BK is SAFE

The rule states that if there is an assumption α for JΓ′K ⇒ !JB ′K, such

that JΓ ` M [−] : BK(α) is safe and α is an abstraction of JΓ′ ` N : B ′K†,
then JΓ ` M [N ] : BK is safe. Our goal is to construct such an appropriate

assumption α to show that Γ ` M [N ] : B is safe.

Theorem 6.2.1 The AG rule is sound and complete.

Proof By monotonicity of composition of strategies with respect to the ≤
ordering, we have that if α ≤ α′ then JΓ ` M [−] : BK(α) ≤ JΓ ` M [−] :

BK(α′). To establish soundness, we use the fact that if α′ is safe and α ≤ α′

then α is also safe. Completeness follows by taking α = JΓ′ ` N : B ′K†.

For any operator JΓ ` M [−] : BK, where the hole − is in the place of a

subterm of type Γ′ ` B ′, we define the weakest safe assumption αW : JΓ′K ⇒
!JB ′K as follows. Given an even-length sequence s of (OJΓ′K⇒!JB ′KPJΓ′K⇒!JB ′K)∗,

let τs be the set consisting of s and all its even-length prefixes. Let αW consist

of all sequences s such that JΓ ` M [−] : BK(τs) is safe.
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By the definitions of JΓ ` M [−] : BK and ; , we have that, for any

strategy σ : JΓ′K⇒!JB ′K,

JΓ ` M [−] : BK(σ) =
⋃
{JΓ ` M [−] : BK(τs) | s ∈ σ}

Thus, JΓ ` M [−] : BK(σ) is safe if and only σ ≤ αW . The problem of finding

an appropriate assumption α which satisfies both premises of the AG rule

hence reduces to checking for a language which is subset of αW and a superset

of JΓ′ ` N : B ′K†. We use the L∗ algorithm to learn such an assumption.

The verification procedure CompVer which uses the AG rule is pre-

sented in Figure 6.2. Given two terms Γ ` M [−] : B and Γ′ ` N : B ′, it checks

safety of Γ ` M [N ] : B . The procedure uses an AGCheck algorithm, and

iteratively performs the following steps:

1 Let JΓ0 ` M0[−] : B0K and JΓ′0 ` N0 : B ′
0K be obtained by data abstraction,

and S 0
0 = E 0

0 = {ε}. Let i := 0.

2 Apply AGCheck on JΓi ` Mi [−] : BiK and JΓ′i ` Ni : B ′
iK, using S 0

i and

E 0
i . If the result is true, then terminate with answer SAFE. Otherwise,

a counterexample c ′ is returned as well as updated values of S k
i and E k

i .

3 If c ′ is a nondeterministic (spurious) play, obtain JΓi+1 ` Mi+1[−] : Bi+1K
and JΓ′i+1 ` Ni+1 : B ′

i+1K by refining the abstractions in the current terms

which were involved in causing the nondeterminism in c ′. Set S 0
i+1 = S k

i ,

E 0
i+1 = E k

i
1 and i := i + 1, and repeat from 2.

4 Otherwise, c ′ is a deterministic (genuine) play and the procedure terminates

with answer UNSAFE.

1If some sequences in S k
i (E k

i ) contain abstracted values whose abstractions are refined, we
replace them with sequences which are compatible with newly refined abstractions.
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Figure 6.2: Compositional verification procedure

We say that a play is nondeterministic if it contains a special marker

move nd , which identifies points in plays at which abstraction gives rise to

nondeterminism. This happens when an arithmetic-logic operation or a con-

version produces more than one result (see Section 5.4).

We continue by describing the AGCheck algorithm. Details of the data

abstraction procedure and the abstraction refinement process can be found in

Chapter 5.

6.2.2 Assume-Guarantee Algorithm

The AGCheck algorithm takes as inputs JΓi ` Mi [−] : BiK and JΓ′i ` Ni :

B ′
iK as well as S 0

i and E 0
i , and returns as answer true or a counterexample.

AGCheck is actually the L∗ algorithm given in Figure 6.1, where the member-

ship and equivalence queries are answered using model checking. AGCheck

proceeds as follows:
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1 Generate a candidate assumption αk
i using L∗.

2 If JΓi ` Mi [−] : BiK(αk
i ) is not safe, then return a counterexample to the L∗

algorithm, set k := k + 1 and repeat from 1.

3 If JΓ′i ` Ni : B ′
iK† ≤ αk

i is true, terminate with answer true.

4 Otherwise, among the even-length counterexamples from JΓ′i ` Ni : B ′
iK†,

report a deterministic one, c. If one such does not exist, then report a

nondeterministic one, c.

5 Generate a strategy τc from the sequence c which contains c and all its

even-length prefixes. If JΓi ` Mi [−] : BiK(τc) is safe, then report c to L∗,

set k := k + 1 and repeat from 1.

6 Otherwise, terminate reporting a deterministic counterexample c ′. If one

such does not exist, report a nondeterministic play c ′.

If in Step 2 a counterexample c is returned to L∗, then c ∈ αk
i \αW ,

i.e. the current assumption αk
i is too weak and it has to be strengthened by

removing some sequences from it. Similarly, if in Step 5 a counterexample c

is reported to L∗, then c ∈ αW \αk
i , i.e. the current αk

i must be weakened by

adding some sequences. The result of such strengthening (resp., weakening)

will be that at least the behaviour that the counterexample represents will be

removed from (resp., allowed by) the next assumption αk+1
i .

In the above procedure, L∗ iteratively learns an appropriate assumption

α, but the procedure terminates as soon as conclusive results are obtained.

The Teacher which interacts with L∗ is implemented using model checking.

To answer a membership query for a sequence s , which is a play 2 of the
2Here we regard a play of a game as a valid play which satisfies visibility and bracketing

conditions.
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corresponding game, the Teacher first builds a strategy τs = {s ′ | s ′ veven s}.
The Teacher then model checks JΓ ` M [−]K(τs) for safety. If true is returned,

then s ∈ α and the Teacher answers true, otherwise it answers false. The

answer for all other sequences, which are not plays, is false. An equivalence

query is answered by model-checking two premises of the AG rule in Steps

2 and 3. If both checks succeed, then the answer is true, otherwise either a

counterexample is reported to L∗ or an unsafe counterexample is found.

Theorem 6.2.2 Given JΓi ` Mi [−] : BiK and JΓ′i ` Ni : B ′
iK, the AGCheck

algorithm is correct.

Proof The algorithm returns true when both premises of the AG rule return

true, and therefore correctness is guaranteed by the AG rule. An unsafe play

is returned when there is a play s of (JΓ′i ` NiK)† which, when applied to

JΓi ` Mi [−]K produces an unsafe play, which implies that JΓi ` Mi [Ni ] : BiK is

not safe.

