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ABSTRACT
In this paper we present a sublinear time (1+ ε)-approxima-
tion randomized algorithm to estimate the weight of the
minimum spanning tree of an n-point metric space. The

running time of the algorithm is Õ(n/εO(1)). Since the full
description of an n-point metric space is of size Θ(n2), the
complexity of our algorithm is sublinear with respect to the
input size. Our algorithm is almost optimal as it is not pos-
sible to approximate in o(n) time the weight of the minimum
spanning tree to within any factor. Furthermore, it has been
previously shown that no o(n2) algorithm exists that returns
a spanning tree whose weight is within a constant times the
optimum.

Categories and Subject Descriptors
F [Theory of Computation]: Analysis of Algorithms and
Problem Complexity; G.2.2 [Graph Theory]: Graph algo-
rithms

General Terms
Algorithms, Theory

Keywords
Minimum spanning tree, Sublinear-time algorithms, Approx-
imations algorithms, Randomized algorithms

1. INTRODUCTION
In this paper we consider the classical minimum span-

ning tree problem. Despite extensive investigations over last
few decades, the complexity of the minimum spanning tree
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problem is not completely understood. Although an opti-
mal deterministic algorithm is known [17], no tight bounds
on the running time of this algorithm could be obtained.
The best upper bound on the running time for a deter-
ministic algorithm was obtained by Chazelle [4] who pre-
sented an algorithm that achieves a running time of O(|V |+
|E|α(|E|, |V |)), where α is the functional inverse of Acker-
mann’s function. In turns, Karger et al. [15] gave an optimal
O(|V |+ |E|)-time randomized algorithm. A vast of research
has been devoted to study the minimum spanning problem
for various classes of graph and for variants of the problem.
For example, the problem of computing the minimum span-
ning tree of a set of points in a Euclidean space and related
problems have been intensively studied (see [9] for a sum-
mary of results). Despite this effort, the fastest algorithm to
compute such a minimum spanning tree in the R

d requires
O(n2−2/(�d/2�+1)+ε) for an arbitrary small constant ε.

In this paper we present another important step towards
understanding the minimum spanning tree problem. We
consider the classical variant of the minimum spanning tree
problem for metric spaces, or equivalently, in graphs with
weights satisfying the triangle inequality. The input to the
problem consists of an n-point metric space (P, d) and the
goal is to estimate the weight of the minimum spanning
tree of P . In this paper, we show that even though the
full description of an n-point metric space is of size Θ(n2),
there exists an algorithm that approximates the weight of
the minimum spanning tree of P to within a (1+ε)-factor in

time Õ(n/εO(1)) (we use Õ to hide poly-logarithmic factors).
This is the first sublinear-time algorithm for this problem.
Our algorithm is randomized and it achieves the promised
approximation guarantee with the probability of at least 3/4
(using standard techniques the probability can be amplified
if needed). Furthermore, it was previously shown in [14] that
no o(n2) algorithm exists that returns a spanning tree whose
weight is within any constant times the weight of the mini-
mum spanning tree of P . Therefore, our result shows that
one can approximate the weight of the minimum spanning
tree but there is no hope to find a witness for that approx-
imation in sublinear time. Our running time is essentially
asymptotically optimal, because it is easy to show that no
o(n)-time algorithm exists that approximates the weight of
the minimum spanning tree within any factor.

Our algorithm yields an interesting extension to the grow-
ing list of problems solvable in sublinear-time that are of
large demand in massive data sets analysis. Due to the
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tremendous increase in computational power and intercon-
nectivity during the last decade more and more often we
have to deal with massive data sets, which are sets of size
in the range of several Gigabytes or more. Examples for
such massive data sets are Internet traffic logs, clickstream
patterns, sales logs, and call-detail data records in telecom-
munication industry. Massive data sets typically cannot be
processed by algorithms requiring more than linear time and
often even linear time algorithms may be too slow. This
leads to a natural question which problems of interest (if
any) can be solved in sublinear time. Some simple results
indicating that it is sometimes possible to solve certain ap-
proximation problems in sublinear time are well-known, for
example approximating the median or the average value of
a set of n numbers. More sophisticated results have been
obtained in the last few years for a number of more complex
problems, including clustering problems in metric spaces [1,
5, 13, 14, 16], graph problems [6, 10, 12], geometric prob-
lems [5, 7], matrix approximation [11], and edit distance
approximation [2].

We notice also that by the well known relationship be-
tween minimum spanning trees, travelling salesman tours,
and minimum Steiner trees (see, e.g., [18]), our algorithm
for estimating the weight of the minimum spanning tree
immediately yields sublinear-time (2 + ε)-approximation al-
gorithms for two other classical problems in metric spaces
(or in graphs satisfying the triangle inequality): estimating
the weight of the travelling salesman tour and the minimum
Steiner tree. No o(n2)-time algorithms have been known for
these problems before. We believe that besides being inter-
esting by themselves, these approximation results may find
applications to bound the quality of solutions in subprob-
lems used in branch and cut (bound) algorithms to compute
the exact solution to these problems.

Finally, we also notice that our algorithm can be easily
extended to work for �22 instances, where the points are in
R

d and the distance between two points x, y is measured by
‖x− y‖2

2; observe that (Rd, ‖ · ‖2
2) is not a metric space.

