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ABSTRACT
We consider the problem of designing a simple, oblivious
scheme to generate (almost) random permutations. We use
the concept of switching networks and show that almost ev-
ery switching network of logarithmic depth can be used to
almost randomly permute any set of (1− ε)n elements with
any ε > 0 (that is, gives an almost (1 − ε)n-wise indepen-
dent permutation). Furthermore, we show that the result
still holds for every switching network of logarithmic depth
that has some special expansion properties, leading to an
explicit construction of such networks. Our result can be
also extended to an explicit construction of a switching net-
work of depth O(log2 n) and with O(n logn) switches that
almost randomly permutes any set of n elements. We also
discuss basic applications of these results in cryptography.

Our results are obtained using a non-trivial coupling ap-
proach to study mixing times of Markov chains which allows
us to reduce the problem to some random walk-like problem
on expanders.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

Keywords
random permutations; Markov chains; switching networks

1. INTRODUCTION
The problem of efficiently generating random, almost ran-

dom, or pseudo-random permutations is one of the central
problems in complexity, distributed computing, and cryp-
tography. In this paper, we consider the problem of oblivious
generation of almost random permutations through mixing
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elements in layered networks. A switching network N of
depth d is a layered network with d + 1 layers, each layer
having n nodes. The nodes between consecutive layers are
connected by switches (cf. Figure 1). A switch between
two input nodes at layer ` and two output nodes at layer
` + 1 takes the two inputs and either transposes them (if
the switch is active) or leaves them unchanged (if the switch
is inactive). The switches are disjoint, that is, if a switch
takes nodes at positions i and j at layer ` and outputs them
to positions i′ and j′ at layer ` + 1, then there is no other
switch that connects any of the four nodes involved (has as
its input node i or j, or has as its output node i′ or j′).
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Figure 1: A switch and its two possible outcomes
(depending on the random outcome of coin toss).

Switching networks have been extensively studied in the
context of sorting networks, where each switch (called a com-
parator there) sorted the input elements (see, e.g. [1, 20, 21,
22]). While the role of a switch in sorting networks is to sort
the numbers from the two incoming inputs, in our case, the
switch performs a uniformly random choice of which incom-
ing element in a switch from layer ` will go to which outgoing
node at layer ` + 1. A special property of sorting networks
is that they give oblivious sorting algorithms, which is a de-
sirable feature in several applications. It is also known that
switching networks can be used to generate almost random
permutations, where the randomness is achieved by setting
the switches at random. Since the input network is fixed,
very simple, and the switches are oblivious (only their be-
havior is random), mixing properties of switching networks
have attracted attention in various areas, most notably in
cryptography (see e.g., [28] and [29] and in numerous follow-
up papers) and in distributed systems (see, e.g., [7]).

One can view the process of mixing elements using switch-
ing networks in the framework of card shuffling (cf. [3]). A
single shuffle puts some cards (input elements) into pairs
and then swaps (and rearranges) the cards in each pair at
random. A card shuffling process would repeatedly apply
the shuffle using the different possible ways of pairing the
cards. In this setting, the way in which the cards are paired
would be determined by a network, and so, if in the `th

shuffle, cards at positions i and j are paired, then we would
have a switch between nodes at positions i and j. For exam-
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ple, the well-known Thorp shuffle (see, e.g., [3, 9, 23]) for n
cards in each round takes cards from location i and n/2 + i,
1 ≤ i ≤ n/2, and moves them to locations 2i−1 and 2i, and
their internal order is uniformly chosen independently of all
other choices. If we apply this process repeatedly and if n
is a power of 2, then we can model the Thorp shuffle using
switching networks with the underlying networks being the
butterfly networks (cf. Figure 2 and [3, 9, 23]).

1.1 Mixing using switching networks
To formally introduce switching networks that permute el-

ements let us first introduce some basic notation. A match-
ing of {1, . . . , n} is a set of pairs {i, j} ⊆ {1, . . . , n} with
i 6= j such that no element from {1, . . . , n} appears in more
than one pair. A pair {i, j} in a matching is called a match-
ing edge. A perfect matching of {1, . . . , n} is a matching of
{1, . . . , n} of size exactly n

2
(throughout the paper we assume

that n is even, though see Remark 1). Let Md be the set of
all sequences (M0, . . . ,Md−1) such that each Mt is a perfect
matching of {1, . . . , n}. For a given Md = (M0, . . . ,Md−1) ∈
Md, we define a switching network N of depth d so that the
switches between layers i and i + 1 are determined by the
edges (pairs) of matching Mi. See also Figure 2.

Every layered network N corresponding to Md, Md =
(M0, . . . ,Md−1) ∈ Md, defines in a natural way a stochastic
process (Markov chain) (Qt)

d
t=0 on state space of all per-

mutation of {1, . . . , n} with the transition rules Qt 7→ Qt+1

that for each matching edge {i, j} ∈ Mt exchanges the items
in nodes i and j independently at random with probability
1
2
. Throughout the paper, the process (Qt)

d
t=0 will be called

the random shuffling process for network N and every trans-
formation Qt 7→ Qt+1 will be called the shuffle defined by
matching Mt. In other words, the random shuffling process
for N is the process that takes as the input n elements and
run them through network N with switches making random
selections of the outputs.

We note that even though we would like to generate a uni-
formly random permutation, this is known to be impossible
for the processes considered in this paper (since we cannot
achieve the probability of 1

n!
using only random switches,

which can only generate probabilities of the form k · 2−s)
and we will settle with almost random permutations.

1.2 Mixing of partial permutations
In this paper we will focus on the task of generating almost

random partial permutations, that is, of mixing almost all
input objects. A k-partial n-permutation is any sequence
〈x0, . . . , xn−1〉 consisting of k 0s and n−k distinct elements
from 1, . . . , n− k. The set of all k-partial n-permutations is
denoted by Sn,k; Sn,k = {(x0, . . . , xn−1) : |{j ∈ {0, 1, . . . , n−
1} : xj = 0}| = k and ∀r∈{1,...,n−k}∃j∈{0,1,...,n−1} xj = r}.

Observe that |Sn,k| = n!
k!

. In this paper our focus will be on
the case when k is arbitrarily small, except that k = Ω(n).

We consider the problem of generating an almost uni-
formly random element from Sn,k: an almost random k-partial
n-permutation. Notice that this task is equivalent to the
problem of generating an almost random (n− k)-wise inde-
pendent permutation, using the terminology frequently used
in the complexity and cryptographical setting, see, e.g., [19,
28].

Our main technical result, Theorem 3.5, shows that al-
most every switching network (all but at most a 1

n2 fraction)
of logarithmic depth almost randomly permutes any set of

000

001

011

110

111 111

110

101

001

000

010

100

101

010

011

100

111

000

110

101

100

011

010

001

000

001

010

011

100

101

110

111

?

?

?

