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Computational model

LOCAL model
In each round during the execution of a distributed algorithm,
every processor:

1. sends messages to its neighbors,
2. receives messages from its neighbors, and
3. computes, i.e., performs individual computations.

Input
An input configuration is a pair (G, x) where G is a connected
graph, and every node v ∈ V (G) is assigned as its local input a
binary string x(v) ∈ {0,1}∗.

Output
The output of node v performing Algorithm A running in G with
input x and identity assignment Id:

outA(G, x, Id, v)
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Languages

A distributed language is a decidable collection of
configurations.

I Coloring =
{(G, x) s.t. ∀v ∈ V (G),∀w ∈ N(v), x(v) 6= x(w)}.

I At-Most-One-Marked = {(G, x) s.t. ‖ x ‖1 ≤ 1}.

I Consensus =
{(G, (x1, x2)) s.t. ∃u ∈ V (G),∀v ∈ V (G), x2(v) = x1(u)}.

I MIS = {(G, x) s.t. S = {v ∈ V (G) | x(v) = 1} is a MIS}.
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Decision

Let L be a distributed language.

Algorithm A decides L ⇐⇒ for every configuration (G, x):

I If (G, x) ∈ L, then for every identity assignment Id,
outA(G, x, Id, v) = “yes” for every node v ∈ V (G);

I If (G, x) /∈ L, then for every identity assignment Id,
outA(G, x, Id, v) =“no” for at least one node v ∈ V (G).
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Local decision

Let t be a function of triplets (G, x, Id).

Definition
LD(t) is the class of all distributed languages that can be
decided by a distributed algorithm that runs in at most t
communication rounds.

I Coloring ∈ LD(1) and MIS ∈ LD(1).
I AMOM, Consensus, and SpanningTree are not in LD(t),

for any t = o(n).
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Related work

What can be computed locally?
Define LCL as LD(O(1)) involving

I solely graphs of constant maximum degree
I inputs taken from a set of constant size

Theorem (Naor and Stockmeyer [STOC ’93])
If there exists a randomized algorithm that constructs a solution
for a problem in LCL in O(1) rounds, then there is also a
deterministic algorithm constructing a solution for that problem
in O(1) rounds.

Proof uses Ramsey theory.

Not clearly extendable to languages in LD(O(1)) \ LCL.
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(∆ + 1)-coloring

Arbitrary graphs

I can be randomly computed in expected #rounds O(log n)
(Alon, Babai, Itai [J. Alg. 1986]) (Luby [SIAM J. Comput. 1986])

I best known deterministic algorithm performs in 2O(
√

log n)

rounds (Panconesi, Srinivasan [J. Algorithms, 1996])

Bounded degree graphs

I Randomization does not help for 3-coloring the ring
(Naor [SIAM Disc. Maths 1991])

I can be randomly computed in expected #rounds
O(log ∆ +

√
log n) (Schneider, Wattenhofer [PODC 2010])

I best known deterministic algorithm performs in
O(∆ + log∗ n) rounds
(Barenboim, Elkin [STOC 2009]) (Kuhn [SPAA 2009])
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2-sided error Monte Carlo algorithms

Focus on distributed algorithms that use randomization but
whose running time are deterministic.

(p,q)-decider

I If (G, x) ∈ L then, for every identity assignment Id,
Pr[outA(G, x, Id, v) =“yes” for every node v ∈ V (G)]≥ p

I If (G, x) /∈ L then, for every identity assignment Id,
Pr[outA(G, x, Id, v) =“no” for at least one node v ∈ V (G)]≥ q
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Example: AMOM

Randomized algorithm

I every unmarked node says “yes” with probability 1;
I every marked node says “yes” with probability p.

Remarks:

I Runs in zero time;
I If the configuration has at most one marked node then

correct with probability at least p.
I If there are at least k ≥ 2 marked nodes, correct with

probability at least 1− pk ≥ 1− p2

I Thus there exists a (p,q)-decider for q + p2 ≤ 1.
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Bounded-probability error local decision

Definition
BPLD(t ,p,q) is the class of all distributed languages that have
a randomized distributed (p,q)-decider running in time at
most t .
I.e., can be decided in time at most t by a randomized
distributed algorithm with “yes” success probability p and “no”
success probability q.

Remark
For p and q such that p2 + q ≤ 1, there exists a language
L ∈ BPLD(0,p,q), such that L /∈ LD(t), for any t = o(n).

