université

PARIS
:DIDEROT

Local Distributed Decision

Pierre Fraigniaud Amos Korman David Peleg

CNRS and University Paris Diderot

Workshop on Sublinear Algorithms, Bertinoro, May 23-27, 2011

1/33

Decision problems

Does randomization helps?

Nondeterminism

Power of oracles

Further works

2/33

Outline

Decision problems

3/33

Decide coloring

4/33

Computational model

LOCAL model
In each round during the execution of a distributed algorithm,
every processor:

1. sends messages to its neighbors,
2. receives messages from its neighbors, and
3. computes, i.e., performs individual computations.

Computational model

LOCAL model
In each round during the execution of a distributed algorithm,
every processor:

1. sends messages to its neighbors,

2. receives messages from its neighbors, and

3. computes, i.e., performs individual computations.

Input

An input configuration is a pair (G, x) where G is a connected
graph, and every node v € V(G) is assigned as its local input a
binary string x(v) € {0, 1}*.

Computational model

LOCAL model
In each round during the execution of a distributed algorithm,
every processor:

1. sends messages to its neighbors,

2. receives messages from its neighbors, and

3. computes, i.e., performs individual computations.

Input

An input configuration is a pair (G, x) where G is a connected
graph, and every node v € V(G) is assigned as its local input a
binary string x(v) € {0, 1}*.

Output

The output of node v performing Algorithm A running in G with
input x and identity assignment Id:

out4(G,x,1d, v)

Languages

A distributed language is a decidable collection of
configurations.

Languages

A distributed language is a decidable collection of
configurations.

» Coloring =

{(G,x) s.t. Vv € V(G),Yw € N(v),x(v) # x(w)}.

Languages

A distributed language is a decidable collection of
configurations.

» Coloring =

{(G,x) s.t. Vv € V(G),Yw € N(v),x(v) # x(w)}.

» At-Most-One-Marked = {(G,x)s.t. || x|, <1}

Languages

A distributed language is a decidable collection of
configurations.

» Coloring =

{(G,x) s.t. Vv € V(G),Yw € N(v),x(v) # x(w)}.
» At-Most-One-Marked = {(G,x)s.t. || x|, <1}

» Consensus =

{(G, (x1,x2)) s.t. Ju € V(G), Vv € V(G),x2(v) = x1(u)}.

Languages

A distributed language is a decidable collection of
configurations.

» Coloring =

{(G,x) s.t. Vv € V(G),Yw € N(v),x(v) # x(w)}.
» At-Most-One-Marked = {(G,X)s.t. || x|, <1}

» Consensus =

{(G, (x1,x2)) s.t. Ju € V(G), Vv € V(G),x2(v) = x1(u)}.

» MIS = {(G,x)st. S={ve V(G)|x(v)=1}isaMIS}.

Decision

Let £ be a distributed language.

Algorithm A decides £ <= for every configuration (G, x):

» If (G,x) € L, then for every identity assignment Id,
out4(G, x,1d, v) = “yes” for every node v € V(G);

» If (G, x) ¢ L, then for every identity assignment Id,
out4(G, x, 1d, v) ="no” for at least one node v € V(G).

Local decision

Let t be a function of triplets (G, x, Id).

Definition

LD(t) is the class of all distributed languages that can be
decided by a distributed algorithm that runs in at most ¢
communication rounds.

Local decision

Let t be a function of triplets (G, x, Id).

Definition

LD(t) is the class of all distributed languages that can be
decided by a distributed algorithm that runs in at most ¢
communication rounds.

» Coloring € LD(1) and MIs € LD(1).
» AMOM, Consensus, and SpanningTree are not in LD(¢),
forany t = o(n).

Outline

Does randomization helps?

9/33

Related work

What can be computed locally?

Define LCL as LD(O(1)) involving
» solely graphs of constant maximum degree
» inputs taken from a set of constant size

Theorem (Naor and Stockmeyer [STOC *93])

If there exists a randomized algorithm that constructs a solution
for a problem in LCL in O(1) rounds, then there is also a
deterministic algorithm constructing a solution for that problem
in O(1) rounds.

Proof uses Ramsey theory.

Not clearly extendable to languages in LD(O(1)) \ LCL.