?

?

?

?

?

?

?

?

?

Figure 2: Switching network modeled by a single
butterfly network (corresponding to three rounds
of Thorp-shuffle) for n = 8. In this case, Md =
(M0, . . . ,Md−1) ∈ Md with d = 3, and each M`, 0 ≤ ` ≤
d−1, consists of switches between nodes whose posi-
tions differ only in the (`+ 1)st rightmost bit (where
we use binary representation for the positions of the
nodes).

(1−ε)n elements with any ε > 0 (equivalently, it almost uni-
formly generates random k-partial n-permutations for any
k = Ω(n), or it generates almost (1 − ε)n-wise independent
permutations).

In fact, our approach is stronger and we can show that if
the switching network N has some specific expansion prop-
erty (is good, as defined in Section 2.2) and if it has depth at
least c logn for some large enough constant c, then it almost
randomly permutes any set of (1 − ε)n elements (Theorem
3.4). Since one can construct networks that are good us-
ing existing expander constructions, this gives an explicit
switching network of logarithmic depth that almost ran-
domly permutes any set of (1−ε)n elements (Theorem 3.6).

Remark 1. While our analysis will assume that n is even,
one could use essentially identical arguments for odd n, in
which case instead of using perfect matchings of size n

2
to de-

fine N, we would use almost perfect matchings of size n−1
2

.
Furthermore, our result for almost all switching networks
can be easily extended to the case when the matchings defin-
ing N are not necessarily perfect, but instead, all are of size
at least cn for any positive constant c.
Furthermore, while we have defined the random shuffling

process to use only perfect matchings, one can define the
process for any sequence of matchings (if an element is un-
matched between two layers ` and ` + 1, then the location
from layer ` will be retained in layer ` + 1). In fact, our
construction in Theorem 1.1 does not use perfect matchings.

1.3 Generating almost random permutations
We note that our construction can be easily applied to de-

sign a switching network of depth O(log2 n) that generates
almost random permutations. We first apply a switching
network N of depth O(logn) to partition n elements into
two sets of size dn

2
e and bn

2
c, respectively, almost uniformly

at random, and then we recursively apply the same network
to each of the two sets. To ensure that the error is small in
all recursive calls, for any set of elements (even if it is signif-
icantly smaller than n) we use a switching network of depth
O(logn) to make the partition (the depth of the network is
independent of the actual size of the instance of the recur-
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sive call). This gives a construction of a switching network
of depth O(log2 n) almost randomly permuting n elements.

Furthermore, let us observe that this construction can be
modified to ensure that the network will have only O(n logn)
switches (though still, having depth of O(log2 n)). (This
idea has been used earlier in a similar context by Morris and
Rogaway [27].) Indeed, after applying a switching network
N of depth O(logn) to partition n elements into two sets of
size dn

2
e and bn

2
c, we note that the set of dn

2
e elements is

almost randomly chosen and is almost randomly permuted,
and as the result, one needs to apply the recursive calls only
to the remaining bn

2
c elements. If, as before, for any set of

elements (even if it is less than n) we use a switching network
of depth O(logn) to make the partition, then the total size of
network satisfy the recurrence S(m) = cm logn+S(bm/2c),
and thus it has O(n logn) switches.

Theorem 1.1. There is an explicit switching network of
depth O(log2 n) and with O(n logn) switches that almost
randomly permutes any set of n elements.

We will give a more formal statement of Theorem 1.1 with
formal arguments in Section 3.2.1.

1.4 Techniques
Our analysis of switching networks uses a novel method of

analyzing convergence times of Markov chains extending the
approach presented recently in [9] to study the behavior of
butterfly network. The approach uses non-Markovian cou-
plings to reduce the problem to a certain combinatorial prob-
lem of existence of some basic structure in the switching net-
works. Informally, our result shows that if a switching net-
work N can be split into two parts, the first one having em-
bedded some binary trees (called fundamental trees in Sec-
tion 3.1.1) and the second one having some perfect matching
on a subset of objects (called fundamental matching in Sec-
tion 3.1.2), then N almost randomly permutes any set of
(1 − ε)n elements. The main challenge is then to show the
existence of such structures in almost all switching networks
and in all good switching networks of logarithmic depth.

While some parts of our analysis closely follow the frame-
work already proposed in [9], the need of dealing with an al-
most unknown network (unlike the explicitly given butterfly
networks underlying Thorp shuffle, which are well defined
and well understood) requires several new tools to be devel-
oped. In particular, one of the central challenges stems from
the fact that in our paper we cannot assume that an individ-
ual element will reach a random position very quickly, and it
requires O(logn) layers to achieve this situation. A similar
property holds also for butterfly networks, where one needs
Θ(logn) layers for an element to reach a random location,
but this is a key obstacle why the known results (cf. [9,
26]) for such networks require a superlogarithmic depth to
permute partial permutations (rather than O(logn) depth,
as for the switching networks considered in this paper).

1.5 Related works
In a sequence of papers, Morris [23, 24, 25] proved that

switching networks defined by a polylogarithmic number of
butterfly networks (corresponding to Thorp shuffle) can be
used to generate almost random permutations. This gives
a switching network of depth O(log3 n) (only for n being
a power of two; for general n, the depth is O(log4 n)) that
generates almost random permutations. The existence of

switching networks of polylogarithmic depth follows also
from earlier works, e.g., [7, 29]. Our construction gives depth
O(log2 n) for any n, and in fact, it gives networks with only
O(n logn) switches (though the depth is O(log2 n)).

There have been also some work focusing on the analysis
of random properties of shallow switching networks. Morris
et al. [26] showed that after applying T times butterfly net-
works (which gives a switching network of depth T logn),

the network (almost) randomly permutes any set of n1−1/T

elements; more concretely, the distance from the distribution
of any set of q elements differs from the uniform distribution
by at most q

T+1
( 4q log n

n
)T . Note that this approach gives a

useful bound only for q < n
4 log n

. Czumaj and Vöcking [9]
considered larger q and showed that for any ε > 0, any set
of (1 − ε)n elements will be almost randomly permuted af-
ter applying O(logn) times the butterfly networks (giving a
switching network of depth O(log2 n)).

Very recently, Gelman and Ta-Shma [13] studied the qual-
ity of generating partial permutations after applying a sin-
gle Benes network of depth 2 log n. They show that a single
Benes switching network permutes well any set of up to

√
n

elements (more precisely, for any q, the distance from the
distribution of any set of q elements differs from the uni-

form distribution by at most q(q−1)
2n

).