Theorem 6.2.3 If CompVer terminates, its answer is correct.

Proof This follows from the correctness of the abstraction refinement proce-

dure, which was shown in Chapter 5, and Theorem 6.2.2.

6.2.3 Example

Consider the term

f : com → com ` newint x := 0 in

f (x := x + 1) ;

if (x = 0) then abort;
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in which x is a local variable, and f is a non-local function. We want to check

whether this term is safe from terminating abnormally for all safe instantiations

of f . The program is not safe if function f does not use its argument at all.

Its model is shown in Figure 6.3.

run
f,1

done
f,1

run run
f

done
f

done

abort

run
f,1

done
f,1

done
f

Figure 6.3: The strategy for the running example

We start with applying the coarsest abstraction [ ] to x , which means

that x can only have the value Z (i.e. a nondeterministic choice over all inte-

gers).

Let the arbitrary subterm N be f (x := x + 1). The model of the whole

term is obtained by composing the model for the scope of variable declaration

with the strategy cellx ,0, which is used for remembering the initial (0) or the

most recently written value into the variable x . This strategy ensures “good

variable” behaviour of x .

In Figure 6.4 are shown the models Jf ` M [−]K(α) and Jf , x ` f (x :=

x + 1)K at the Abstraction Refinement iteration 0. The nd move 3 in the first

strategy marks that nondeterminism has occurred due to abstraction. In this

case, the guard of the ‘if’ command has been evaluated nondeterministically

to true or false, since the value of x might be any integer.

3It is neither Opponent nor Player, but a special marker move.
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(b)

ndrun run
a

done
a

done

abortread
x

Z
x

; ; cella
x,0

run run
f,1

done
done

f

run
f

read
x

done
f,1

writeZ
x

Z
x

ok
x

(a)

Figure 6.4: Strategies at AR iteration 0: (a) Jf ` M [−]K(α) (b) Jf , x ` f (x := x+1)K

At each iteration, L∗ updates its observation table and constructs a

candidate assumption whenever the table becomes consistent and closed. The

first such table produced and its associated assumption are given in Fig-

ure 6.5. Note that in observation tables we list only sequences from S · OAPA

which are plays, and all other sequences are false by default. The equivalence

query is then asked. The second AG premise fails and the Teacher returns

a negative answer with a counterexample c = 〈run · runf · donef · done〉,
which is not safe when applied to Jf ` M [−]K. Thus, AGCheck reports

c′ = 〈run · runf · donef · nd · abort〉. Since this play is nondeterministic, our

procedure decides to refine abstractions that caused the nondeterminism in c ′

and to continue. In this case, the abstraction of x is refined to [0, 0], which

contains three possible values: < 0, 0 and > 0.

At the Abstraction Refinement iteration 1, the strategies Jf ` M [−]K(α)

and Jf , x ` f (x := x + 1)K are given in Figure 6.6.

Since we use a dynamic version of L∗, it starts with an observation

table where S 0
1 and E 0

1 are the same as in the previous table T 0
0 . The next
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T 1
1 E 1

1

ε

ε true
S 1

1 run · done false

run · done false
run · readx true

S1 · OAPA run · writeZ x true
run · runf true

run read
x

run run
f

run writeZ
x

Figure 6.5: Observation table and assumption at AR iteration 0

candidate assumption is shown in Figure 6.7. The second AG rule premise

fails giving c = 〈run · runf · donef · done〉. Now, AGCheck reports a genuine

counterexample c ′ = 〈run · runf · donef · abort〉, and the procedure terminates

informing that the input term is not safe.

6.3 Implementation

We implemented the compositional verification procedure presented above in

the GameChecker tool (see Section 5.4). GameChecker compiles an ab-

stracted open program into a process in the CSP process algebra, whose finite

traces set represents the game-semantic model of the program. Membership

and equivalence queries are answered using the FDR refinement checker [46].

If a counterexample is reported by the procedure, GameChecker is used to
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; ; cella
x,0

(a)

run run
a

done
a

done

abort

read
x 0

x

(>0)
x

(<0)
x

(b)

done

run
run

f,1

done
f

run
f

read
x

done
f,1

write>0
x

0
x

ok
x

(>0)
x

(<0)
x

nd

write0
x

write<0
x

ok
x

Figure 6.6: Strategies at AR iteration 1: (a) Jf ` M [−]K(α) (b) Jf , x ` f (x := x+1)K

run read
x

run run
f

run {write> ,write ,write< }0 0 0
x xx

Figure 6.7: Assumption at AR iteration 1

analyse the counterexample and do abstraction refinement.

Consider the following implementation of a stack of maximum size k

(see Section 5.4.4).
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empty : com, overflow : com, p : exp int,

ANALYSE(com, exp int) : com `
newint buffer[k ] := 0 in

newint top := 0 in

let com push(int x ) {
if (!top = k) then overflow else {buffer[!top] := !x ; top := !top + 1}} in

let exp int pop {
if (!top = 0) then empty else {top := !top− 1; return !buffer[!top + 1]}} in

ANALYSE(push(p), pop)

By replacing empty with abort command (resp. overflow with abort), we

can check separately for ‘empty’, i.e. reads from empty stacks, (resp. ‘overflow’,

i.e. writes to full stacks) errors, both of which are present for any n. For

‘empty’ (resp. ‘overflow’) error, a genuine counterexample is reported after

refining the abstraction of top to [0, 0] (resp. [0, k ]). The counterexample

corresponds to a single call of pop method (resp. k + 1 consecutive calls of

push method) after which abort is executed.

empty overflow
k Direct AG Direct AG

3 271 107 286 147

10 306 135 937 441

15 331 155 1462 651

25 381 195 2662 1071

Table 6.1: Experimental results for checking a stack implementation

We applied the AG procedure by learning an appropriate assumption

for the push (resp. pop) method. In both cases, we obtain conclusive assump-
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tions with null states since counterexamples are reported for all valid plays of

the subterms we learn. Table 6.1 contains the experimental results for check-

ing the two properties by using the AG procedure and the direct verification

procedure without AG reasoning (see Section 5.4). We list the size of the

largest generated transition system in each case for different values of k .



Chapter 7

Conclusions

This final chapter looks back and summarises the main achievements presented

in this thesis, focussing on the overall picture. We close by briefly looking

ahead at on-going and future work.