1.1 Related work
The problem of approximating the weight of the minimum

spanning tree in sublinear time has been first studied for
arbitrary graphs in adjacency list representation in a very
recent paper by Chazelle et al. [6]. In [6], a pseudo-sublinear
algorithm is given: if the maximum (or average) degree is
D and if all edge weights are known to be in the interval
[1,W ], then the algorithm approximates the weight of the
minimum spanning tree to within an (1 + ε) factor in time

Õ(D ·W · ε−3) with probability at least 3/4.
If we apply their algorithm to the metric version of the

problem then the running time is O(n·W ·ε−3) because D =
n− 1. Therefore, in our setting, their algorithm is sublinear
only if the ratio between the longest and the shortest edge
W is sublinear in n, what certainly does not have to be the
case in general (for example, even in the case when (P, d)
corresponds to the set of points P in a Euclidean plane, then
it is known that W must be at least Ω(

√
n) and hence the

running time is Ω(n1.5 · ε−3)).
In [7], the authors consider the problem of estimating the

weight of the Euclidean minimum spanning tree of a set
P of n points in the R

d. In this paper it is assumed that
the input point set is stored in a sophisticated data struc-
ture that supports two types of access operations, namely,

(i) emptiness queries for axis parallel squares and (ii) ap-
proximate nearest neighbor queries for a set of prespecified
cones. Additionally, it is assumed that a smallest axis par-
allel bounding box of P is given. In this model the authors
give an algorithm that approximates the weight of the Eu-
clidean minimum spanning tree of P within a relative error

of ε. The algorithm has a running time of Õ(
√
n/εO(1)) as-

suming that the dimension is a constant and not counting
the time for the access operations to the data structure. The

algorithm uses Õ(
√
n/εO(1)) queries of type (i) and (ii).

1.2 New contribution
In contrast to both of the aforementioned algorithms, our

algorithm does not make any assumption about the input
besides the assumption that we can evaluate the distance
between any two points in the metric space in constant time.

The high level approach of our algorithm is similar to that
in [6]. We regard the metric space as a complete graph and
we express the weight of its minimum spanning tree by a for-
mula depending on the number of connected components in
certain auxiliary subgraphs. For simplicity of presentation
we assume that all distances are powers of (1 + ε) and that
the longest edge in (P, d) has length W = 2n/ε (as we will
see later, these assumptions do not affect the complexity of
the problem). We denote by G(t) = (P,E(t)) the graph that
contains an edge between p, q ∈ P if d(p, q) ≤ t. We use a

randomized procedure to approximate the number c((1+ε)i)

of connected components in each subgraph G((1+ε)i). Using

the identity mst = n−W + ε ·∑log1+ε W−1

i=0 (1 + ε)i · c((1+ε)i)

we obtain an estimator with expectation mst.
The advantage of our approach is that we have to estimate

only logW times the number of the connected components
of a certain threshold graph in contrast to W times in [6].
We achieve this at the cost of an increased variance of the
estimator (which makes it impossible to apply this approach
to arbitrary graphs considered in [6]). Instead of approxi-
mating the number of connected components within an ad-
ditive error of ε n as in [6], we obtain an approximation that
either has a multiplicative error of 1 + ε or an additive error
of ε · weight(mst). To achieve this result, we introduce an
estimator that is based on a new graph traversal combined
with a stochastic procedure to estimate the degree of a ver-

tex in G((1+ε)i). Our graph traversal explores the triangle
inequality to ensure trade-offs between the number of con-
nected components, the vertex degrees, and the size of the
minimum spanning tree, which can be used to show that our
estimator is sharply concentrated around its expectation.

2. PRELIMINARIES
We consider the problem of estimating the weight of the

minimum spanning tree in a metric space: given access to
the n× n distance matrix of a metric space (P, d), |P | = n,
approximate the weight of the minimum spanning tree of
P . Throughout the paper, we denote by mst the weight of
the minimum spanning tree of P . Our main contribution

is an algorithm that in Õ(n/ε8) time computes a (1 + ε)-
approximation of mst, i.e., outputs a value M such that
(1−ε)·mst ≤ M ≤ (1+ε)·mst with probability at least 3/4.
We will use ε as the approximation parameter throughout
the paper.

Our result holds for arbitrary metrics (P, d) and assumes
only that a constant-time access to the distance oracle is
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provided. However, for our analysis we will make two im-
portant assumptions that we justify now.

Our first assumption is that for every pair p, q ∈ P we
have d(p, q) ∈ [1, 2n/ε]. Using standard transformation,
such assumption may introduce an approximation error of
at most 1 + ε. Indeed, Indyk [14] showed that in O(n) time
one can approximate to within factor 2 the longest distance
in a metric space. Once we have such an approximation W ,
we can rescale the distances such that W = 2n/ε. Since
W is a 2-approximation of the largest distance, after the
scaling all distances are in [0, 2n/ε]. Furthermore, by the
triangle inequality the weight of a minimum spanning tree of
a metric space is at least as large as the weight of the longest
distance and since the longest distance is at least W/2, we
have mst ≥ n/ε. Next, we observe that rounding up every
distance smaller than 1 to the distance 1 will change mst
by an additive term of at most n − 1 while preserving the
triangle inequality. Since n− 1 ≤ ε ·mst, in the so modified
metric the weight of a minimum spanning tree is an (1 + ε)-
approximation of the weight of a minimum spanning tree in
the original metric.