1.6 Cryptographic applications
Switching networks have been studied in the past to gen-

erate random objects, most notably because of their appli-
cations in cryptography. For example, motivated by appli-
cations to security of some cryptographic protocols, Rackoff
and Simon [29, Theorem 3.1] show that almost every switch-
ing network of polylogarithmic depth almost randomly shuf-
fles any sequence of n

2
0s and n

2
1s; this result has been fur-

ther improved in [7, Theorem 2.3], who reduced the bound
on the mixing time from polylogarithmic (with a two-digit
degree [31]) to O(logn). Our construction (Theorem 3.7)
yields a similar result (and for an arbitrary number of 0s
and 1s) but is also contructive, and can be directly applied
in the context of cryptographic defense against traffic anal-
ysis (cf. Rackoff and Simon [29]).

The idea of using oblivious processes (card shuffling) to
generate random or pseudo-random permutations has also
been used in other areas of cryptography, most notably thanks
to the ideas suggested by Moni Naor (cf. [19, 28]). In some
applications, the key feature required is to be able to trace
the trajectory of every single element in secure computa-
tions without needing to know the positions of too many of
other elements, or seeing other computations. Clearly, this
property trivially holds for switching networks, where one
can trace the trajectory of any element by following its path
in the switching network, and thus by checking only the out-
come of d switches in the network of depth d. In a sequence
of papers [16, 26, 27, 30] there have been various “shuffling”
algorithms that provide provably-secure block ciphers even
for adversaries that can observe the encryption of all domain
points. Morris et al. [26] have been using switching networks
(Thorp shuffle, also called maximally unbalanced Feistel net-
work in this setting) to achieve fully secure pseudorandom
permutations secure for n1−ε queries in logarithmic num-
ber of rounds. This result has been improved recently, first
to retain the security to (1 − ε)n queries with a logarithmic
number rounds [16], then to n queries with O(log2 n) rounds
[30], and finally to n queries and O(logn) calls on average
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to the one-bit-output random function [27]. However, un-
like the original approach of Morris et al. [26], the improved
schemes have not been using switching networks and rely on
the swap-or-not scheme. The underlying operation (in our
terminology) was to set up the switches such that for every
layer `, one chooses a random number K` ∈ {0, 1}log2 n, and
then set a switch between each element at position X (given
in binary) and K` ⊕ X. Note that this does not define a
switching network, since the choices of K` in each layer are
not given in advance and correspond to randomly chosen
numbers. Furthermore, the choices of K`s are the same for
all elements in the same layer, and so this approach is not
as distributed and local as the framework of switching net-
works. The central result underlying the algorithms in [16,
27, 30] was that such random swap-or-not process almost
randomly permute any set of (1 − ε)n input elements [16,
Theorem 2].

Our results (Theorems 3.5 and 3.6) show that one can re-
place the swap-or-not scheme defined above by a switching
network of logarithmic depth and retain the security prop-
erties, as described in [16, 27, 30]. The gain is that one does
not need to use a random K`, which makes the system more
robust, and also ensures that the scheme is fully distributed
and only local computations are required (since each element
needs to follow only its own trajectory, and so, needs to use
only O(logn) random bits). We note though that we pay
some price in our construction: the network used in Theo-
rem 3.6 is more complicated than the original construction
of swap-or-not scheme.

The use of additional sources of randomness in switching
networks (similar to the use of random K` in the swap-or-
not scheme [16]) has been explored earlier in the literature.
For example, it has been shown that if all switches are se-
lected at random, then such a switching network of depth
O(logn) will almost randomly permute all elements [8, The-
orem 1]. This result is incomparable with ours: the random-
ness coming from the choices of random switches is essential
in proving the result in [8]. The key difference between our
setting and the setting in [7, 8] is that we prove that almost
every fixed switching network has some mixing properties;
once the network is fixed, the randomness is coming only
from random outcomes in the switches.

For further discussions about applications of k-wise almost
independent permutations in the context of cryptography
and beyond, we refer to [19] and the references therein.

Because of space limitations, we deferred some proofs (in
particular, details of our analysis of the coupling in Sec-
tion 3.1) to the full version of the paper.

2. PRELIMINARIES
We consider the problem of generating an almost uni-

formly random element from Sn,k, or equivalently, an almost
random k-partial n-permutation (or an almost (n− k)-wise
independent permutation). We prove that for any switching
network of logarithmic depth with some desired properties,
the random shuffling process will almost uniformly generate
a random k-partial n-permutation, assuming k = Ω(n).

2.1 Markov chains and coupling
To analyze the random shuffling process for partial per-

mutations on a switching network N, we model the process
by a Markov chain over the state Sn,k, as described in In-

troduction. Let N be a layered network corresponding to a
sequence of d matchings Md = (M0, . . . ,Md−1) ∈ Md. If
π0 ∈ Sn,k is the permutation on the input to the network
N, then the Markov chain (πt)

d
t=0 of length d is defined such

that πt+1 ∈ Sn,k is obtained from πt by applying for each
matching edge {i, j} ∈ Mt exchanges of the items in nodes
i and j independently at random with probability 1

2
.

One can see that in the limit d → ∞, the stationary distri-
bution of such Markov chain is almost uniform for almost all
networks. Therefore our goal will be to estimate the conver-
gence rate of this Markov chain to the uniform distribution
for network N. To analyze the convergence rate we use the
coupling approach. While typically Markovian couplings are
used to analyze mixing times of Markov chains, in our anal-
ysis we heavily rely on non-Markovian features of coupling
(following the approach initiated in [9]).

Let1 MC = (Qt)t∈N be a discrete-time, possibly time-
dependent, Markov chain with a finite state space Ω and a
unique stationary distribution µMC. For any random vari-
able X, let L(X) denote the probability distribution of X,
and let L(Qt | Q0 = ω) denote the probability distribution
of Qt given that Q0 = ω. We are interested in studying
Markov chains for which the statistical distance between
L(Qt | Q0 = ω) and µMC tends quickly to zero, indepen-
dently of ω ∈ Ω. To quantify this, we will use the standard
measure of the distance between two distributions: the total
variation distance between two probability distributions X
and Y over the same finite domain Ω is defined as

dTV (X ,Y) = max
S⊆Ω

|PrX [S] −PrY [S]|

=
1

2

∑
ω∈Ω

|PrX [ω] −PrY [ω]| .

To study the behavior of a Markov chain MC with station-
ary distribution µMC, we define the total variation distance
after t steps of MC with respect to the initial state ω ∈ Ω
as ∆MC

ω (t) = dTV (L(Qt | Q0 = ω), µMC). Then, the stan-
dard measure of the convergence of a Markov chain MC
to its stationary distribution µMC is the mixing time, de-
noted by τMC(ε), which is defined as τMC(ε) = min{T ∈ N :
∀ω∈Ω∀t≥T ∆MC

ω (t) ≤ ε}.
In this paper we will have ε = n−c for any constant c ≥ 1.