The aim of this thesis was to develop a fully compositional semantic

framework for verifying safety properties of open sequential programs. As a

main presentation vehicle, the metalanguage AIA (Abstracted Idealized Al-

gol) was considered. AIA is an expressive programming language which com-

bines the fundamental features of imperative and functional languages such as

block-allocated variables, expressions with side effects, higher order functions,

abnormal termination etc. The language incorporates abstraction annotations

at the level of data types, which allows the writing of abstracted programs in

a syntax similar to that of concrete programs. In Chapter 2 the language AIA

was introduced. Chapter 3 presented a cartesian closed category of games and

strategies on games which yields an interpretation of AIA. This model was

shown to be fully abstract, and so it was used for proving safety of programs,

i.e. to show that a program cannot execute the designated unsafe command

154
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abort. Chapter 4 showed that for the second-order finitary AIA the model can

be given certain kinds of concrete automata-theoretic representations, which

are independent of the syntax. In particular, the model was represented using

regular languages and the CSP process algebra. Once the model was con-

structed standard model-checking methods were applied to check safety of

finite programs. In Chapter 5 an abstraction refinement procedure was pro-

posed which enables programs with infinite integer types to be verified, and

which terminates for unsafe programs. A prototype tool implementing the

procedure was outlined, and some positive experimental results were reported.

Chapter 6 combined abstraction refinement, assume-guarantee reasoning and

the L∗ algorithm for learning regular languages to yield a procedure for com-

positional verification. Game semantics was used to construct accurate models

of programs compositionally, and an automatic assume-guarantee procedure

with learning was used for achieving compositional verification.

Given the novelty of the game semantics approach to software verifica-

tion, our practical work was concentrated on prototyping and evaluation of a

variety of academic examples. Further work is therefore necessary to make the

approach scale to industrial software. Some interesting extensions, which will

bring the approach closer to realistic applications, are the following.

New features The language fragment we study includes some basic imper-

ative and functional features. We consider extending it with several

features for which finite representations of the game semantic model

are known. Finite-data programs with shared-variable concurrency and

semaphores [53, 55], as well as call-by-value procedures [49] can be anal-

ysed via regular languages. Also, it was established in [87] that finitary

IA with third-order procedures can be modelled using visibly pushdown
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automata [11]. The problem of adaptation of the abstraction refinement

procedure to a language enriched with these features is not trivial and is

critical for software verification of a real programming language, such as

a substantial subset of C or Java. Other interesting features to consider

are general references [6], control primitives [76], recursive types [82],

polymorphism [9], probabilistic constructs [35], etc.

Predicate abstraction Extending abstractions to arbitrary predicates is crit-

ical for achieving efficient verification. Predicate abstraction allows only

relations between variables to be captured. This can be done by mod-

elling programs of second-order IA with infinite data types using symbolic

automata [65], in which data is not represented explicitly but symboli-

cally. The construction of symbolic automata will be based on the regular

language game semantics [51]. In this way we expect to obtain a SLAM-

like predicate-abstraction refinement procedure which will be applicable

to realistic industrial-size programs.

Liveness properties The game model for AIA is derived with respect to

“may termination” program equivalence, so that two programs are con-

sidered equivalent if they can produce the same range of output values.

This model is acceptable for reasoning about safety properties, but it

gives no account of liveness properties. To address this problem, a model

which is fully abstract with respect to “may and must termination” pro-

gram equivalence is needed. We expect to construct such a model by

reworking the idea of divergences from CSP in the context of game se-

mantics in the similar way as it was done in [63] to obtain a may and

must termination model of EIA.



Appendix A

CSP Scripts for Case Studies

This appendix provides the CSP scripts produced by our compiler for the

stack implementation whose analyses are presented in Section 4.3.5. We first

present the CSP script containing functions which implement all arithmetic-

logic operations.

A.1 Functions

functions.csp

minus(down,upper,v) =

if v==Z then Z

else if v==Plus then Minus

else if v==Minus then Plus

else if -v>upper then Plus

else if -v<down then Minus

else -v

abs(v) =

if v>=0 then v

157
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else -v

mod(down,upper,down1,upper1,down2,upper2,v1,v2) =

if v1==Z or v2==Z then {Z}

else if v1==0 then {0}

else if v1==Plus or v2==Plus

then union({down..upper},{Minus,Plus})

else if v1==Minus or v2==Minus

then union({down..upper},{Minus,Plus})

else if v1%v2>upper then {Plus}

else if v1%v2<down then {Minus}

else {v1%v2}

div(down,upper,down1,upper1,down2,upper2,v1,v2) =

if v1==Z or v2==Z then {Z}

else if v1==0 then {0}

else if v1==Plus or v2==Plus

then union({down..upper},{Minus,Plus})

else if v1==Minus or v2==Minus

then union({down..upper},{Minus,Plus})

else if v1/v2>upper then {Plus}

else if v1/v2<down then {Minus}

else {v1/v2}

mul(down,upper,down1,upper1,down2,upper2,v1,v2) =

if (v1==0 or v2==0) then {0}

else if v1==Z or v2==Z then {Z}

else if v1==Plus and v2>=upper2

and upper1*upper2>down1*down2 then {Plus}

else if v1==Plus and v2==Minus

and upper1*down2<=down1*upper2 then {Minus}

else if v1==Plus then union({down..upper},{Minus,Plus})

else if v2==Plus and v1>=upper1 then {Plus}

else if v2==Plus and v1==Minus

and upper2*down1<=down2*upper1 then {Minus}
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else if v2==Plus then union({down..upper},{Minus,Plus})

else if v1==Minus and v2<=down2

and down1*down2>=upper1*upper2 then {Plus}

else if v1==Minus then union({down..upper},{Minus,Plus})

else if v2==Minus and v1<=down1

and down1*down2>=upper1*upper2 then {Plus}

else if v2==Minus then union({down..upper},{Minus,Plus})

else if v1*v2>upper then {Plus}

else if v1*v2<down then {Minus}

else { v1*v2 }

sub(down,upper,down1,upper1,down2,upper2,v1,v2) =

if v1==Z or v2==Z then {Z}

else if v1==Plus and v2<=down2 then {Plus}

else if v1==Plus and v2==Plus

then union({down..upper},{Minus,Plus})

else if v1==Plus and upper1+1-v2>=down

then union({upper1+1-v2..upper},{Plus})

else if v1==Plus then union({down..upper},{Minus,Plus})

else if v2==Plus and v1<=down1 then {Minus}

else if v2==Plus and v1-(upper2+1)<=upper

then union({down..v1-(upper2+1)},{Minus})

else if v1==Plus then union({down..upper},{Minus,Plus})

else if v1==Minus and v2>=upper2 then {Minus}

else if v1==Minus and v2==Minus

then union({down..upper},{Minus,Plus})

else if v1==Minus and down1-1-v2<=upper

then union({down..down1-1-v2},{Minus})

else if v1==Minus then union({down..upper},{Minus,Plus})

else if v2==Minus and v1>=upper1 then {Plus}

else if v2==Minus and v1-(down2-1)>=down

then union({v1-(down2-1)..upper},{Plus})

else if v2==Minus then union({down..upper},{Minus,Plus})