Furthermore, to simplify the presentation of our algorithm
we assume that all distances are powers of (1+ε), that is, for
every p, q ∈ P , we have d(p, q) = (1 + ε)i for certain integer
i ≥ 0. Intuitively, this assumption is justified by the fact
that one can round up all distances to the nearest power of
(1+ε) and such rounding changes mst by a factor of at most
(1 + ε). We notice however, that the rounding may inval-
idate the triangle inequality and therefore this assumption
requires some more comments. At the end of the paper, in
Section 7, we briefly discuss changes that are to be done in
order to formally justify this assumption.

Therefore, from now on, unless stated otherwise, we will
assume that all distances are powers of (1+ ε) and lie in the
interval [1, 2n/ε].

2.1 Approximating MST via counting connec-
ted components in auxiliary graphs

Our high level approach of approximating the weight of
the minimum spanning tree is similar to the one used in
[6]. We express the weight of the minimum spanning tree
in terms of the number of connected components in certain
auxiliary graphs. For a given threshold t ∈ R we say that
two points p, q ∈ P are t-close, if their mutual distance is
at most t. We say p and q are in the same t-connected
component if they are in the same equivalence class of the
transitive closure of the “t-close” relation (that is, if there
is a sequence of points x0, x1, . . . , x� with x0 = p and x� = q
such that xi and xi+1 are t-close for all 0 ≤ i < �).

Let us denote by c(t) the number of t-connected compo-
nents of (P, d). Then, as observed in [6], we can write:

mst = 1 · (n− c(0)) + (1 + ε) · (c(0) − c(1+ε)) + · · ·
+(1 + ε)i+1 · (c((1+ε)i) − c((1+ε)i+1)) + · · ·

= n−W + ε ·
log1+ε W−1∑

i=0

(1 + ε)i · c((1+ε)i) , (1)

where W = 2n/ε denotes an upper bound for the distances
in (P, d) and all distances are greater than or equal to 1 and
are powers of (1 + ε).

Our approach is to compute a randomized estimator ĉ((1+ε)i)

for each c((1+ε)i). Using the estimator we can phrase now

our randomized algorithm:✛

✚

✘

✙
Metric-MST-Approximation (P, ε)

for i = 0 to log1+ε W − 1 do

Compute estimator ĉ((1+ε)i) for c((1+ε)i)

Output M = n−W + ε · ∑log1+ε W−1

i=0 (1 + ε)i · ĉ((1+ε)i)

To analyze the performance of the Metric-MST-Approxi-
mation algorithm we introduce two parameters ζ and �.
Parameter ζ measures the quality of estimating the value

c((1+ε)i) and parameter � measures the error probability of
the estimator. Our novel contribution is a sublinear-time
randomized algorithm that outputs an estimator ĉ((1+ε)i)

that with probability at least 1 − � satisfies the following
property:

(1 − ζ) · c((1+ε)i) − ζ · mst
ε·(1+ε)i ≤ ĉ((1+ε)i)

≤ (1 + ζ) · c((1+ε)i) + ζ · mst
ε·(1+ε)i . (2)

For our algorithm we will set � = 1
1+4 log1+εW

= Θ
(

ε
ln(n/ε)

)
and ζ = ε

3+log1+ε W
= Θ

(
ε2

ln(n/ε)

)
. This implies that with

probability (1− 1
1+4 log1+ε W

)log1+ε W > e−1/4 > 3/4 all esti-

mators ĉ((1+ε)i) satisfy inequality (2). By basic calculations,
this yields the following inequalities that hold with proba-
bility at least 3/4:

(1 − ε) · mst ≤ M ≤ (1 + ε) · mst .

In Sections 3 – 6 we describe details of our randomized
algorithm that in Õ(n · ζ−3 · �−1 · ε−1) time computes the

estimator ĉ((1+ε)i) that satisfies inequality (2). This will
conclude the proof of our main theorem:

Theorem 1. Let 0 < ε < 1 be an approximation param-
eter. Given access to the n× n distance matrix of a metric
space (P, d), |P | = n, algorithm Metric-MST-Approxima-

tion computes in Õ(n/ε8) time a value M such that with
probability 3/4,

(1 − ε) · mst ≤ M ≤ (1 + ε) · mst .

Let us observe that this result is almost optimal since it is
easy to see that any constant-factor algorithm requires time
Ω(n) even in randomized setting (see Theorem 3, Section 8).

3. ESTIMATING THE NUMBER OF T-CON-
NECTED COMPONENTS: MAIN IDEAS

In this section we show the main ideas of our algorithm
for estimating the number c(t). We begin with the definition
of the threshold graph G(t) = (P,E(t)) as the graph with
vertex set P that contains an edge between p, q ∈ P if and
only if d(p, q) ≤ t; in other words, E(t) = {(p, q) : p, q ∈
P and d(p, q) ≤ t}. Notice that the connected components

of G(t) are the t-connected components of (P, d).
In this section we assume that t is a power of (1 + ε)

and present a high level description of a randomized process
that outputs a value ĉ(t) which is an approximation of c(t)

that satisfies inequality (2). Our randomized process repeats
the following procedure until a certain threshold value is
reached, to ensure that the estimation of the number of t-
connected components is with high probability close to c(t).
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• Pick a starting vertex p ∈ P uniformly at random.