Coupling approach.
A coupling (see, e.g., [2, 5, 10, 17]) for a Markov chain

MC = (Qt)t∈N on state space Ω is a stochastic process
(Xt,Yt)t∈N on Ω × Ω such that each of (Xt)t∈N, (Yt)t∈N,
considered independently, is a faithful copy of MC (i.e.,
L(Qt | Q0 = ω) = L(Xt | X0 = ω) = L(Yt | Y0 = ω)
for each ω ∈ Ω). The key result on coupling, the so-called
Coupling Inequality (see, e.g., [2, Lemma 3.6]), states that
the total variation distance between L(Qt | Q0 = ω) and its
stationary distribution µMC is bounded above by the prob-
ability that Xt 6= Yt for the worst choice of initial states X0

1In the text below we will consider infinite Markov chains
(which is a standard framework for Markov chains) whereas
in our analysis we will only analyze Markov chains on finite
length, of length d. However, since our analysis aims only to
show the convergence at the end of the chain after d steps,
our analysis is equivalent to the analysis of the first d steps
of a possibly infinite Markov chain.
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and Y0:

max
ω∈Ω

∆MC
ω (t) ≤ max

ω,ω∗∈Ω
Pr[Xt 6= Yt | (X0,Y0) = (ω, ω∗)] .

The classical coupling approach analyzes process (Xt,Yt)t∈N
on the whole space Ω × Ω. The path coupling method of
Bubley and Dyer [5] allows to consider a coupling only for
a subset of Ω × Ω. Further refinement is coming from an
extension of path coupling method called delayed path cou-
pling [4, 7, 8]. Comparing to standard coupling, delayed
path coupling considers coupling (Xt,Yt)t∈N with X0 and
Y0 being similar (like in path coupling [5]), and the goal
is to design the coupling by observing the Markov chain
in several steps to ensure that for some small t the value
of Pr[Xt 6= Yt] is very small (traditionally path coupling
considers only Pr[Xt 6= Yt] conditioned on Xt−1 and Yt−1,
whereas delayed path coupling considers Pr[Xt 6= Yt] condi-
tioned on X0 and Y0 only, and thus considers the coupling for
multiple steps). We will analyze the convergence of Markov
chains using the following lemma.

Lemma 2.1 (Delayed Path Coupling Lemma [4, 7, 8]).
Let MC = (Xt)t∈N be a discrete-time Markov chain with a
finite state space Ω. Let Γ be any subset of Ω × Ω. Sup-
pose that there is an integer D such that for every (X ,Y) ∈
Ω × Ω there exists a sequence X =Λ0,Λ1, . . . ,Λr =Y, where
(Λi,Λi+1) ∈ Γ for 0 ≤ i < r, and r ≤ D. If there exists
a coupling (Xt,Yt)t∈N for MC such that for some T ∈ N,
for all (X ,Y) ∈ Γ, it holds that Pr[XT 6= YT | (X0,Y0) =
(X ,Y)] ≤ ε

D
, then

‖L(XT |X0 = X ) − L(YT |Y0 = Y)‖ ≤ ε

for every (X ,Y) ∈ Ω × Ω. In particular, τMC(ε/2) ≤ T .

Remark 2. The fact that the stationary distribution of
Markov chains underlying the process on almost all switching
networks is almost uniform, is given here (and will be used
frequently throughout the paper) mainly for intuitions and is
not needed in the analysis. In fact, as one can see in the
statement of Lemma 2.1, our results can be always phrased
in the term of the distance between the distributions of any
two outputs. That is, for any two inputs π1, π2 from Ω, if
we apply to them the switching network, then the respective
outputs π∗

1 and π∗
2 will satisfy the following:

‖L(π∗
1 |π1) − L(π∗

2 |π2)‖ ≤ ε .

(The fact that one can use the uniform distribution µ in the
intuitions follows from the fact that if we could prove that
‖L(π∗

1 |π1)−L(µ)‖ ≤ ε/2 and ‖L(π∗
2 |π2)−L(µ)‖ ≤ ε/2, then

we also would have ‖L(π∗
1 |π1) − L(π∗

2 |π2)‖ ≤ ‖L(π∗
1 |π1) −

L(µ)‖ + ‖L(π∗
2 |π2) −L(µ)‖ ≤ ε, which shows that these two

claims are almost equivalent.) Note that in fact our results
establish that the stationary distribution of the underlying
processes is almost uniform.

Using the Delayed Path Coupling Lemma.
Our goal is to prove that independently of the initial

k-partial n-permutation, at the end of the random shuf-
fling process on N the obtained k-partial n-permutation will
have an almost uniform distribution. We consider a Markov
chain of length d with the state space Sn,k of all k-partial
n-permutations. We define Γ to be the set of all pairs of

k-partial n-permutations π1, π2 ∈ Sn,k that differ on exactly
two elements:

π1(i) =


π2(`) if i = r ,

π2(r) if i = ` ,

π2(i) otherwise.

Note that for any two π∗, π∗∗ ∈ Sn,k, there is a sequence
π∗ = π0, π1 . . . πr = π∗∗ with r ≤ n, such that each pair πi,
πi+1 differs on exactly two elements (i.e., (πi, πi+1) ∈ Γ),
thus we can use D = n in Lemma 2.1.

Next, for any π1 and π2 that differ on exactly two ele-
ments, we will define a coupling (Xt,Yt)

T
t=0 with X0 = π1

and Y0 = π2, such that each Xt+1 and Yt+1 is obtained from
Xt and Yt, respectively, by applying a single shuffle Mt in
N. Our goal is to ensure that the designed coupling for the
random shuffling process will have Pr[XT 6= YT ] ≤ n−c for
any constant c ≥ 1 and some T = O(logn), T ≤ d. By
Lemma 2.1, this will ensure that τMC(1/n) ≤ T for the ran-
dom shuffling process on N.

2.2 Modeling (random walks in) N by (ran-
dom walks in) expanders

Let G = (V,E) be a d-regular graph on n vertices and
let AG be its adjacency matrix. The spectrum of G is the
spectrum of AG with its n real eigenvalues: d = λ1 ≥ λ2 ≥
· · · ≥ λn ≥ −d. Let λ(G) = max{|λ2|, |λn|} and we say
a d-regular graph G is an α-expander if λ(G) ≤ αd. Intu-
itively, a graph G is a good expander if d − λ(G) is lower
bounded by a positive constant (for more information about
expanders, see, e.g., [15] and the references therein).

Let us consider a switching network N of depth d that
corresponds to Md = (M0, . . . ,Md−1) ∈ Md. Define an
〈`, r〉-truncate of N to be the multigraph G = (V,E) on
vertex set V = {1, . . . , n} with the edge set E consisting
of all pairs (i, j) for which there is a path from i to j in
the network induced by M`,M`+1, . . . ,M`+r−1; if there are
s paths from i to j then we have s edges (i, j) in E. (In
other words, if it possible from a vertex i at layer ` to reach
a vertex j at layer ` + r, then (i, j) ∈ E.) Notice that G is
2r-regular and it has selfloops (in particular, (i, i) ∈ E for
every i).