else if v1-v2>upper then {Plus}

else if v1-v2<down then {Minus}
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else {v1-v2}

add(down,upper,down1,upper1,down2,upper2,v1,v2) =

if v1==Z or v2==Z then {Z}

else if v1==Plus and v2>=upper2 then {Plus}

else if v1==Plus and v2==Minus

then union({down..upper},{Minus,Plus})

else if v1==Plus and upper1+1+v2>=down

then union({upper1+1+v2..upper},{Plus})

else if v1==Plus then union({down..upper},{Minus,Plus})

else if v2==Plus and v1>=upper1 then {Plus}

else if v2==Plus and v1==Minus

then union({down..upper},{Minus,Plus})

else if v2==Plus and upper2+1+v1>=down

then union({upper2+1+v1..upper},{Plus})

else if v2==Plus then union({down..upper},{Minus,Plus})

else if v1==Minus and v2<=down2 then {Minus}

else if v1==Minus and down1-1+v2<=upper

then union({down..down1-1+v2},{Minus})

else if v1==Minus then union({down..upper},{Minus,Plus})

else if v2==Minus and v1<=down1 then {Minus}

else if v2==Minus and down2-1+v1<=upper

then union({down..down2-1+v1},{Minus})

else if v2==Minus then union({down..upper},{Minus,Plus})

else if v1+v2>upper then {Plus}

else if v1+v2<down then {Minus}

else {v1+v2}

greatereq(down1,upper1,down2,upper2,v1,v2) =

if v1==Z or v2==Z then {false,true}

else if v1==Plus and v2<=(upper1+1) and v2!=Plus

then {true}

else if v2==Plus and v1<=upper2 then {false}

else if v1==Minus and v2>=down1 then {false}

else if v2==Minus and v1>=(down2-1) and v1!=Minus
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then {true}

else if v1==Minus or v2==Minus then {false,true}

else if v1==Plus or v2==Plus then {false,true}

else {v1>=v2}

lesseq(down1,upper1,down2,upper2,v1,v2) =

if v1==Z or v2==Z then {false,true}

else if v1==Plus and v2<=upper1 then {false}

else if v2==Plus and v1<=(upper2+1) and v1!=Plus

then {true}

else if v1==Minus and v2>=(down1-1) and v2!=Minus

then {true}

else if v2==Minus and v1>=down2 then {false}

else if v1==Minus or v2==Minus then {false,true}

else if v1==Plus or v2==Plus then {false,true}

else {v1<=v2}

greater(down1,upper1,down2,upper2,v1,v2) =

if v1==Z or v2==Z then {false,true}

else if v1==Plus and v2<=upper1 then {true}

else if v2==Plus and v1<=(upper2+1) and v1!=Plus

then {false}

else if v1==Minus and v2>=(down1-1) and v2!=Minus

then {false}

else if v2==Minus and v1>=down2 then {true}

else if v1==Minus or v2==Minus then {false,true}

else if v1==Plus or v2==Plus then {false,true}

else {v1>v2}

less(down1,upper1,down2,upper2,v1,v2) =

if v1==Z or v2==Z then {false,true}

else if v1==Plus and v2<=(upper1+1) and v2!=Plus

then {false}

else if v2==Plus and v1<=upper2 then {true}

else if v1==Minus and v2>=down1 then {true}
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else if v2==Minus and v1>=(down2-1) and v1!=Minus

then {false}

else if v1==Minus or v2==Minus then {false,true}

else if v1==Plus or v2==Plus then {false,true}

else {v1<v2}

noteqn(down1,upper1,down2,upper2,v1,v2) =

if v1==Z or v2==Z then {false,true}

else if v1==Plus and v2<=upper1 then {true}

else if v2==Plus and v1<=upper2 then {true}

else if v1==Minus and v2>=down1 then {true}

else if v2==Minus and v1>=down2 then {true}

else if v1==Minus or v2==Minus then {false,true}

else if v1==Plus or v2==Plus then {false,true}

else {v1!=v2}

eqn(down1,upper1,down2,upper2,v1,v2) =

if v1==Z or v2==Z then {false,true}

else if v1==Plus and v2<=upper1 then {false}

else if v2==Plus and v1<=upper2 then {false}

else if v1==Minus and v2>=down1 then {false}

else if v2==Minus and v1>=down2 then {false}

else if v1==Minus or v2==Minus then {false,true}

else if v1==Plus or v2==Plus then {false,true}

else {v1==v2}

cast(fromdown,fromupper,todown,toupper,v) =

if todown==Z then {Z}

else if v==Z then union({todown..toupper},{Minus,Plus})

else if v==Plus and fromupper>=toupper then {Plus}

else if v==Minus and fromdown<=todown then {Minus}

else if v==Plus then union({ fromupper+1..toupper},{Plus})

else if v==Minus then union({fromdown-1..todown},{Minus})

else if v>toupper then {Plus}

else if v<todown then {Minus}
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else {v}

Rank(down,upper,v) =

if v==Z then 0

else if v==Minus and down>=0 then 6*down+3

else if v==Minus and down<0 then (-6)*(down-1)+4

else if v==Plus and upper>=0 then 6*upper+1

else if v==Plus and upper<0 then (-6)*(upper+1)+2

else if v>=0 then 6*v+5

else (-6)*(v+1)+4

A.2 Stack Implementation

The complete CSP script for the stack implementation in Figure 4.8 with k = 3

is presented next.

stack.csp

include "functions.csp"

transparent diamond, sbisim, normal

UB(in,v) = (in.A.B!v -> UB(in,v)) [] (in.Q.writeB?v1 ->

UB(in,v1)) [] SKIP

RTUB(in,v) = (in.A.B!v -> RTUB(in,v)) [] (in.Q.writeB?v1 ->

RTUB(in,v1)) [] SKIP

UN(in,v,S) = (in.A.N!v -> UN(in,v,S)) [] (in.Q.writeN?v1:S ->

UN(in,v1,S)) [] SKIP

RTUN(in,v,S) = (in.A.N!v -> RTUN(in,v,S)) []

(in.Q.writeN?v1:S -> RTUN(in,v1,S)) [] SKIP
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Mem = (Update?v -> Mem1(v)) [] ([]w:{|overflow|}@w -> Mem) []

([]w:{|OUB|}@w -> Mem) [] SKIP

Mem1(v) = (Update?v1 -> Mem1(v)) [] ([]w1:{|overflow|}@w1 ->

What!v -> Mem1(v)) [] ([]w1:{|OUB|}@w1 -> What!v -> Mem1(v))