• Choose a random integer number X according to the
probability distribution Pr[X ≥ k] = 1/k.

• Verify whether the connected component in G(t) con-
taining vertex p has at most X vertices or it has more
than X vertices.

With the exception of a minor modification in the proba-
bility distribution of X, the scheme above has been proposed
by Chazelle et al. [6]. We will run this procedure multiple
times and in each repetition of this procedure we output βi

that is the indicator random variable that in the ith trial
the connected component has at most X vertices. That is,

if we denote by n
(t)
p the size of the connected component in

G(t) containing vertex p, then βi = 1 if n
(t)
p ≤ X and βi = 0

otherwise. Notice that,

E[βi] =
∑

connected component C in G(t)

Pr[p ∈ C] · Pr[X ≥ |C|]

=
∑

connected component C in G(t)

|C|
n

· 1

|C| =
c(t)

n
.

Therefore, if there are s repetitions of the procedure above
then we define

ĉ(t) =
n

s
·

s∑
i=1

βi .

Since by the arguments above E[ĉ(t)] = c(t), this motivates

the use of ĉ(t) as an estimator of the number of connected
components, see [6]. The challenging part required to com-

plete the analysis is to show that the random variable ĉ(t)

is sharply concentrated around its expectation and to show
that it can be computed efficiently.

4. TOWARDS APPROXIMATING C(T ) — THE
CLIQUE-TREE TRAVERSAL

Our method to verify whether a given connected compo-
nent in G(t) has the number of vertices smaller than or equal
to certain threshold value X is to traverse the graph G(t)

starting at vertex p. Chazelle et al. [6] used the classical
breadth-first search (BFS) traversal algorithm for this pur-
pose. However, in our setting this algorithm is too slow and
the corresponding random estimator has too large variance
and therefore we have to develop a new traversal algorithm
that is tuned to work well for metric graphs. The design of
such an algorithm and its analysis are the main contribu-
tions of our paper.

Before we define our graph traversal we need a few more
definitions. We call two vertices p, q ∈ P twins in G(t),
if they have the same neighborhood in P \ {p, q}. While
performing a graph traversal the knowledge that a vertex q is
a twin of another previously visited vertex p allows us to do
not consider the outgoing edges of q in the graph traversal.
Since both vertices are twins we know that every vertex
reachable from q is also reachable from p. The following
lemma provides a simple sufficient condition for two vertices
to be twins.

Lemma 4.1. Let t = (1 + ε)i for some i ∈ N and let p, q
be two vertices with d(p, q) < ε · t. Then p, q are twins in

G(t).

Proof : By our assumption all distances in (P, d) are
powers of (1+ε). Since t = (1+ε)i, there is no pair of points
in P whose distance is larger than t but smaller than (1+ε) t.

If a vertex r is a neighbor of p in G(t), then by definition
d(p, r) ≤ t. Since d(p, q) < ε t, the triangle inequality implies
that d(q, r) < (1 + ε) t and hence, d(q, r) ≤ t. This means
that r is also a neighbor of q. By symmetry it follows that
p and q are twins. ✷

We are now ready to explain our graph traversal in more
details. At the beginning all vertices are unexplored. Then
the starting vertex p is marked as explored and representa-
tive. In the next step all neighbors of p that are in distance
less than ε t are marked as explored. (Notice that by Lemma
4.1 all such neighbors are twins of p, that is, they have the
same neighborhood in G(t) as vertex p. Therefore, if we
want to visit all of their neighbors then it is enough to pro-
ceed with the neighbors of one of them; this is the reason
why we call vertex p a representative.) Then we proceed
similarly to Prim’s algorithm for the computation of mini-
mum spanning trees. Among all edges in E(t) that connect a
representative vertex with an unexplored vertex we choose
the shortest. This leads us to a new vertex that is again
chosen to be explored and representative. Then, we repeat
all steps above until the entire connected component in G(t)

containing point p is explored. We call this graph traversal
the Clique-Tree-Traversal.

We give a pseudocode for the Clique-Tree-Traversal be-
low. The sets E, U , and R denote the sets of explored,
unexplored, and representative vertices, respectively.�

✧

✥

✦

Clique-Tree-Traversal (P , p, t, ε)

R = {p}; E = {p}; U = P \ {p}
while ∃ edge e = (p, q) ∈ E(t) with p ∈ R & q ∈ U do

let (p, q) be the shortest such edge
E = E ∪ {q}; U = U \ {q}
if d(p, q) ≥ ε t then R = R ∪ {q}

Let us now discuss some properties of the Clique-Tree-
Traversal algorithm.

First, it is easy to see that the Clique-Tree-Traversal al-
gorithm can be implemented to run in O(n · |R|) time.