We begin with the following lemma about truncate of al-
most all switching networks.

Lemma 2.2. For every r ≥ 4, there is a constant a, 0 <
a < 1, such that for almost every switching network N (all
but at most a 1

n2 fraction2), for every 0 ≤ ` ≤ d − r, the
〈`, r〉-truncate G of N is an (1 − a)-expander.

Proof. We prove the lemma only for r = 4; the extension
to arbitrary constant r is straightforward.

For every i ∈ {1, . . . , n}, let us observe that the following
are four neighbors of i in G:

• vertex j0 matched to i in M`,

• vertex j1 matched to j0 in M`+1,

• vertex j2 matched to j1 in M`+2, and

2For simplicity of presentation we will assume that term
“almost all switching networks” refers to all but at most a
1
n2 fraction of all (relevant) networks, though it is easy to

extend our claims to hold for all but at most 1
nc fraction of

all networks for an arbitrary large constant c.
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• vertex j3 matched to j2 in M`+3.

Indeed, there is a path from vertex i at layer ` to vertex
jr at layer ` + κ, κ ∈ {0, 1, 2, 3}, and then our construction
ensures that since for every s at layer l, there is a path from
s to itself at any layer l′ ≥ l, we can conclude that there is
also a path in N from vertex i at layer ` to vertex jκ at any
layer `′, `′ ≥ ` + κ.

Next, let us consider subgraph G〈4〉 of graph G with edge
set containing only the edges (i, jr) described above, κ ∈
{0, 1, 2, 3}. Note that G〈4〉 is a subgraph G obtained by tak-
ing four perfect matchings M`,M`+1,M`+2,M`+3 on {1, . . . , n}.
It is known that almost every graph H obtained by tak-
ing four perfect matchings is a good expander with expan-
sion λ(H) ≤ 2

√
3 + ε ≤ 3.5 (see, e.g., Friedman [12, Theo-

rem 1.3]). Hence, almost every graph G〈4〉 is a 7
8
-expander

and therefore there is a positive constant a such that G,
which is a supergraph of G〈4〉, is almost always an (1 −
a)-expander.

Because of our transformation presented above, we will
analyze the random shuffling process for any switching net-
work N for which each 〈i · r, r〉-truncate is a good expander.
Let us call a switching network N to be good if there is a
constant r and another positive constant a such that every
〈i ·r, r〉-truncate is a (1−a)-expander, 0 ≤ i < d/r. We have
the following two facts.

Proposition 2.3. Almost all (all but a 1
n2 fraction) switch-

ing networks of logarithmic depth are good.

Proof. Follows directly from Lemma 2.2.

Proposition 2.4. One can explicitly construct a good switch-
ing network N.

Proof. Follows from known results about constructions
of good expanders (see, e.g., [15]) using the following ap-
proach: Take a known construction of any 3-regular “good
expander” G = ({1, . . . , n}, E), e.g., one from [15]. 4-color
the edges of G (G is 4-edge-colorable since the maximum
degree of G is 3), and then add arbitrarily edges to E to
make G a union of four perfect matchings, which we will call
PM0, PM1, PM2, PM3. Then, we define N to be a switching
network of depth d, with d is divisible by 4, that is defined by
a sequence of d matchings M0, . . . ,Md−1 with M4i+j = PMj

for every i ∈ {0, . . . , 1
4
d − 1} and j ∈ {0, 1, 2, 3}. The same

arguments as those used in the proof of Lemma 2.2 show
that there is a positive constant a such that 〈4i, 4〉-truncate
of N is a (1 − a)-expander for every i ∈ {0, . . . , 1

4
d− 1}.

From now on, we will assume that every switching network
N we consider is good.

Random walks in N as random walks in expanders.
In our analysis, we will consider random walks in switching

networks, which is the process defined by first taking an
arbitrary element at a starting position, and then proceeding
through the network from the first layer to the last, taking
a random switch between each pair of layers. Let us observe
that we can model a random walk in a switching network
N by taking the starting vertex x and then first moving to
a random neighbor of x in 〈0, r〉-truncate of N, then taking
next random neighbor in 〈r, r〉-truncate of N, and so on, to
reach the final layer of N. If we take r ≥ 4, then every

〈i ·r, r〉-truncate of N is a good expander ((1−a)-expander),
and so the random walk in N can be modeled by a random
walk in a sequence of expanders. If Gi is a 〈i · r, r〉-truncate
of N, then the random walk of length sr in N (assuming the
depth of N is at least sr) can be modeled by a random walk
that takes the first step in G0, then the next step in G1,
and so on, until performing the last step in Gs. Assuming
every Gi is an expander, we can use the theory of random
walks in expanders to analyze the behavior of such a random
walk. (Observe that the approach above when combined
with known basic facts about random walks in expanders
immediately implies that for every good switching network N
of depth d, where d ≥ c logn for a sufficiently large positive
constant c, after applying the random shuffling process on
N, the distribution of the location of any single element is
almost uniform. We notice however that in our analysis
more properties of random walks will be needed.)

3. GENERATING PARTIAL PERMUTATIONS
USING SWITCHING NETWORKS

In this section we will study the random shuffling pro-
cess for a switching network N of depth d corresponding to
Md = (M0, . . . ,Md−1) ∈ Md. We will make two assump-
tions about N:

(1) switching network N is good and

(2) d ≥ c logn for a sufficiently large constant c.

Our approach uses the Delayed Path Coupling approach, as
outlined at the end of Section 2.1.

Let k = Ω(n). Let π1 and π2 be two arbitrary k-partial
n-permutations from Sn,k that differ on precisely two ele-
ments. Our goal is to define a coupling (Xt,Yt)

d
t=0 that

satisfies the following conditions:

Initial state: (X0,Y0) = (π1, π2);

Coupling: each (Xt)
d
t=0 and (Yt)

d
t=0 in isolation is a faithful

copy of the random shuffling process on N;

Convergence: for certain T = O(logn), T ≤ d, with high
probability: Xt = Yt for all t ≥ T .

By the Delayed Path Coupling Lemma 2.1, these condi-
tions would imply that the mixing time of the random shuf-
fling process on N for generating random k-partial n-permutations
is O(logn).

We will define the coupling by first allowing the process
(Xt)

d
t=0 to be run arbitrarily and then we will set the se-

quence (Yt)
d
t=0 in a non-Markovian way to ensure the sec-

ond and the third properties above. By non-Markovian we
mean that the sequence (Yt)

d
t=0 will be defined only once the

entire sequence (Xt)
d
t=0 is known, and each Yt with t ≤ T

depends on the entire (Xt)t≤T . (Markovian coupling, which
has been more commonly used in the past, would mean that
Yt+1 depends only on Yt, Xt, and Xt+1.)