[] SKIP

Minus = -1

Plus = 4

Z = 5

NumbersZ = {Z}

Numbers0t3 = union({Plus,Minus},{ 0 .. 3 })

datatype question = q | run | read | writeB.Bool |

writeN.{Minus ..Z}

datatype answer = done | ok | B.Bool | N.{Minus .. Z}

datatype var = Q.question | A.answer

datatype nondet = GREAT.{ Minus.. Z } | LESS.{ Minus .. Z } |

NUMBER.{ Minus .. Z } | BOOL.Bool

channel Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7 : question

channel A0, A1, A2, A3, A4, A5, A6, A7 : answer

channel OUB, top : var

channel EXH

channel ND : nondet

channel Update, What : { 0..6*Z}

channel empty : {0}.var

channel overflow : {0}.var

channel p : var

channel ANALYSE:{0,1,2}.var
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channel buffer : {0,1,2}.var

channel top: var

P3 = Q0.q -> top.Q.read -> top.A.N?v:Numbers0t3 -> A0.N.v ->

SKIP

M3 = SKIP [] ( Q0.q -> top.Q.read -> top.A.N?v:Numbers0t3 ->

A0.N.v -> M3 )

P4 = Q0.q -> A0.N.3 -> SKIP

M4 = SKIP [] ( Q0.q -> A0.N.3 -> M4 )

P5 = P3 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] (P4 [[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] (Q0.q -> Q1.q -> A1.N?v1:Numbers0t3 -> Q2.q ->

A2.N?v2:{ 3 } -> (let a1=eqn(0,3,3,3,v1,v2) within if

(card(a1)==1) then (A0.B?va1:a1 -> SKIP) else (A0.B.va1 ->

ND.BOOL?va1:a1 -> SKIP))) \ {|Q2,A2|}) \ {|Q1,A1|}

C5 = SKIP [] ( Q0.q -> Q1.q -> A1.N?v1:Numbers0t3 -> Q2.q ->

A2.N?v2:{ 3 } -> (let a1=eqn(0,3,3,3,v1,v2) within if

(card(a1)==1) then (A0.B?va1:a1 -> C5) else ( A0.B.va1

-> ND.BOOL?va1:a1 -> C5 ) ) )

M5 = M3 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] ( M4 [[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] C5 \ {|Q2,A2|} ) \ {|Q1,A1|}

P6 = SKIP

P7 = ( ( Q0.run -> overflow.0.Q.run -> P6 ) ;

( overflow.0.A.done -> A0.done -> SKIP ) )

C7 = SKIP [] ( ( Q0.run -> overflow.0.Q.run -> P6 ) ;

( overflow.0.A.done -> A0.done -> C7 ) )

M7 = C7

P10 = Q0.q -> top.Q.read -> top.A.N?v:Numbers0t3 ->

A0.N.v -> SKIP

M10 = SKIP [] ( Q0.q -> top.Q.read ->



166 APPENDIX A. CSP SCRIPTS FOR CASE STUDIES

top.A.N?v:Numbers0t3 -> A0.N.v -> M10 )

P11 = Q0.q -> A0.N.1 -> SKIP

M11 = SKIP [] ( Q0.q -> A0.N.1 -> M11 )

Numbers1t3 = union({Plus,Minus},{ 1 .. 3 })

P12 = P10 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] (P11 [[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] (Q0.q -> Q1.q -> A1.N?v1:Numbers0t3 -> Q2.q ->

A2.N?v2:{ 1 } -> (let a1=add(1,3,0,3,1,1,v1,v2) within if

(card(a1)==1) then ( A0.N?va1:a1 -> SKIP) else ( []va1:a1

@ if (va1==Plus) then (A0.N.va1 -> ND.GREAT.3 -> SKIP) else

(if (va1==Minus) then (A0.N.va1 -> ND.LESS.1 -> SKIP) else

( A0.N.va1 -> ND.NUMBER.va1 -> SKIP ) ) ) ) )

\ {|Q2,A2|}) \ {|Q1,A1|}

C12 = SKIP [] ( Q0.q -> Q1.q -> A1.N?v1:Numbers0t3 -> Q2.q

-> A2.N?v2:{ 1 } -> (let a1=add(1,3,0,3,1,1,v1,v2) within if

(card(a1)==1) then (A0.N?va1:a1 -> C12) else ( []va1:a1 @ if

(va1==Plus) then (A0.N.va1 -> ND.GREAT.3 -> C12) else (if

(va1==Minus) then (A0.N.va1 -> ND.LESS.1 -> C12) else

( A0.N.va1 -> ND.NUMBER.va1 -> C12 ) ) ) ) )

M12 = M10 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] ( M11 [[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] C12 \ {|Q2,A2|} ) \ {|Q1,A1|}

P9 = P12 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] ( Q0.run -> Q1.q ->

A1.N?v:Numbers1t3 -> ( let a2=cast(1,3,0,3,v) within if

(card(a2)==1) then ( top.Q.writeN?va2:a2 -> top.A.ok ->

A0.done -> SKIP) else ( []va2:a2 @ if (va2==Plus) then

(top.Q.writeN.va2 -> top.A.ok -> ND.GREAT.3 -> A0.done ->

SKIP) else (if (va2==Minus) then (top.Q.writeN.va2

-> top.A.ok -> A0.done -> ND.LESS.0 -> SKIP ) else

(top.Q.writeN.va2 -> top.A.ok -> A0.done -> ND.NUMBER.va2

-> SKIP ) ) ) ) ) \ {|Q1,A1|}

C9 = SKIP [] ( Q0.run -> Q1.q -> A1.N?v:Numbers1t3 -> ( let

a2=cast(1,3,0,3,v) within if (card(a2)==1) then (
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top.Q.writeN?va2:a2 -> top.A.ok -> A0.done -> C9) else

([]va2:a2 @ if (va2==Plus) then (top.Q.writeN.va2

-> top.A.ok -> A0.done -> ND.GREAT.3 -> C9 ) else (if

(va2==Minus) then (top.Q.writeN.va2 -> top.A.ok

-> A0.done -> ND.LESS.0 -> C9 ) else (top.Q.writeN.va2

-> top.A.ok -> A0.done -> ND.NUMBER.va2 -> C9) ) ) ) )

M9 = M12 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] C9 \ {|Q1,A1|}

P14 = Q0.q -> top.Q.read -> top.A.N?v:Numbers0t3 -> A0.N.v ->

SKIP

M14 = SKIP [] ( Q0.q -> top.Q.read -> top.A.N?v:Numbers0t3 ->

A0.N.v -> M14 )

P13 = P14 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] (P1[[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] (Q0.run -> Q2.q -> A2.N?v2:{ Z } -> Q1.q ->