Next, we notice that the algorithm explores the entire con-
nected component in G(t) in which the starting vertex p is
located. This is because it considers all edges but the edges
connecting to vertices whose twins have been previously vis-
ited, and since all twins have identical neighbors in G(t), it
is enough to consider only the neighbors of the representa-
tives. Therefore, in particular, at the end of the algorithm

we have |E| = n
(t)
p .

The next important property of the Clique-Tree-Traversal
algorithm is that it provides implicitly a lower bound on the
size of the minimum spanning tree in terms of the num-
ber of representative vertices found by the algorithm. To
see this, let us consider all edges that have been used in
the algorithm to explore a new representative vertex. We
call these edges representative edges. It is easy to see that
the set of representative edges forms a tree. At the time
when the new representative vertex is explored the corre-
sponding representative edge is a shortest edge connecting
the old representative vertices to the new representative ver-
tex. Hence, it must be contained in a minimum spanning
tree of the graph induced by the representative vertices (cf.
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Prim’s algorithm). Since the minimum spanning tree of the
representative vertices is a Steiner tree of the vertices of the
connected component of p, it can have at most twice the
weight of the minimum spanning tree of the whole compo-
nent (cf. [18]). By the fact that every representative edge
has length at least ε t, ε t (|R|−1)/2 is a lower bound on the
size of the minimum spanning tree of the connected compo-
nent of p.

We summarize our discussion in the following lemma.

Lemma 4.2. The algorithm Clique-Tree-Traversal satis-
fies the following properties: (1) The algorithm can be imple-
mented to run in time O(n · |R|). (2) The explored vertices

form exactly the connected component of p in G(t). (3) The
representative edges form a minimum spanning tree of the
graph induced by the representative vertices. (4) We have
mst ≥ ε t (|R| − 1)/2.

In the analysis of our algorithm we will also use the notion
of graph dispersion. To define this notion, let us first extend
the Clique-Tree-Traversal to a full graph traversal on G(t)

in the following natural way: We start with an arbitrary
vertex p and run the Clique-Tree-Traversal with parameters
(P, p, t, ε). If not all vertices are explored at the end of this
traversal, we start the Clique-Tree-Traversal from one of the
unexplored vertices (we never start at the same connected
component more than once). We do this until every vertex
has been explored.

It is easy to see that the number of representative vertices
computed by the full Clique-Tree-Traversal may depend on
the starting vertices. One parameter of particular inter-
est for our analysis is the so-called dispersion of the graph
G(t), which is the maximum number of representative ver-
tices L(G(t)) computed by the full Clique-Tree-Traversal for
given P , t, and ε (the maximum is taken over all possible

vertex orderings). We will use the dispersion of G(t) together

with the property that all twins form a clique in G(t) to ob-
tain bounds on the density of G(t). Furthermore, our main
use of L(G(t)) is to obtain a lower bound for mst, as in the
next lemma, which follows immediately from the definition
of L(G(t)) and Lemma 4.2.

Lemma 4.3. If L(G(t)) > 1, then L(G(t)) ≤ mst/(4 ·ε ·t).

5. ESTIMATING DEGREES OF VERTICES:
DEGREE-ESTIMATE ALGORITHM

Let degt(p) denote the degree of vertex p in G(t). For
our algorithm we need a procedure to estimate the degree
of a given vertex p in G(t). Note that in our setting finding
degt(p) exactly requires trivially Ω(n) time. However, we
will need to estimate the degree with high accuracy in time
inversely proportional to the degree.

Our use of estimating the degree is quite simple: in order

to detect if the number n
(t)
p of vertices in the connected

component in G(t) containing p is smaller than or equal to a
given integer X, we can first test if degt(p) < X; if degt(p) ≥
X, then we certainly must have n

(t)
p > X.

The algorithm for estimating the degree of a given vertex
follows a standard sampling approach.

Lemma 5.1. Let (P, d) be a metric space with |P | = n and

let G(t) be the threshold graph for some real number t. Then,

there exists an algorithm Degree-Estimate(P, t, p) that with
probability at least 1−1/n4, runs in time O(n log n/degt(p)),

and returns value D̂(p) such that 1
2
· D̂(p) ≤ degt(p) ≤

2 · D̂(p).

Proof : Let us first suppose that we know the value of
degt(p). We choose (with replacement) at random N = c·n·
log n/ degt(p) vertices for some large enough constant c. Let
Γ be the random variable denoting the number of the chosen
vertices that are adjacent to p in G(t) (if a vertex is chosen
many times then its multiplicity is counted in Γ). Then,
one can easily show (for example, using Chernoff bound)
that with high probability at least 1− 1/n5, we have |n·Γ

N
−

degt(p)| ≤ 1
4

degt(p).
Since in general we do not know the value of degt(p), we

can estimate it by starting with sample sizes Ni = c · n ·
log n/2i for integers i = �log n� down to 0, and stop when
we obtain for the first time |n·Γ

Ni
−2i| ≤ 1

4
·2i. One can easily

show that (with probability at least 1 − 1/n4) the value 2i

is then an approximation of degt(t) to within a factor of 2.
Now, once we know an approximation of degt(p) to within
a factor of 2 we can easily output the appropriate value of

D̂(v). Finally, it is easy to see that the running time of
such an algorithm is O(n log n/degt(p)) (with probability
at least 1 − 1/n4). ✷

6. A SUBLINEAR TIME ALGORITHM FOR
ESTIMATING C(T )

In this section we describe and analyze our Õ(n · ζ−3 ·
ε−1 · �−1)-time algorithm for estimating the number of con-

nected components c(t) in G(t). The algorithm combines
the sampling approach from [6], the graph traversal algo-
rithm Clique-Tree-Traversal described in Section 3, and the
sampling algorithm Degree-Estimate used to recognize high
degree vertices in the sample.