10/33

(A + 1)-coloring
Arbitrary graphs

» can be randomly computed in expected #rounds O(log n)
(Alon, Babai, Itai [J. Alg. 1986]) (Luby [SIAM J. Comput. 1986])

» best known deterministic algorithm performs in 29(v/1097)
rounds (Panconesi, Srinivasan [J. Algorithms, 1996])

Bounded degree graphs

» Randomization does not help for 3-coloring the ring
(Naor [SIAM Disc. Maths 1991])
» can be randomly computed in expected #rounds
O(log A + +/log n) (Schneider, Wattenhofer [PODC 2010])
» best known deterministic algorithm performs in
O(A + log™ n) rounds
(Barenboim, Elkin [STOC 2009]) (Kuhn [SPAA 2009])

11/33

2-sided error Monte Carlo algorithms

Focus on distributed algorithms that use randomization but
whose running time are deterministic.

12/33

2-sided error Monte Carlo algorithms

Focus on distributed algorithms that use randomization but
whose running time are deterministic.

(p, g)-decider

» If (G, x) € L then, for every identity assignment Id,
Prlout4(G,x,1d, v) ="yes” for every node v € V(G)]> p

» If (G, x) ¢ L then, for every identity assignment Id,
Prlout4(G,x, Id, v) ="no” for at least one node v € V(G)|> q

12/33

Example: AMOM

Catn ROLOLL0L LOLOL0

13/33

Example: AMOM

Catn ROLOLL0L LOLOL0

Randomized algorithm

» every unmarked node says “yes” with probability 1;
» every marked node says “yes” with probability p.

13/33

Example: AMOM

OnOn ROn0n0n0n 0020

Randomized algorithm

» every unmarked node says “yes” with probability 1;
» every marked node says “yes” with probability p.

Remarks:

» Runs in zero time;

» If the configuration has at most one marked node then
correct with probability at least p.

» If there are at least k > 2 marked nodes, correct with
probability at least 1 — p* > 1 — p?

» Thus there exists a (p, g)-decider for g + p? < 1.

13/33

Bounded-probability error local decision

Definition

BPLD(t, p, q) is the class of all distributed languages that have
a randomized distributed (p, q)-decider running in time at
most t.

l.e., can be decided in time at most t by a randomized
distributed algorithm with “yes” success probability p and “no”
success probability g.

14/33

Bounded-probability error local decision

Definition

BPLD(t, p, q) is the class of all distributed languages that have
a randomized distributed (p, q)-decider running in time at
most t.

l.e., can be decided in time at most t by a randomized
distributed algorithm with “yes” success probability p and “no”
success probability g.

Remark
For p and g such that p® + g < 1, there exists a language
L € BPLD(0, p,q), such that £ ¢ LD(t), for any t = o(n).

14/33

A sharp threshold for hereditary languages

A prefix of a configuration (G, x) is a configuration (G[U], x[U]),
where U C V(G)
Hereditary languages

A language L is hereditary if every prefix of every configuration
(G,x) € Lisalsoin L.

» Coloring and AMOM are hereditary languages.

» Every language {(G.¢) | G € G} where G is hereditary is...
hereditary. (Examples of hereditary graph families are
planar graphs, interval graphs, forests, chordal graphs,
cographs, perfect graphs, etc.)

15/33

A sharp threshold for hereditary languages

A prefix of a configuration (G, x) is a configuration (G[U], x[U]),
where U C V(G)

Hereditary languages

A language L is hereditary if every prefix of every configuration
(G,x) € Lisalsoin L.

» Coloring and AMOM are hereditary languages.

» Every language {(G.¢) | G € G} where G is hereditary is...
hereditary. (Examples of hereditary graph families are
planar graphs, interval graphs, forests, chordal graphs,
cographs, perfect graphs, etc.)

Theorem

Let L be an hereditary language and let t be a function of
triples (G, x, Id). If L € BPLD(t, p, q) for constants p,q € (0, 1]
such that p? + q > 1, then £ € LD(O(t)).

15/33

One ingredient in the proof
Let0 < § < p? + g — 1, and define A = 11 - [log p/log(1 — §)] .
Separating partition
A separating partition of (G, x, Id) is a triplet (S, Uy, Us) of

pairwise disjoint subsets of nodes such that SU U; U Us = V,
and distg(Uy, Us) > A - L.

16/33

Glueing lemma

Given a separating partition (S, Uy, Us) of (G, x, Id), let
Gk = G[Uk U 8], and let x be the input x restricted to nodes in
Gk, for k =1.2.