A1.N?v1:Numbers0t3 -> if (member(v1,{0..2})) then ( ( let

a2=cast(Z,Z,Z,Z,v2) within if (card(a2)==1) then (

buffer.v1.Q.writeN?va2:a2 -> buffer.v1.A.ok -> A0.done ->

SKIP) else ([]va2:a2 @ if (va2==Plus) then

(buffer.v1.Q.writeN.va2 -> buffer.v1.A.ok -> A0.done ->

ND.GREAT.Z -> SKIP ) else (if (va2==Minus) then

(buffer.v1.Q.writeN.va2 -> buffer.v1.A.ok -> A0.done ->

ND.LESS.Z -> SKIP) else (buffer.v1.Q.writeN.va2

-> buffer.v1.A.ok -> A0.done -> ND.NUMBER.va2 ->

SKIP ) ) ) ) ) else (if (card(greatereq(0,3,0,0,v1,0))!=1

or card(lesseq(0,3,2,2,v1,2))!=1) then (OUB.Q.run ->

OUB.A.done -> A0.done -> ND.BOOL.false -> SKIP) else

(OUB.Q.run -> OUB.A.done -> A0.done -> SKIP)) )

\ {|Q2,A2|} ) \ {|Q1,A1|}

C13 = SKIP [] ( Q0.run -> Q2.q -> A2.N?v2:{ Z } -> Q1.q ->

A1.N?v1:Numbers0t3 -> if (member(v1,{0..2})) then ( ( let

a2=cast(Z,Z,Z,Z,v2) within if (card(a2)==1) then (

buffer.v1.Q.writeN?va2:a2 -> buffer.v1.A.ok -> A0.done ->

C13) else ([]va2:a2 @ if (va2==Plus) then

(buffer.v1.Q.writeN.va2 -> buffer.v1.A.ok -> A0.done ->
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ND.GREAT.Z -> C13 ) else (if (va2==Minus) then

(buffer.v1.Q.writeN.va2 -> buffer.v1.A.ok -> A0.done ->

ND.LESS.Z -> C13 ) else (buffer.v1.Q.writeN.va2

-> buffer.v1.A.ok -> A0.done -> ND.NUMBER.va2 -> C13 )

) ) ) ) else (if (card(greatereq(0,3,0,0,v1,0))!=1 or

card(lesseq(0,3,2,2,v1,2))!=1) then (OUB.Q.run ->

OUB.A.done -> A0.done -> ND.BOOL.false -> C13) else

(OUB.Q.run -> OUB.A.done -> A0.done -> C13)) )

M13 = M14 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] ( M1 [[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] C13 \ {|Q2,A2|} ) \ {|Q1,A1|}

P8 = ( P13 [[Q0<-Q2,A0<-A2]] [|{|Q2,A2|}|]( P9 [[Q0<-Q1,A0<-A1]]

[|{|Q1,A1|}|] (Q0.run -> Q2.run -> A2.done -> Q1.run ->

A1.done -> A0.done -> SKIP) \ {|Q1,A1|} ) \ {|Q2,A2|} )

C8 = SKIP [] (Q0.run -> Q2.run -> A2.done -> Q1.run -> A1.done

-> A0.done -> C8)

M8 = ( M13 [[Q0<-Q2,A0<-A2]] [|{|Q2,A2|}|]( M9 [[Q0<-Q1,A0<-A1]]

[|{|Q1,A1|}|]C8 \ {|Q1,A1|} ) \ {|Q2,A2|} )

P15 = M5 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] ( M7 [[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] (M8 [[Q0<-Q3,A0<-A3]] [|{|Q3,A3|}|] (Q0.run

-> Q1.q -> A1.B?v -> if v then (Q2.run -> A2.done -> A0.done

-> SKIP) else (Q3.run -> A3.done -> A0.done -> SKIP ) )

\ {|Q3,A3|} ) \ {|Q2,A2|} ) \ {|Q1,A1|}

C15 = SKIP [] ( Q0.run -> Q1.q -> A1.B?v -> if v then (Q2.run ->

A2.done -> A0.done -> C15) else (Q3.run -> A3.done -> A0.done

-> C15 ) )

M15 = M5 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] ( M7 [[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] ( M8 [[Q0<-Q3,A0<-A3]] [|{|Q3,A3|}|] C15

\ {|Q3,A3|} ) \ {|Q2,A2|} ) \ {|Q1,A1|}

P17 = Q0.q -> top.Q.read -> top.A.N?v:Numbers0t3 -> A0.N.v ->

SKIP

M17 = SKIP [] ( Q0.q -> top.Q.read -> top.A.N?v:Numbers0t3 ->

A0.N.v -> M17 )
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P18 = Q0.q -> A0.N.0 -> SKIP

M18 = SKIP [] ( Q0.q -> A0.N.0 -> M18 )

P19 = P17 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] (P18 [[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] (Q0.q -> Q1.q -> A1.N?v1:Numbers0t3 -> Q2.q ->

A2.N?v2:{ 0 } -> (let a1=eqn(0,3,0,0,v1,v2) within if

(card(a1)==1) then (A0.B?va1:a1 -> SKIP) else (A0.B.va1

-> ND.BOOL?va1:a1 -> SKIP) ) ) \ {|Q2,A2|}) \ {|Q1,A1|}

C19 = SKIP [] ( Q0.q -> Q1.q -> A1.N?v1:Numbers0t3 -> Q2.q ->

A2.N?v2:{ 0 } -> (let a1=eqn(0,3,0,0,v1,v2) within if

(card(a1)==1) then (A0.B?va1:a1 -> C19) else

( A0.B.va1 -> ND.BOOL?va1:a1 -> C19 ) ) )

M19 = M17 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] ( M18 [[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] C19 \ {|Q2,A2|} ) \ {|Q1,A1|}

P21 = Q0.q -> A0.N.0 -> SKIP

M21 = SKIP [] ( Q0.q -> A0.N.0 -> M21 )

P22 = SKIP

P23 = ( ( Q0.run -> empty.0.Q.run -> P22 ) ; ( empty.0.A.done ->

A0.done -> SKIP ) )

C23 = SKIP [] ( ( Q0.run -> empty.0.Q.run -> P22 ) ; (

empty.0.A.done -> A0.done -> C23 ) )

M23 = C23

P20 = ( P23 [[Q0<-Q2,A0<-A2]] [|{|Q2,A2|}|](P21

[[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] (Q0.q -> Q2.run -> A2.done ->

Q1.q -> A1.N?v:{ 0 } -> (let a1=cast(0,0,0,0,v) within if

(card(a1)==1) then (A0.N?va1:a1 -> SKIP ) else ([]va1:a1 @

if (va1==Plus) then (A0.N.va1 -> ND.GREAT.0 -> SKIP) else

(if (va1==Minus) then (A0.N.va1 -> ND.LESS.0 -> SKIP) else

(A0.N.va1 -> ND.NUMBER.va1 -> SKIP) ) ) ) ) \ {|Q1,A1|} )

\ {|Q2,A2|} )
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C20 = SKIP [] (Q0.q -> Q2.run -> A2.done -> Q1.q -> A1.N?v:{ 0 }