We present now our algorithm Number-of-Connected-Com-
ponents (P , t, ζ, �, ε).✬

✫

✩

✪

Number-of-Connected-Components (P , t, ζ, �, ε)

s=0

while runtime is less than T ∗ = Õ(n ζ−3 ε−1 �−1) do
s = s + 1; βs = 0
choose vertex ps indep. and uniformly at random
choose integer X according to Pr[X ≥ k] = 1/k

D̂(ps) = Degree-Estimate(P, t, ps)

if D̂(ps) ≤ 2X then
run Clique-Tree-Traversal (P, ps, t, ε) until

one of the following events happens:

(1) more than X vertices are explored
(2) more than 4

ζ·ε representative vertices

are explored

(3) the entire connected component in G(t)

containing ps is explored

if event (3) happened then βs = 1

output ĉ(t) = n
s
· ∑s

i=1 βi

We say algorithm Degree-Estimate(P, t, p) works properly

if it returns a value D̂(p) with 1
2
D̂(p) ≤ degt(p) ≤ 2 D̂(p)

179



and its running time is O(n · log n/degt(p)). Notice that by
Lemma 5.1, every run of algorithm Degree-Estimate(P, t, p)
works properly with probability at least 1 − 1/n4. Obvi-
ously, we can assume that the overall running time is o(n2)
because otherwise we can simply compute the minimum
spanning tree directly. Therefore, with probability at least
1 − 1/n2, all runs of algorithm Degree-Estimate(P, t, p) in-
corporated in algorithm Number-of-Connected-Components
(P, t, ζ, �, ε) work properly. Hence, from now on, we shall
condition on this fact (that holds with probability at least
1 − 1/n2).

Before we proceed with the analysis of the algorithm, we
first explain our use of algorithm Degree-Estimate that is
needed to decrease the total running time of the algorithm
and has no influence on the output value.

If in the ith iteration of algorithm Number-of-Connected-

Components procedure Degree-Estimate returns a value D̂(p)
> 2X then we know that degt(p) > X. If degt(p) > X then
we know that nt

p > X. Hence, our procedure would stop
the Clique-Tree-Traversal because of event (1) before event
(3) could happen. This would cause βi = 0. Therefore, we
do not have to invoke the Clique-Tree-Traversal in that case
and we can immediately set βi = 0.

For the remaining analysis (besides the running time anal-
ysis) we can therefore ignore the procedure Degree-Estimate.
We can assume that for every sampled vertex pi, we set
βi = 0, if algorithm Clique-Tree-Traversal (P, t) stops be-
cause of event (1) or (2), or we set βi = 1, otherwise.

Our next step is to prove that the expected value of ĉ(t)

is close to c(t).

Lemma 6.1 (Expectation bound). If in all calls al-
gorithm Degree-Estimate work properly, then the random
variable ĉ(t) computed in algorithm Number-of-Connected-
Components satisfies the following:

c(t) ≥ E
[
ĉ(t)

] ≥ c(t) − ζ

2 t
· mst .

Proof : Recall that if we ignore events of type (2), then

we have already seen in Section 3 that E
[
ĉ(t)

]
= c(t). Since

the introduction of events of type (2) can only decrease the

expected value of ĉ(t), the inequality c(t) ≥ ĉ(t) follows.
Now, we prove the second inequality, namely, E[ĉ(t)] ≥

c(t) − ζ
2 t

· mst. We partition the t-connected components
in P into two types. A t-connected component C is of type
(II) if there exists a vertex p ∈ C such that the Clique-
Tree-Traversal with starting vertex p stops with more than
4

ζ ε
representative vertices. Otherwise, a t-connected compo-

nent is of type (I). The idea behind these two types is that
our algorithms always counts connected components of type
(I) but it may not count connected components of type (II).

Let K denote the number of connected components of
type (II). Then mst ≥ K ε t

2
· 4

ζ ε
= 2 K t

ζ
, and hence K ≤

ζ
2 t

· mst. We also know that

E[βi] ≥
∑

type (I) connected component C

Pr[pi ∈ C] · Pr[X ≥ |C|]

=
c(t) −K

n
.

Hence, E[ĉ(t)] ≥ c(t) −K ≥ c(t) − ζ
2 t

· mst. ✷

Our next step is to prove a bound on the number of itera-
tions of algorithm Number-of-Connected-Components. Here

we will make use of the dispersion L(G(t)) and so our bound
will also depend on this value.

Lemma 6.2 (Sample size). Let 0 < ε < 1/2. If in
all calls algorithm Degree-Estimate work properly, then for

certain T ∗ = Õ(n ζ−3 ε−1 �−1) the number of iterations s
of algorithm Number-of-Connected-Components is at least
n ζ−2 �−1/L(G(t)), with probability at least 1 − �.