Lemma (%)
For every instance (G, x) with identity assignment Id, and every
separating partition (S, Uy, U») of (G, x, Id), we have:

((61,x1) € L and (Go, X2) € E) = (G,x) e L.

Remark. Lemma (x) does not use the fact that £ is hereditary,
but uses p? + g > 1.

17/33

Derandomization

Deterministic Algorithm D, applied at a node u
Given an instance (G, x) and an id-assignment Id:

If (Bg(u,2At),X[Bg(u,2At)]) € L
then out(u) = “yes”
else out(u) = “no”

Remark
Nodes do not know t, but this can be fixed.

18/33

Correctness (1/4)

Assume (G, x) € L.
Since L is hereditary, every prefix of (G, x) is also in L.
Thus, every node u outputs out(u) = “yes".

19/33

Correctness (1/4)

Assume (G, x) € L.
Since L is hereditary, every prefix of (G, x) is also in L.
Thus, every node u outputs out(u) = “yes".

Conversely, assume (G, x) ¢ L.

Assume towards contradiction that by applying D on (G, x, Id),
every node u outputs out(u) = “yes”.

Let U C V(G) be a maximal set of vertices such that G[U] is
connected and (G[U], x[U]) € L.

» U is not empty, as (Bg(u,2Xt), x[Bg(u,2At)]) € L for every
node u.

» |U| < |V(G)|, because (G.x) ¢ L.

19/33

Correctness (2/4)

Let v € U be a node such that
Bg(u, 2t) contains a node outside U.

Let G = G[U U V(Bg(u, 21))].

Observe that G’ is connected and that
G strictly contains U.

Our goal is to show that
(G'.x[@]) € L, for contradiction.

20/33

Correctness (3/4)

Let W', W2, ..., W* be the ¢ connected components of
G[U] \ BG(u, 2t), ordered arbitrarily.

Let H denote the maximal graph such that H is connected and

Ba(u,2t) ¢ V(H) C Bg(u,2t) U (UN Bg(u, 2)t))

Let WO be the empty graph, and for k =0,1,2,--- , ¢, define
the graph 2% = HUWO U W' U W2 U ... U Wk,

Observe that Z* is connected for each k = 0,1,2,--- ./, and
that Z* = G.

We prove by induction on k that (Z*,x[ZX]) € L for every
k=0,1,2,...,¢. (This will establish the contradiction since, as
we mentioned before Z! = Q).

21/33

Correctness (4/4)

Define the sets of nodes
> S = V(ZKn v(Wwkt!)
» U =V(ZK)\ S
» Up = V(WKt1)\ S

A crucial observation is that

(S, Uy, Uo) is a separating
partition of Zx+1,

By induction, we have (Gy, x[G1]) € L, because
Gy = G[U1 U S] = Zk.

In addition, we have (Go, x[G2]) € L, because

Gy = G[U; U S] = WK*1! and WH*! is a prefix of G[U].
We can now apply Lemma (x) and conclude that
(Zk+1,X[Zk+1]) e L.

22/33

Outline

Nondeterminism

23/33

Distributed certification

One motivation
Settings in which one must perform local verifications
repeatedly.

» Proof Labeling Scheme (Korman, Kutten, Peleg [PODC 2007])
» Distributed verification (Das Sarma et al. [STOC 2011])

24/33

Distributed certification
One motivation

Settings in which one must perform local verifications
repeatedly.

» Proof Labeling Scheme (Korman, Kutten, Peleg [PODC 2007])
» Distributed verification (Das Sarma et al. [STOC 2011])

Definition
An algorithm A verifies £ if and only if for every configuration
(G, x), the following hold:

» If (G,x) € L, then there exists a certificate y such that,
for every id-assignment Id, out4(G, (X,y), Id, v) ="yes”
forall v € V(G);

» If (G, x) ¢ L, then for every certificate y, and for every
id-assignment Id, out4(G, (x,y),Id, v) =“no” for at
least one node v € V(G).

24/33

Non-determinism helps

Definition

Let t be a function of triplets (G, x, Id). NLD(¢) is the class of all
distributed languages that can be verified in at most ¢
communication rounds.