-> (let a1=cast(0,0,0,0,v) within if (card(a1)==1) then

(A0.N?va1:a1 -> C20) else ([]va1:a1 @ if (va1==Plus) then

(A0.N.va1 -> ND.GREAT.0 -> C20 ) else (if (va1==Minus) then

(A0.N.va1 -> ND.LESS.0 -> C20 ) else

(A0.N.va1 -> ND.NUMBER.va1 -> C20 ) ) ) ) )

M20 = ( M23 [[Q0<-Q2,A0<-A2]] [|{|Q2,A2|}|](M21 [[Q0<-Q1,A0<-A1]]

[|{|Q1,A1|}|]C20 \ {|Q1,A1|} ) \ {|Q2,A2|} )

P26 = Q0.q -> top.Q.read -> top.A.N?v:Numbers0t3 -> A0.N.v ->

SKIP

M26 = SKIP [] ( Q0.q -> top.Q.read -> top.A.N?v:Numbers0t3 ->

A0.N.v -> M26 )

P25 = P26 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] (Q0.q -> Q1.q ->

A1.N?v1:Numbers0t3 -> if (member(v1,{0..2})) then

(buffer.v1.Q.read -> buffer.v1.A.N?v2:NumbersZ -> A0.N.v2 ->

SKIP) else (if (card(greatereq(0,3,0,0,v1,0))!=1 or

card(lesseq(0,3,2,2,v1,2))!=1) then (OUB.Q.run ->

OUB.A.done -> A0.N.Z -> ND.BOOL.false -> SKIP) else

(OUB.Q.run -> OUB.A.done -> A0.N.Z -> SKIP)) ) \ {|Q1,A1|}

C25 = SKIP [] ( Q0.q -> Q1.q -> A1.N?v1:Numbers0t3 -> if

(member(v1,{0..2})) then (buffer.v1.Q.read ->

buffer.v1.A.N?v2:NumbersZ -> A0.N.v2 -> C25) else (if

(card(greatereq(0,3,0,0,v1,0))!=1 or

card(lesseq(0,3,2,2,v1,2))!=1) then (OUB.Q.run ->

OUB.A.done -> A0.N.Z -> ND.BOOL.false -> C25) else

(OUB.Q.run -> OUB.A.done -> A0.N.Z -> C25)) )

M25 = M26 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] C25 \ {|Q1,A1|}

P28 = Q0.q -> top.Q.read -> top.A.N?v:Numbers0t3 -> A0.N.v ->

SKIP

M28 = SKIP [] ( Q0.q -> top.Q.read -> top.A.N?v:Numbers0t3 ->

A0.N.v -> M28 )
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P29 = Q0.q -> A0.N.1 -> SKIP

M29 = SKIP [] ( Q0.q -> A0.N.1 -> M29 )

Numbers0t2 = union({Plus,Minus},{ 0 .. 2 })

P30 = P28 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] (P29 [[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] (Q0.q -> Q1.q -> A1.N?v1:Numbers0t3 -> Q2.q ->

A2.N?v2:{ 1 } -> (let a1=sub(0,2,0,3,1,1,v1,v2) within if

(card(a1)==1) then (A0.N?va1:a1 -> SKIP) else ( []va1:a1 @

if (va1==Plus) then (A0.N.va1 -> ND.GREAT.2 -> SKIP) else

(if (va1==Minus) then (A0.N.va1 -> ND.LESS.0 -> SKIP)

else (A0.N.va1 -> ND.NUMBER.va1 -> SKIP ) ) ) ) )

\ {|Q2,A2|}) \ {|Q1,A1|}

C30 = SKIP [] ( Q0.q -> Q1.q -> A1.N?v1:Numbers0t3 -> Q2.q ->

A2.N?v2:{ 1 } -> (let a1=sub(0,2,0,3,1,1,v1,v2) within if

(card(a1)==1) then (A0.N?va1:a1 -> C30) else ( []va1:a1 @ if

(va1==Plus) then (A0.N.va1 -> ND.GREAT.2 -> C30) else (if

(va1==Minus) then (A0.N.va1 -> ND.LESS.0 -> C30) else

(A0.N.va1 -> ND.NUMBER.va1 -> C30 ) ) ) ) )

M30 = M28 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] ( M29 [[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] C30 \ {|Q2,A2|} ) \ {|Q1,A1|}

P27 = P30 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] ( Q0.run -> Q1.q ->

A1.N?v:Numbers0t2 -> ( let a2=cast(0,2,0,3,v) within if

(card(a2)==1) then ( top.Q.writeN?va2:a2 -> top.A.ok ->

A0.done -> SKIP) else ( []va2:a2 @ if (va2==Plus) then

(top.Q.writeN.va2 -> top.A.ok -> A0.done -> ND.GREAT.3 ->

SKIP ) else (if (va2==Minus) then (top.Q.writeN.va2

-> top.A.ok -> A0.done -> ND.LESS.0 -> SKIP ) else

(top.Q.writeN.va2 -> top.A.ok -> A0.done ->

ND.NUMBER.va2 -> SKIP ) ) ) ) ) \ {|Q1,A1|}

C27 = SKIP [] ( Q0.run -> Q1.q -> A1.N?v:Numbers0t2 -> ( let

a2=cast(0,2,0,3,v) within if (card(a2)==1) then (

top.Q.writeN?va2:a2 -> top.A.ok -> A0.done -> C27) else

([]va2:a2 @ if (va2==Plus) then (top.Q.writeN.va2

-> top.A.ok -> A0.done -> ND.GREAT.3 -> C27 ) else (if
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(va2==Minus) then (top.Q.writeN.va2 -> top.A.ok

-> A0.done -> ND.LESS.0 -> C27 ) else (top.Q.writeN.va2

-> top.A.ok -> A0.done -> ND.NUMBER.va2 -> C27 ) ) ) ) )

M27 = M30 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] C27 \ {|Q1,A1|}

P24 = ( P27 [[Q0<-Q2,A0<-A2]] [|{|Q2,A2|}|](P25 [[Q0<-Q1,A0<-A1]]

[|{|Q1,A1|}|] (Q0.q -> Q2.run -> A2.done -> Q1.q -> A1.N?v:

{Z} -> (let a1=cast(Z,Z,0,0,v) within if (card(a1)==1) then

(A0.N?va1:a1 -> SKIP) else ( []va1:a1 @ if (va1==Plus) then

(A0.N.va1 -> ND.GREAT.0 -> SKIP ) else (if (va1==Minus)

then (A0.N.va1 -> ND.LESS.0 -> SKIP ) else (A0.N.va1 ->

ND.NUMBER.va1 -> SKIP ) ) ) ) ) \ {|Q1,A1|} ) \ {|Q2,A2|} )