Proof : We assume that a counter T is used in the algo-
rithm to count the running time of the algorithm. Let T (i)

denote the value of T at the end of the ith iteration of the
while-loop in algorithm Number-Of-Connected-Components.
We give an upper bound on the expected increase ∆T (i) =
T (i+1) − T (i) of variable T in a single iteration of this loop.
We will use a sufficiently large absolute constant α to avoid
the use of the big-Oh notation.

We start our analysis with a partition of P into L(G(t))
clusters Cj according to the full Clique-Tree-Traversal. There
is exactly one cluster for each representative vertex. If a ver-
tex p is no representative vertex then it was explored from
some representative vertex q. In this case we assign p to
the cluster containing q. We observe that each cluster Cj

forms a clique in G(t), because the distance between any
two points in Cj is at most 2 ε t and ε < 1/2. For any vertex
p, let Cp denote the cluster that contains p. Notice that
degt(p) ≥ |Cp| − 1.

If all calls to algorithm Degree-Estimate work properly

then the test D̂(p) < 2X rejects every vertex p in a cluster
of size greater than 2X. In this case we increase T by at

most α · n log n/D̂(p), where α is a constant used to upper
bound the constants hidden in the big-Oh notation of the
running time of Degree-Estimate. We get

∆T (i) = T (i+1) − T (i) = α · n · log n/D̂(p)

≤ 2 · α · n · log n/ degt(p)

≤ 2 · α · n · log n/(|Cp| − 1) ≤ 4 · α · n · log n/|Cp| .
For any vertex that is in a cluster of size smaller than or
equal to 2X, we increase T by at most α · n/(ζ ε). Since

the number of clusters is L(G(t)), we clearly have at most

2X · L(G(t)) vertices in a cluster of size at most 2X. Now
we observe that in the case X > n the behavior of our
algorithm is identical to the case X = n. Therefore, we
define a random variable X∗ = X for X < n and X∗ = n
for X ≥ n. We get for fixed value of X∗,

E
[
∆T (i)] ≤

∑
p : Cp≤2 X∗

Pr[pi = p] · α · n
ζ ε

+

∑
p : Cp>2 X∗

Pr[pi = p] · 4α · n · log n

|Cq |

=
∑

p : Cp≤2 X∗

1

n
· α · n
ζ ε

+

∑
p : Cp>2 X∗

1

n
· 4α · n · log n

|Cp|

≤ 2 · α ·X∗ · L(G(t))

ζ ε
+ 4 · α

∑
p∈P

1

|Cp|

≤ 6 · α ·X∗ · L(G(t)) · log n

ζ ε
.
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Since the choice of X∗ is independent of the other choices,
the inequality E[X∗] ≤ log n implies that

E
[
∆T (i)] ≤ 6 · α · log2 n · L(G(t))

ζ ε
,

and hence also

E
[
T (i)] ≤ 6 · i · α · log2 n · L(G(t))

ζ ε
.

Thus we can apply Markov inequality to obtain that for any
� > 0

Pr
[
T (i) ≥ 6 · i · α · log2 n · L(G(t))

� ζ ε

] ≤ � .

We conclude that for T ∗ = 6 · n ·α · log2 n · ζ−3 · ε−1 · �−1 =
Θ(n · log2 n · ζ−3 · ε−1 · �−1) the number of iterations of the

while-loop is at least n · ζ−2 · �−1/L(G(t)) with probability
at least 1 − �. ✷

Lemma 6.3 (Concentration bound). If in all calls
algorithm Degree-Estimate works properly, then for the ran-
dom variable ĉ(t) computed by algorithm Number-of-Connected-
Components the following bound holds:

Pr
[|ĉ(t) − E

[
ĉ(t)

]| ≤ ζ · max{c(t),L(G(t))}] ≥ 1 − 2� .

Proof : Similarly to [6], we can upper bound the variance
of any single βi as follows:

Var[βi] ≤ E
[
β2

i

] ≤ E
[
βi

] ≤ c(t)

n
,

where the last inequality follows from our analysis in the
proof of Lemma 6.1 and from Section 3. Let s denote the
number of iterations of Number-Of-Connected-Components.
Then we have

Var[ĉ(t)] =
(n
s

)2

·
∑

1≤i≤s

Var[βi] ≤
(n
s

)2

·s·c
(t)

n
=

n c(t)

s
.

Next, by Chebyshev inequality we obtain,

Pr
[|ĉ(t) − E

[
ĉ(t)

]| ≥ ζ · max{c(t),L(G(t))}]

≤ n · c(t)
s · (ζ · max{c(t),L(G(t))})2

≤ n

s · ζ2 · L(G(t))
.

Conditioned on the event that s ≥ n · �−1 · ζ−2/L(G(t)) we
obtain,

Pr
[|ĉ(t) − E

[
ĉ(t)

]| ≥ ζ · max{c(t),L(G(t))}] ≤ � .

Since s ≥ n · �−1 · ζ−2/L(G(t)) holds with probability 1 − �,
by Lemma 6.2 we finally obtain

Pr
[|ĉ(t) − E

[
ĉ(t)

]| ≤ ζ · max{c(t),L(G(t))}] ≥ 1 − 2 � .