Example
Tree = {(G,¢) | Gisatree} € NLD(1).
Certificate given at node v is y(v) = distg(v,), where
v € V(G) is an arbitrary fixed node.
Verification procedure verifies the following:
» y(v) is a non-negative integer,
» if y(v) = 0, then y(w) = 1 for every neighbor w of v, and

» if y(v) > 0, then there exists a neighbor w of v such that
y(w) = y(v) — 1, and, for all other neighbors w’ of v, we
have y(w') = y(v) + 1.

25/33

NLD-complete problem

Reduction
L+ is locally reducible to £5, denoted by £ < Lo, if there exists

a constant time local algorithm A such that, for every
configuration (G, x) and every id-assignment Id, .4 produces
out(v) € {0,1}* as output at every node v € V(G) so that

(G,x) € L1 < (G,out) € L, .

26/33

NLD-complete problem

Reduction

L+ is locally reducible to £5, denoted by £ < Lo, if there exists
a constant time local algorithm A such that, for every
configuration (G, x) and every id-assignment Id, .4 produces
out(v) € {0,1}* as output at every node v € V(G) so that

(G,x) € L1 < (G,out) € L, .

The language Containment
x(v) = (&E(v),S(v)) where:
» £(v)is an element
» S(v) is a finite collection of sets
{(G,(£.5))|qve V, IS S(v)st. SD{&(u)|ue V}}.

26/33

NLD-complete problem

Reduction

L+ is locally reducible to £5, denoted by £ < Lo, if there exists
a constant time local algorithm A such that, for every
configuration (G, x) and every id-assignment Id, .4 produces
out(v) € {0,1}* as output at every node v € V(G) so that

(G,x) € L1 < (G,out) € L, .

The language Containment
x(v) = (E(v),S(v)) where:
» £(v) is an element
» S(v) is a finite collection of sets
{(G,(£.5))|qve V, IS S(v)st. SD{&(u)|ue V}}.

Theorem
Containment is NLD(O(1))-complete.

26/33

Combining non-determinism with randomization
Let BPNLD(?) = Ug2, q<1BPNLD(t, p,).

27/33

Combining non-determinism with randomization
Let BPNLD(?) = Ug2, q<1BPNLD(t, p,).

Theorem
BPNLD(O(1)) contains all languages.

27/33

Combining non-determinism with randomization
Let BPNLD(?) = Ug2, q<1BPNLD(t, p,).

Theorem
BPNLD(O(1)) contains all languages.

Proof

The certificate is a map of the graph, i.e., an isomorphic copy H
of G, with nodes labeled from 1 to n.

Each node v is also given its label /(v) in H.

The proof that nodes can probabilistically check H ~ G relies
on two facts:

» To be “cheated”, a wrong map must be a lift of G.

» One can check whether H is a lift of G by having node(s)
labeled 1 acting as in AMOM.

27/33

The “most difficult” decision problem

The problem Cover
{(G,(£.5))|3ve V, IS S(v)st. S={&E(u) |ue V}}.

Theorem
Cover is BPNLD(O(1))-complete.

28/33

Outline

Power of oracles

29/33

The oracle GraphSize

Numerous examples in the literature for which the knowledge of
the size of the network is required to efficiently compute
solutions.

30/33

The oracle GraphSize

Numerous examples in the literature for which the knowledge of
the size of the network is required to efficiently compute
solutions.

GraphSize = {(G, k) s.t. [V(G)| = k}.
Theorem |
For every language L, we have L ¢ NLD®*#°hsize,

Proof
Certificate is the map of G. (Cannot be “cheated” whenever the
nodes know the number of nodes).

30/33

Outline

Further works

31/33

Further works

» Connections between classical computational complexity
theory and the local complexity one, e.g., by putting
constrains on individual computation time.

32/33

Further works

» Connections between classical computational complexity
theory and the local complexity one, e.g., by putting
constrains on individual computation time.

» Also, one could restrict the memory used by a node, in
addition to, or instead of, bounding the sequential time.

32/33

Further works

» Connections between classical computational complexity
theory and the local complexity one, e.g., by putting
constrains on individual computation time.

» Also, one could restrict the memory used by a node, in
addition to, or instead of, bounding the sequential time.

» Complexity framework taking also traffic congestion into
account. (This can be done by, e.g., considering the
CONGEST model).

32/33

Thank You!

	Decision problems
	Does randomization helps?
	Nondeterminism
	Power of oracles
	Further works