Our analysis follows the approach proposed in [9] for the
analysis of Thorp shuffle, though a more complex structure
of our networks makes details more challenging. We split
the process into two phases, the first phase (Section 3.1.1)
corresponding to the first O(logn) layers of N and the sec-
ond phase (Section 3.1.2) corresponding to the remaining
layers of N, and the final coupling will be done after seeing
all random choices for (Xt)

d
t=0 in these two phases (Section
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3.1.3). In Sections 3.1.1 and 3.1.2, we will consider O(logn)
steps of the random shuffling process on N.

Notation.
When we consider the process as one of moving the input

elements from left to right, that is, by applying first shuffle
for M0, then shuffle for M1, and so on, then we use term el-
ement to denote the current status of a given input element,
and position or location to denote its current position in the
switching network. If we run the random shuffle process,
then each time we have two elements that are connected by
a switch (to be swapped at random), then we say that these
two elements are a match at a given moment.

3.1 Coupling for partial permutations on N

We first consider the random shuffling process starting at
the state X0 = π1 and we will look at the sequence (Xt)

d
t=0.

Afterwards we will analyze the properties of (Xt)
d
t=0 to de-

fine the sequence (Yt)
d
t=0. Let α and β be the two elements

which have distinct positions in π1 and π2. Let $ = blog2 kc;
hence 2$ ≤ k < 2$+1 ($ be the largest power of 2 not
greater than k). Let B be the set of the 0 elements except
possibly for the elements α and β (if either α or β is a 0).
Observe that |B| ≥ k − 1 ≥ 2$ − 1. Let B∗ = B ∪ {α, β}.

We will follow the elements from B∗ and those from out-
side B∗, and every time we have a match involving at most
one element from B∗ in (Xt)

d
t=0, we will make at once the

same choices (outcomes of the matches) for both (Xt)
d
t=0 and

(Yt)
d
t=0. Furthermore, for a large part of the outcomes of the

matches between two elements from B∗ in (Xt)
d
t=0 we will

also set it identically in both copies, in (Xt)
d
t=0 and (Yt)

d
t=0.

However, our main focus is on a small number of appropri-
ately selected matches between pairs of elements from B∗ in
(Xt)

d
t=0. Our analysis is in two stages. We present here the

main ideas behind our analysis; more details are deferred to
the full version of the paper.

3.1.1 First stage — using fundamental trees
In the first stage, we will try to construct two disjoint

full binary trees, which we call fundamental trees, that are
obtained using the following branching process:

• Create two trees whose roots are the two elements α
and β (the elements where X0 and Y0 differ).

• Suppose that we have already built the two trees for
X0,X1, . . . ,Xt (i.e., for the first t layers of N). Let
% = 2$−2. Let v be any element corresponding to
a leaf v̂ in one of the trees at depth strictly smaller
than log2 %. If v is to be matched in the tth shuffle
(as defined by Mt) to an element u from B∗ and u
was not used in the construction of any of the trees
before, then we branch at v̂. In that case, v̂ has two
new children: one corresponding to the element v and
one corresponding to the element u. We perform this
operation for all such leaves v̂ at the same time, to
build two trees for X0,X1, . . . ,Xt+1.

We continue this process for increasing t to build two trees
until all leaves of both trees are at the same level and each
tree has exactly % = 2$−2 leaves (which is why we branched
only leaves at depth smaller than log2 %); such full binary
trees will be called the fundamental trees.

Our central result is the following lemma for good switch-
ing networks N that relies on the structure of expanders and
the analysis of random walks on expander graphs.

Lemma 3.1. There is a constant c such that if we run the
random shuffling process for c log2 n steps with all switches
set at random then the probability that two fundamental trees
will be built is at least 1 − n−3.

Let us discuss the intuitions behind this phase and state
central properties of our construction. We observe that each
fundamental tree has only one element from outside B: ei-
ther α or β. Therefore, since all but one elements from each
fundamental tree are in B (are 0s), the process of setting the
outcomes of the matches in each of the fundamental trees
will correspond to the random selection of the position for
α (or β) in the tree; since all elements in B are identical (are
0s), we can arbitrarily permute them without affecting the
outcome of the process. Next, we observe that the trees do
not depend on the random outcomes of the matches dur-
ing the branching. In other words, if we have two instances
of the random shuffling process such that the second in-
stance differs from the first one only in the (outcome of the)
switches defining the branching for the fundamental trees in
the first instance, then the second instance have the same
fundamental trees (we may only have permuted elements in
each of the fundamental trees). Finally, conditioned on the
final positions of the leaves in the fundamental trees, the
choice of the final positions of α and β is uniformly random.
That is, if the tree containing α has the leaves at positions
p1, . . . , p%, then if we randomly decide the outcomes of the
matches during the branching, then for every i, the prob-
ability that α will end up at position pi is 1

%
. The same

property holds for β.

3.1.2 Second stage — using fundamental matching
In the second stage, we fix the 2% leaves of the two funda-

mental trees built in the first stage. Our goal is to show that
if we run next O(logn) steps of the random shuffling pro-
cess defining (Xt)

d
t=0 then we can find a set M of % matches

which forms a perfect matching between the leaves of the
two fundamental trees. That is, M is a set of % matches
in the random shuffling process, such that for every match
(v, u) ∈ M, v is a leaf from the first tree, u is a leaf from the
second tree, and there is no other pair in M which contains
either v or u. Once we have such a matching, then the lexi-
cographically first perfect matching between the leaves of the
two fundamental trees will be called the fundamental match-
ing M∗. (That is, if we number the switches in the way how
they are generated in N by matchings M0, . . . ,Md−1, then
for every other matching M between the leaves of the two
fundamental trees there is an index `, such that after having
the same matches in M∗ and M in the first ` − 1 switches,
the `th switch has a match in M∗ and no match in M.)

With this machinery at hand, we only need to prove our
main structural result, which relies on the analysis of random
walks in expanders using the tools (strong hitting property)
developed in [14, 18] (see also [15]).

Lemma 3.2. Let us fix any two sets of % disjoint positions
for the leaves of the fundamental trees. There is a constant c
such that if we run the random shuffling process for c log2 n
steps with all switches set at random then the probability that
there is a fundamental matching is at least 1 − n−3.
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3.1.3 Coupling
Now, we are ready to define the coupling. We split N

into two switching subnetworks of depth d/2 each, the first

network N1 corresponding to (M0, . . . ,Md/2−1) ∈ Md/2 and
the second network N2 corresponding to (Md/2, . . . ,Md−1) ∈
Md/2. We run the first stage of the random shuffling process
for N1 and construct two fundamental trees T1 and T2 with
% leaves each. Then, we run the second stage of the ran-
dom shuffling process for N2 and construct the fundamental
matching M between the leaves of T1 and T2.