✷

Now, we can summarize our entire discussion in this sec-
tion with the following theorem which immediately implies
Theorem 1.

Theorem 2. Given P , t, ε, ζ and � ≥ 1/n2, algorithm

Number-Of-Connected-Components computes in Õ(n · ζ−3 ·
ε−1 ·�−1) time a value ĉ(t) that with probability at least 1−3 �
satisfies the following

(1 − ζ) · c(t) − ζ · mst

ε t
≤ ĉ(t) ≤ (1 + ζ) · c(t) + ζ · mst

ε t
.

Proof : Let us first assume that all calls of algorithm
Degree-Estimate work properly. Lemma 6.1 gives us

c(t) − ζ

2 · tmst ≤ E
[
ĉ(t)

] ≤ c(t) .

We prove the lemma in two cases, depending on whether
c(t) ≥ L(G(t)) or c(t) < L(G(t)).

Let us first consider the case c(t) ≥ L(G(t)). Then, by
Lemma 6.3 we have with probability at least 1 − 2� the
inequality |ĉ(t) − E

[
ĉ(t)

]| ≤ ζ · c(t). Hence,

ĉ(t) ≤ E
[
ĉ(t)

]
+ ζ · c(t) ≤ (1 + ζ) · c(t) ,

ĉ(t) ≥ E
[
ĉ(t)

] − ζ · c(t) ≥ (1 − ζ) · c(t) − ζ

2 · tmst .

On the other hand, if c(t) < L(G(t)), then we can use Lemma

4.3 to obtain L(G(t)) ≤ mst/(4 ε t). This together with
Lemma 6.3 imply that with probability at least 1 − 2� we
have

ĉ(t) ≤ E
[
ĉ(t)

]
+ ζ · L(G(t)) ≤ c(t) + ζ · mst

4 · ε · t ,

ĉ(t) ≥ E
[
ĉ(t)

] − ζ · L(G(t)) ≥
c(t) − ζ · mst

2 · t − ζ · mst

4 · ε · t ≥ c(t) − ζ

ε · tmst .

Finally, since all calls of algorithm Degree-Estimate work
properly with probability at least 1 − 1/n2, the lemma fol-
lows. ✷

7. REDUCING GENERAL CASE TO ALL
DISTANCES BEING POWERS OF (1 + ε)

In all previous analyses we assumed that all distances are
powers of (1 + ε). In this section we justify this assumption
and show how our analysis can be extended to the general
case when all distances are arbitrary real numbers in the
interval [1, 2n/ε].

If we have arbitrary distances then our analysis has to
be modified because the identity (1) does not hold any-
more and, more importantly, Lemma 4.1 is invalid. The
first problem can can be easily fixed by observing that the
use of identity (1) to arbitrary distances introduces at most
a (1 + ε)-factor error term. The other problem is slightly
more complex because the set of vertices E explored by the
Clique-Tree-Traversal (1) depends on the starting vertex v
and (2) might be different from the connected component

C
(t)
v containing v in G(t).
Before we show how to deal with this problem let us con-

sider the following modification of the Clique-Tree-Traversal.
In line 2 of the algorithm we consider edges of length (1+ε)·t
instead of edges of length t.�

✧

✥

✦

Clique-Tree-Traversal∗ (P , p, t, ε)

R = {p}; E = {p}; U = P \ {p}
while ∃ an edge e = (p, q) ∈ E((1+ε)·t), p ∈ R, q ∈ U do

let (p, q) be the shortest such edge
E = E ∪ {q}; U = U \ {q}
if d(p, q) ≥ ε t then R = R ∪ {q}

Now we can easily prove that independent of the starting

vertex v the inequality C
(t)
v ⊆ E ⊆ C

((1+ε)·t)
v holds. Using

this observation we obtain with small modifications in the
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proof the following result to be held with probability at least
1 − �:

(1 − ζ) · c((1+ε)i) − ζ · mst
ε·(1+ε)i ≤ ĉ((1+ε)i)

≤ (1 + ζ) · c((1+ε)i+1) + ζ · mst
ε·(1+ε)i . (3)

With this inequality we can prove that our estimator n−
W+ε·∑log1+ε W−1

i=0 (1+ε)i·ĉ((1+ε)i) is a (1+3 ε)-approximation
of mst. Adjusting the constants in the proof gives a (1 + ε)-

approximation with Õ(n/ε8) running time.

8. EVERY APPROXIMATION ALGORITHM
OF MST WITHIN ANY FACTOR
REQUIRES LINEAR TIME

It is easy to see that no algorithm with o(n) running time
can approximate the cost of the minimum spanning tree
within any factor. For a given approximation factor B let
us consider two graphs G1 and G2. G1 consists of a clique of
n− 1 vertices having mutual distance 1 and a single outlier
with distance 2B n to each other vertex. In graph G2 the
distance between every pair of vertices is 1. Clearly, the
minimum spanning tree of graph G2 has cost n−1 while the
minimum spanning tree of graph G1 has cost n− 2 + 2B n.
In order to distinguish between the two graph one has to find
the single outlier, what cannot be achieved in time o(n) with
constant confidence probability. This yields the following
easy claim.

Theorem 3. No o(n)-time algorithm can approximate the
weight of the minimum spanning tree within any factor.
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