14 / 33



Bounded-probability error local decision

Definition
BPLD(t ,p,q) is the class of all distributed languages that have
a randomized distributed (p,q)-decider running in time at
most t .
I.e., can be decided in time at most t by a randomized
distributed algorithm with “yes” success probability p and “no”
success probability q.

Remark
For p and q such that p2 + q ≤ 1, there exists a language
L ∈ BPLD(0,p,q), such that L /∈ LD(t), for any t = o(n).

14 / 33



A sharp threshold for hereditary languages

A prefix of a configuration (G, x) is a configuration (G[U], x[U]),
where U ⊆ V (G)

Hereditary languages
A language L is hereditary if every prefix of every configuration
(G, x) ∈ L is also in L.

I Coloring and AMOM are hereditary languages.
I Every language {(G, ε) | G ∈ G} where G is hereditary is...

hereditary. (Examples of hereditary graph families are
planar graphs, interval graphs, forests, chordal graphs,
cographs, perfect graphs, etc.)

Theorem
Let L be an hereditary language and let t be a function of
triples (G, x, Id). If L ∈ BPLD(t ,p,q) for constants p,q ∈ (0,1]
such that p2 + q > 1, then L ∈ LD(O(t)).
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One ingredient in the proof

Let 0 < δ < p2 + q − 1, and define λ = 11 · dlog p/log(1− δ)e .

Separating partition
A separating partition of (G, x, Id) is a triplet (S,U1,U2) of
pairwise disjoint subsets of nodes such that S ∪ U1 ∪ U2 = V ,
and distG(U1,U2) ≥ λ · t .

U21U S
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Glueing lemma

Given a separating partition (S,U1,U2) of (G, x, Id), let
Gk = G[Uk ∪ S], and let xk be the input x restricted to nodes in
Gk , for k = 1,2.

U21U S S

Lemma (?)
For every instance (G, x) with identity assignment Id, and every
separating partition (S,U1,U2) of (G, x, Id), we have:(

(G1, x1) ∈ L and (G2, x2) ∈ L
)
⇒ (G, x) ∈ L.

Remark. Lemma (?) does not use the fact that L is hereditary,
but uses p2 + q > 1.
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Derandomization

Deterministic Algorithm D, applied at a node u
Given an instance (G, x) and an id-assignment Id:

If (BG(u,2λt), x[BG(u,2λt)]) ∈ L
then out(u) = “yes”
else out(u) = “no”

Remark
Nodes do not know t , but this can be fixed.
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Correctness (1/4)

Assume (G, x) ∈ L.
Since L is hereditary, every prefix of (G, x) is also in L.
Thus, every node u outputs out(u) = “yes".

Conversely, assume (G, x) /∈ L.

Assume towards contradiction that by applying D on (G, x, Id),
every node u outputs out(u) = “yes”.

Let U ⊆ V (G) be a maximal set of vertices such that G[U] is
connected and (G[U], x[U]) ∈ L.

I U is not empty, as (BG(u,2λt), x[BG(u,2λt)]) ∈ L for every
node u.

I |U| < |V (G)|, because (G, x) /∈ L.
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Correctness (2/4)

S
U

2Tu

u

Tu*2λ

Tu*6λ W1

W2

W3

U

Let u ∈ U be a node such that
BG(u,2t) contains a node outside U.

Let G′ = G[U ∪ V (BG(u,2t))].

Observe that G′ is connected and that
G′ strictly contains U.

Our goal is to show that
(G′, x[G′]) ∈ L, for contradiction.
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Correctness (3/4)

Let W 1,W 2, . . . ,W ` be the ` connected components of
G[U] \ BG(u,2t), ordered arbitrarily.

Let H denote the maximal graph such that H is connected and

BG(u,2t) ⊂ V (H) ⊆ BG(u,2t) ∪ (U ∩ BG(u,2λt))

Let W 0 be the empty graph, and for k = 0,1,2, · · · , `, define
the graph Z k = H ∪W 0 ∪W 1 ∪W 2 ∪ · · · ∪W k .

Observe that Z k is connected for each k = 0,1,2, · · · , `, and
that Z ` = G′.