Let us first consider the scenario that one fails to construct
T1, T2, and M in the process described above. By Lemmas
3.1–3.2 we know that this case is very unlikely, and we set the
coupling for (Xt)

d
t=0 and (Yt)

d
t=0 to be the identity coupling,

i.e., all switches will be set in the same way for both (Xt)
d
t=0

and (Yt)
d
t=0.

Therefore from now on, we will analyze the scenario that
the two fundamental trees T1 and T2 and that the funda-
mental matching M have been built.

To define the coupling, for both (Xt)
d
t=0 and (Yt)

d
t=0, we

will use identical outcomes for all the random choices in the
switches that are not involved in the (branching) matches
inside the trees T1 and T2, and are not among the matches in
M. Let L1 be the set of positions that the leaves of T1 reach
at the end of the first stage and L2 be the set of positions
that the leaves of T2 reach at the end of the first stage. For
simplicity of notation, we assume that every match in M is of
the form (p, q), where p is an element that reaches a position
in L1 at the end of the first stage and q is an element that
reaches a position in L2 at the end of the first stage; in this
case, we use the notation M(p) = q and M(q) = p.

We observe that since T1 and T2 are complete binary trees,
if all the choices inside the trees T1 and T2 have been done at
random, then α reaches the position at the end of the first
stage that is uniform in L1, β reaches the position at the
end of the first stage that is uniform in L2, and these posi-
tions are independent. With this, we define the coupling for

(Xt)
d/2
t=0 and (Yt)

d/2
t=0 in the first stage such that if α reaches

position p at the end of the first stage and β reaches posi-

tion q at the end of the first stage for the sequence (Xt)
d/2
t=0,

then we set the random outcomes for the sequence (Yt)
d/2
t=0

in the first stage such that α (which in (Yt)
d
t=0 is traversing

through the tree T2) reaches position M(p) at the end of the
first stage, and β (which in (Yt)

d
t=0 is traversing through

T1) reaches position M(q) at the end of the first stage for

the sequence (Yt)
d/2
t=0.

To define the coupling for the second stage, we perform the
same choices in the switches defining (Xt)

d
t=d/2 and (Yt)

d
t=d/2

except for the choices for the outcomes of the matches in
M, where we use reverse choices for the matches in M for
(Yt)

d
t=d/2 than those in (Xt)

d
t=d/2.

Now we are ready to state our next key lemma.

Lemma 3.3. The process defining (Xt)
d
t=0 and (Yt)

d
t=0 is

a proper coupling.

To use the coupling defined above in the Delayed Path
Coupling Lemma 2.1, we have to estimate the probability
that in our coupling Xt 6= Yt, for large enough t ∈ N,
t = Θ(log n). We first observe that without revealing the
outcome of the matches in T1, T2, and M, the final positions
of the elements outside L1 and L2 are fixed. Furthermore,
since in L1 and L2, all elements other than α and β are from

B (and hence all are 0s and thus indistinguishable), we only
have to consider the final positions of α and β. Consider

first the chain (Xt)
d/2
t=0 and suppose that α finished the first

stage at position p and β finished the first stage at position

q. In (Yt)
d/2
t=0, the coupling ensures that in the first stage α

finishes at position M(p) and β at position M(q). Then, the
only change in the performance of (Xt)

d
t=0 and (Yt)

d
t=0 is at

the two matches (p,M(p)) and (q,M(q)). The key property
of our coupling is that since the outcomes of the matches in
M for (Xt)

d
t=0 are reverse with respect to the choices of the

matches in M for (Yt)
d
t=0, we will have Xd = Yd at the end

of the second stage.
We can now summarize properties of our coupling for the

random shuffling process in a good network N:

• If T1, T2, and M have been successfully constructed then
our coupling (Xt,Yt)

d
t=0 ensures that XT = YT for all T

with T0 ≤ T ≤ d, where T0 = O(logn), and

• T1, T2, and M have been successfully constructed with
probability at least 1 − 2n−3 (by Lemmas 3.1–3.2).

3.2 Final results
We can combine our analysis above with the Delayed Path

Coupling Lemma 2.1 to conclude the following results about
random generations of k-partial n-permutations Sn,k.3

Theorem 3.4. Let k = Ω(n). Let N be a good switching
network of depth d with d ≥ c logn, for a sufficiency large
constant c. Then N generates random k-partial n-permutations
almost uniformly.

That is, for any positive constant c1, if π ∈ Sn,k is the
permutation generated by the switching network N on an
arbitrary input from Sn,k and µ is the uniform distribution
over Sn,k, then dTV (L(π), µ) ≤ O(n−c1).

The following are direct implications of our results and of
Propositions 2.3 and 2.4.

Theorem 3.5. For any ε > 0, almost every (all but a
O(n−2) fraction) switching network N of depth d (d ≥ c logn,
for a sufficiency large constant c) almost randomly permutes
any set of (1 − ε)n elements.

That is, for any positive constant c1, if π is the per-
mutation generated by the switching network N on an ar-
bitrary input εn-partial n-permutation, and µ is the uni-
form distribution over all εn-partial n-permutations, then
dTV (L(π), µ) ≤ O(n−c1).

Theorem 3.6. For any ε > 0, there is an explicit switch-
ing network N of depth d (d ≥ c logn, for a sufficiency large
constant c) that almost randomly permutes any set of (1−ε)n
elements.

That is, for any positive constant c1, if π is the per-
mutation generated by the switching network N on an ar-
bitrary input εn-partial n-permutation, and µ is the uni-
form distribution over all εn-partial n-permutations, then
dTV (L(π), µ) ≤ O(n−c1).

3Let us remind that in the analysis we have been aiming to
achieve the error term to be of the form O(n−2), however, it
is not difficult to see that the analysis can be extended in a
straightforward way to achieve the error term O(n−c1), for
any constant c1.
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It is not difficult to see that this result yields also the
result for permuting 0s and 1s (see also [7, 29]).

Theorem 3.7. Almost every switching network N of depth
d (d ≥ c logn, for a sufficiency large constant c) almost ran-
domly permutes any sequence of n 0s and 1s. The same
result holds for every good switching network N of depth
d ≥ c logn.

That is, for any constant c1 and for any s, 0 ≤ s ≤ n, if
π is the permutation generated by the switching network N
above when applied to the input consisting of s 0s and n− s
1s, and µ is the uniform distribution over all permutations
of s 0s and n− s 1s, then dTV (L(π), µ) ≤ O(n−c1).

Proof. Let us consider any input sequence of n 0s and
1s, and let s be the number of 0s, and hence n − s be the
number of 1s. Without loss of generality, let s ≥ n

2
(if s < n

2
then swap 0s and 1s). Then the first result follows from
Theorem 3.4 with k = s and the second results follows from
Theorem 3.5 with εn = s.