C24 = SKIP [] (Q0.q -> Q2.run -> A2.done -> Q1.q -> A1.N?v:{ Z }

-> (let a1=cast(Z,Z,0,0,v) within if (card(a1)==1) then

(A0.N?va1:a1 -> C24) else ( []va1:a1 @ if (va1==Plus) then

(A0.N.va1 -> ND.GREAT.0 -> C24 ) else (if (va1==Minus) then

(A0.N.va1 -> ND.LESS.0 -> C24 ) else

(A0.N.va1 -> ND.NUMBER.va1 -> C24 ) ) ) ) )

M24 = ( M27 [[Q0<-Q2,A0<-A2]] [|{|Q2,A2|}|](M25 [[Q0<-Q1,A0<-A1]]

[|{|Q1,A1|}|]C24 \ {|Q1,A1|} ) \ {|Q2,A2|} )

P31 = M19 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] ( M20 [[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] ( M24 [[Q0<-Q3,A0<-A3]] [|{|Q3,A3|}|] (Q0.q ->

Q1.q -> A1.B?v -> if v then (Q2.q -> A2.N?v1:Numbers0t0 ->

(let a1=cast(0,0,0,0,v1) within if (card(a1)==1) then

(A0.N?va1:a1 -> SKIP ) else ( []va1:a1 @ if (va1==Plus) then

(A0.N.va1 -> ND.GREAT.0 -> SKIP) else (if (va1==Minus) then

(A0.N.va1 -> ND.LESS.0 -> SKIP ) else (A0.N.va1 ->

ND.NUMBER.va1 -> SKIP) ) ) ) ) else (Q3.q -> A3.N?v2:Numbers0t0

-> (let a2=cast(0,0,0,0,v2) within if (card(a2)==1) then

( A0.N?va2:a2 -> SKIP ) else ( []va2:a2 @ if (va2==Plus)

then (A0.N.va2 -> ND.GREAT.0 -> SKIP ) else (if

(va2==Minus) then (A0.N.va2 -> ND.LESS.0 -> SKIP ) else

(A0.N.va2 -> ND.NUMBER.va2 -> SKIP ) ) ) ) ) )

\ {|Q3,A3|} ) \ {|Q2,A2|} ) \ {|Q1,A1|}
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C31 = SKIP [] ( Q0.q -> Q1.q -> A1.B?v -> if v then (Q2.q ->

A2.N?v1:Numbers0t0 -> (let a1=cast(0,0,0,0,v1) within if

(card(a1)==1) then (A0.N?va1:a1 -> C31) else ( []va1:a1 @

if (va1==Plus) then (A0.N.va1 -> ND.GREAT.0 -> C31 ) else

(if (va1==Minus) then (A0.N.va1 -> ND.LESS.0 -> C31 ) else

(A0.N.va1 -> ND.NUMBER.va1 -> C31) ) ) ) ) else (Q3.q ->

A3.N?v2:Numbers0t0 -> (let a2=cast(0,0,0,0,v2) within if

(card(a2)==1) then (A0.N?va2:a2 -> C31) else ( []va2:a2 @

if (va2==Plus) then (A0.N.va2 -> ND.GREAT.0 -> C31 ) else

(if (va2==Minus) then (A0.N.va2 -> ND.LESS.0 -> C31 ) else

(A0.N.va2 -> ND.NUMBER.va2 -> C31 ) ) ) ) ) )

M31 = M19 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] ( M20 [[Q0<-Q2,A0<-A2]]

[|{|Q2,A2|}|] ( M24 [[Q0<-Q3,A0<-A3]] [|{|Q3,A3|}|] C31

\ {|Q3,A3|} ) \ {|Q2,A2|} ) \ {|Q1,A1|}

Numbers0t0 = union({Plus,Minus},{ 0 .. 0 })

P33 = Q0.q -> p.Q.read -> p.A.N?v:NumbersZ -> A0.N.v -> SKIP

M33 = SKIP [] ( Q0.q -> p.Q.read -> p.A.N?v:NumbersZ -> A0.N.v

-> M33 )

P1 = P33

M1 = M33

P34 = ( ANALYSE.1.Q.run -> Q1.run -> A1.done -> ANALYSE.1.A.done

-> P34 ) [] ( ANALYSE.2.Q.q -> Q2.q -> A2.N?v: Numbers0t0 ->

(let a1=cast(0,0,Z,Z,v) within if (card(a1)==1) then

(ANALYSE.2.A.N?va1:a1 -> P34 ) else ( []va1:a1 @ if

(va1==Plus) then (ANALYSE.2.A.N.va1 -> ND.GREAT.0 -> P34 )

else (if (va1==Minus) then (ANALYSE.2.A.N.va1

-> ND.LESS.0 -> P34 ) else (ANALYSE.2.A.N.va1

-> ND.NUMBER.va1 -> P34 ) ) ) ) ) [] SKIP

P35 = ( M15 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] ( M31

[[Q0<-Q2,A0<-A2]] [|{|Q2,A2|}|] ( ( Q0.run -> ANALYSE.0.Q.run

-> P34 ) ; ( ANALYSE.0.A.done -> A0.done -> SKIP ) )
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\ {|Q2,A2|} ) \ {|Q1,A1|} )

C35 = SKIP [] ( ( Q0.run -> ANALYSE.0.Q.run -> P34 ) ;

( ANALYSE.0.A.done -> A0.done -> C35 ) )

M35 = ( M15 [[Q0<-Q1,A0<-A1]] [|{|Q1,A1|}|] ( M31

[[Q0<-Q2,A0<-A2]] [|{|Q2,A2|}|] C35 \ {|Q2,A2|} )

\ {|Q1,A1|} )

P32 = sbisim(diamond((P35 [|{|top.A.N,top.Q.writeN|}|]

UN(top,0,Numbers0t3)) \ {|top|}))

Alpha0buffer(j) = if j==3 then

Events else {|buffer.j.A.N,buffer.j.Q.writeN|}

Proces0buffer(j) = if j==3 then sbisim(diamond(P32)) else

(UN(buffer.j,Z,{ Z }))

P36 = sbisim(diamond(( || j:{0..3} @ [Alpha0buffer(j)]

Proces0buffer(j) ) \ {|buffer|}))

RUN=[]w:Events@w->RUN

Prop=([]w:diff(Events,{|overflow,OUB|})@w->Prop) [] SKIP

FreeNDProcess = ([]w:diff(Events,{|EXH,ND|})@w->FreeNDProcess)

[] SKIP

FreeNDSearch = P36 [|Events|] FreeNDProcess

assert Prop [] RUN [T= FreeNDSearch

assert Prop [] RUN [T= P36
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[18] G. Berry. Modèles complètement adéquats et stables des lambda-calculus
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