We prove by induction on k that (Z k , x[Z k ]) ∈ L for every
k = 0,1,2, . . . , `. (This will establish the contradiction since, as
we mentioned before, Z ` = G′).
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Correctness (4/4)

S
U

2Tu

u

Tu*2λ

Tu*6λ W1

W2

W3

U

Define the sets of nodes

I S = V (Z k ) ∩ V (W k+1)

I U1 = V (Z k ) \ S
I U2 = V (W k+1) \ S

A crucial observation is that
(S,U1,U2) is a separating
partition of Z k+1.

By induction, we have (G1, x[G1]) ∈ L, because
G1 = G[U1 ∪ S] = Z k .

In addition, we have (G2, x[G2]) ∈ L, because
G2 = G[U2 ∪ S] = W k+1, and W k+1 is a prefix of G[U].

We can now apply Lemma (?) and conclude that
(Z k+1, x[Z k+1]) ∈ L.
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Distributed certification

One motivation
Settings in which one must perform local verifications
repeatedly.

I Proof Labeling Scheme (Korman, Kutten, Peleg [PODC 2007])

I Distributed verification (Das Sarma et al. [STOC 2011])

Definition
An algorithm A verifies L if and only if for every configuration
(G, x), the following hold:

I If (G, x) ∈ L, then there exists a certificate y such that,
for every id-assignment Id, outA(G, (x, y), Id, v) =“yes”
for all v ∈ V (G);

I If (G, x) /∈ L, then for every certificate y, and for every
id-assignment Id, outA(G, (x, y), Id, v) =“no” for at
least one node v ∈ V (G).
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Non-determinism helps

Definition
Let t be a function of triplets (G, x, Id). NLD(t) is the class of all
distributed languages that can be verified in at most t
communication rounds.

Example
Tree = {(G, ε) | G is a tree} ∈ NLD(1).

Certificate given at node v is y(v) = distG(v , v̂), where
v̂ ∈ V (G) is an arbitrary fixed node.

Verification procedure verifies the following:
I y(v) is a non-negative integer,
I if y(v) = 0, then y(w) = 1 for every neighbor w of v , and
I if y(v) > 0, then there exists a neighbor w of v such that

y(w) = y(v)− 1, and, for all other neighbors w ′ of v , we
have y(w ′) = y(v) + 1.
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NLD-complete problem

Reduction
L1 is locally reducible to L2, denoted by L1 � L2, if there exists
a constant time local algorithm A such that, for every
configuration (G, x) and every id-assignment Id, A produces
out(v) ∈ {0,1}∗ as output at every node v ∈ V (G) so that

(G, x) ∈ L1 ⇐⇒ (G,out) ∈ L2 .

The language Containment

x(v) = (E(v),S(v)) where:
I E(v) is an element
I S(v) is a finite collection of sets
{(G, (E ,S)) | ∃v ∈ V , ∃S ∈ S(v) s.t. S ⊇ {E(u) | u ∈ V}}.

Theorem
Containment is NLD(O(1))-complete.
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Combining non-determinism with randomization

Let BPNLD(t) = ∪p2+q≤1BPNLD(t ,p,q).

Theorem
BPNLD(O(1)) contains all languages.

Proof
The certificate is a map of the graph, i.e., an isomorphic copy H
of G, with nodes labeled from 1 to n.
Each node v is also given its label `(v) in H.
The proof that nodes can probabilistically check H ∼ G relies
on two facts:

I To be “cheated”, a wrong map must be a lift of G.
I One can check whether H is a lift of G by having node(s)

labeled 1 acting as in AMOM.
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The “most difficult” decision problem

The problem Cover

{(G, (E ,S)) | ∃v ∈ V , ∃S ∈ S(v) s.t. S = {E(u) | u ∈ V}}.

Theorem
Cover is BPNLD(O(1))-complete.

28 / 33
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The oracle GraphSize

Numerous examples in the literature for which the knowledge of
the size of the network is required to efficiently compute
solutions.

GraphSize = {(G, k) s.t. |V (G)| = k}.

Theorem
For every language L, we have L ∈ NLDGraphSize.

Proof
Certificate is the map of G. (Cannot be “cheated” whenever the
nodes know the number of nodes).
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Further works

I Connections between classical computational complexity
theory and the local complexity one, e.g., by putting
constrains on individual computation time.

I Also, one could restrict the memory used by a node, in
addition to, or instead of, bounding the sequential time.

I Complexity framework taking also traffic congestion into
account. (This can be done by, e.g., considering the
CONGEST model).
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Thank You!
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