Remark 3. As mentioned earlier in our discussion about
the stationary distribution of the underlying Markov chain
(cf. Remark 2), our results can be also represented in a way
independent of the stationary distribution. The results above
(Theorem 3.4 – 3.7) can be also read as that for any pair π1,
π2 from the domain input (the same for both π1 and π2), if
π∗
1 and π∗

2 is the output of applying switching network N to
π1 and π2, respectively, then dTV (L(π∗

1),L(π∗
2)) ≤ O(n−c1).

3.2.1 Arguments behind Theorem 1.1
Let us give arguments behind the proof of Theorems 1.1,

which follows from our result in Theorem 3.4. Let us state
a more formal version of that theorem first. Let Sn be the
set of all n-permutations, Sn = Sn,0.

Theorem 1.1’ Let c2 be an arbitrary constant. There is
an explicit switching network N of depth O(log2 n) and with
O(n logn) switches such that if π ∈ Sn denotes the permu-
tation generated by N and µ is the uniform distribution over
Sn, then dTV (L(π), µ) ≤ O(n−c2).

Proof. We follow the approach used earlier in a similar
context by Morris and Rogaway [27].

We will define switching network N by O(logn) switch-
ing networks N1, . . . ,Nblog2 nc, applied one after the other.
Network N1 will have n inputs and n outputs. Network
N2 will take as its inputs the first bn/2c outputs from N1,
and will permute them to obtain bn/2c outputs, leaving the
outputs of N1 with locations bn/2c + 1 . . . n untouched. In
general, for any `, 2 ≤ ` ≤ blog2 nc, network N` will take as
its inputs the first s` outputs from N`−1, and will permute
them to obtain s` outputs, leaving the outputs of N`−1 with
locations s` + 1 . . . n untouched, where s` is defined recur-
sively as s1 = n and s` = bs`−1/2c for ` ≥ 2. (Note that
s` = Θ(n2−`).)

Before we will proceed, let us observe the following feature
of our coupling analysis in Section 3.1. Our analysis shows
that for a switching network with N inputs we can design
a coupling that will succeed with probability at least 1 −
O(N−2), which, as we have argued before, could be made
1 − pN , with pN = O(N−c1) for an arbitrary constant c1.
Now, observe that if we applied the network twice, then
the probability of the coupling would be at least 1 − p2N .
And in general, if we defined a switching network to consist

of r original networks, put one after the other, then the
probability of the coupling would be 1 − prN .

Using the observation above, we will now define networks
N`. N1 will be defined as the explicit good switching network
with n inputs, as constructed in Theorem 3.5. Each switch-
ing network N`, 2 ≤ ` ≤ blog2 nc, will be obtained by ap-
plying one after the other r` = Θ(log n/ log s`) = Θ( log n

log n−`
)

times an explicit good switching network N〈`〉 with s` inputs
(noting that the remaining inputs in locations s` + 1 . . . n
will be connected directly to the outputs with the respec-
tive locations s` + 1 . . . n). (The number of repetition r` is
set to ensure that p

r`
s` = O(n−c1), where ps` is the proba-

bility of the failure to obtain the coupling in Theorem 3.5,
when applied to a good switching network with s` inputs.)

Therefore, the total depth of N is equal to
∑blog2 nc

`=1 r` ·
O(log s`) =

∑blog2 nc
`=1 O(logn) = O(log2 n), and the total

number of switches in N is equal to
∑blog2 nc

`=1 r`·O(s` log s`) =∑blog2 nc
`=1 O(s` logn) =

∑blog2 nc
`=1 O(n2−` logn) = O(n logn).

For any permutation π ∈ Sn, let (π)i be the ith ele-

ment in the permutation π, and for any i ≤ j, let π〈i,j〉 =
((π)i, (π)i+1, . . . , (π)j). For any two permutations π, π∗ ∈
Sn, we say that π and π∗ are consistent on the interval [i, j]

if π〈i,j〉 = π∗〈i,j〉. Let π0 be an arbitrary input permutation
and let π` be the permutation obtained after applying net-
works N1, . . . ,N` to π0. Our construction ensures that π`+1

and π` are consistent on [s`+1, n], i.e., π
〈s`+1,n〉
`+1 = π

〈s`+1,n〉
` .

Consider the distribution of the output of any switching
network N`, 1 ≤ ` ≤ blog2 nc, with s` inputs (and ignore the
inputs s` +1 . . . n, since they are remaining unchanged). We
claim that the set of the first s`+1 elements in the output
is an almost random subset (of size s`+1) of the s` input
elements, and the remaining s` − s`+1 output elements are
almost randomly permuted. To see this, let us consider the
reverse process (traversing N` from the right to the left),
and mark the first s`+1 elements in π` as 0s, and then the
element s`+1 + i as i, 1 ≤ i ≤ s`−s`+1. By Theorem 3.4, the
starting permutation will be an almost random s`+1-partial
s`-permutation; i.e., the distribution of the 0s is an almost
random distribution among the inputs, and the distribution
of non-zeros is almost random among the inputs.

Therefore, if we map this claim to the distribution of
π`, then we obtain that for any π′, π′′ ∈ Sn that are con-

sistent on [s` + 1, n], we have dTV (L(π
〈s`+1+1,s`〉
` |π`−1 =

π′),L(π
〈s`+1+1,s`〉
` |π`−1 = π′′)) ≤ O(n−c1). With this, it is

not difficult to see (see [27, Corollary 2] for more detailed
arguments) that since at the end of N1, the distribution
of the last s2 − s1 elements differs from the uniform by at
most O(n−c1), since at the end of N2, the distribution (con-

ditioned on π
〈s2+1,s1〉
1 ) of the next s3 − s2 elements differs

from the uniform by at most O(n−c1), and so on, we obtain
that for any permutation π ∈ Sn,

dTV (L(πblog2 nc|π0 = π), µ) ≤ O(logn · n−c1) .

Therefore, we set c2 = c1 − 1 to conclude the theorem.

4. FINAL COMMENTS
In this paper we show that almost every switching net-

work of logarithmic depth can be used to almost randomly
permute any set of (1 − ε)n elements with any ε > 0. Fur-
thermore, we show that the result still holds for every switch-
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ing network of logarithmic depth that has some special ex-
pansion properties, leading to an explicit construction of
such networks. Our results are obtained using a non-trivial
non-Markovian coupling approach to study mixing times of
Markov chains which allows us to reduce the problem to
some random walk-like problem on expanders.

The central open problem left in this paper is whether
one can extend our results to ε = 0, that is, whether one
can show that almost every switching network of logarith-
mic depth can be used to almost randomly permute any set
of n elements, that is, to generate an almost random per-
mutation. We conjecture that this claim is true. We would
be also interested in explicitly constructing a switching net-
work of logarithmic depth that can generate an almost ran-
dom permutation. The techniques used in this paper seem
to be too weak to attack these problems and we do not know
of any straightforward reduction from randomly permuting
k-partial n-permutations for k ≥ 0.01n to randomly permut-
ing permutations.
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