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Abstract

We consider the problem of testing expansion in bounded degree graphs. We focus on
the notion of vertex-expansion: an α-expander is a graph G = (V,E) in which every subset
U ⊆ V of at most |V |/2 vertices has a neighborhood of size at least α · |U |. Our main result is
that one can distinguish good expanders from graphs that are far from being weak expanders
in time Õ(

√
n). We prove that the property testing algorithm proposed by Goldreich and

Ron with appropriately set parameters accepts every α-expander with probability at least 2
3

and rejects every graph that is ε-far from any α∗-expander with probability at least 2
3 , where

α∗ = Θ
(

α2

d2 log(n/ε)

)
and d is the maximum degree of the graphs. The algorithm assumes the

bounded-degree graphs model with adjacency list graph representation and its running time is
O
(
d2
√
n log(n/ε)
α2ε3

)
.
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1 Introduction
Property testing is a relaxation of a standard decision problem: the task is to distinguish between
an input object (for example, a graph, a function, or a point set) satisfying a certain predetermined
property (for example, being bipartite, monotone, or in convex position) and an object that is “far”
from satisfying the property. The notion of being far from a property is parameterized by a distance
parameter ε. An object is ε-far from having a property Π if it differs in more than an ε-fraction of
its description from any object having the property Π. For example, when the object is a (dense)
graph represented by an adjacency matrix and the considered property is bipartiteness, then a graph
is ε-far from bipartite if one has to change more than εn2 entries in the adjacency matrix to make
it bipartite.

The main goal of property testing is to design randomized algorithms that can test a property
without looking at the entire input. The algorithms sought should accept with probability at least 2

3

every object that has the predetermined property and should reject with probability at least 2
3

every
object that is ε-far from having the property. Typically, one assumes that the input object is given as
an oracle. Given access to this oracle, many properties can be tested in time sublinear in the input
description size, and in some cases we can even achieve running time independent of the input size.
In the last decade, property testing algorithms have been successfully developed for many different
properties of combinatorial objects such as graphs and hypergraphs, functions, point sets, formal
languages, and many other structures (for the references, see the surveys [12, 13, 19, 25]). In the
area of graph properties, recently we have seen a vast amount of works dealing with properties of
dense graphs represented by adjacency matrices. After a series of results for specific problems,
recently very powerful general results characterizing testability of entire classes of graph properties
have been established. For example, it has been proved that all hereditary properties are testable
(even with one-sided error) in time independent of the input size (see [4] and [9]; cf. also [2], that
gives a certain characterization for testability in the dense graphs model). These results imply that
in the adjacency matrix model most “natural” graph property can be tested with a constant number
of queries.

Property testing in sparse graphs is less well understood, although significant progress has been
made recently. To study properties of sparse graphs one typically assumes that the input graphG is
given in the bounded degree graph model introduced by Goldreich and Ron [17]. In this model, G
is represented by n adjacency lists of length at most d each, where n denotes the number of vertices
of G and d, the maximum degree, is a constant independent of n. A property testing algorithm has
oracle access to any entry in the adjacency list by making a query to the ith neighbor of a given
vertex v. The number of accesses to the adjacency list is the query complexity of the tester. The
task of property testing algorithm is to distinguish between graphs that satisfy a predetermined
graph property Π and graphs that are ε-far from property Π; here we say that a graph G is ε-far
from Π if one has to modify more than εdn edges in G to obtain a graph having property Π.

The first results for the bounded degree graph model have been obtained by Goldreich and Ron
[17], who show that a number of fundamental graph properties like connectivity, k-connectivity,
cycle-freeness and being Eulerian are testable in constant time. In contrast, they also prove that
testing bipartiteness and testing expansion require Ω(

√
n) time. A number of other properties is

known to require more than a constant number of queries, for example, acyclicity requires Ω(n1/3)
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queries [6] and testing 3-colorability requires Ω(n) queries [8]. For some of these properties one
can achieve a sublinear query complexity, for example, bipartiteness is testable in Õ(

√
n) query

complexity for constant ε using a combination of random sampling and random walks on the input
graph.

Another approach to property testing in bounded degree graphs has been proposed recently
in [10], where the authors assumed that the input graph comes from a hereditary class of graphs
that does not contain expanders, e.g., from the class of planar graphs. Under this assumption, it is
possible to show that every hereditary graph property is testable with constant number of queries.
The results from [10] have been very recently extended by Benjamini, Schramm, and Shapira [7],
who proved that any minor-closed property (e.g., the planarity) of bounded degree graphs can be
tested in constant time.

In many of these property testing algorithms a crucial role is played by the expansion of the
graphs at hand. For example, in [17], the expansion properties of the graph are critical to “control”
the analysis of the random walks and in [10], the constant-time testing is shown for classes of
graphs with excluded expanders. In view of this, it is natural to ask if one can efficiently (in
sublinear-time) test if a given graph is a good expander.

It is known that testing an expander requires at least Ω(
√
n) time, which is the time needed

even to distinguish between a very good expander and a disconnected graph with several large
connected components [17]. Goldreich and Ron [16] made a major attempt to design a sublinear-
time algorithm for testing expansion, however, unlike in our paper, they considered the algebraic
characterization of expanders. In contrast to majority of the property testing papers, Goldreich
and Ron’s goal was to consider a relaxation of the notion of property testing: their goal was to
distinguish between graphs that are good expanders and those that are far from (relatively) weak
expanders. More formally, their goal was to design an algorithm that for any given λ, 0 < λ <
1, has query complexity of Õ(

√
n) and (with probability at least 2

3
) accepts every graph whose

(normalized) second largest eigenvalue satisfies λ(G) ≤ λ, and rejects every graph that is ε-far
from any graph G′ with λ(G′) ≤ λ∗, where λ∗ � λ but possibly λ∗ ≤ λO(1). Goldreich and
Ron [16] give a property testing algorithm and show that under a certain appealing conjecture their
algorithm is a property tester for expansion.

1.1 Our result
In this paper we study the problem of testing expanders, but unlike Goldreich and Ron [16],
we consider the combinatorial notion of vertex-expansion. A graph G = (V,E) is called an α-
expander (or α-vertex-expander) if for every U ⊆ V with |U | ≤ n/2, the neighborhood of U in
G has size at least α · |U |.1 We reconsider the algorithm of Goldreich and Ron [16] and prove
that when run with appropriate parameters, this algorithm distinguishes between good expanders
and graphs far from weak expanders with Õ(

√
n) queries. In particular, for any α > 0, the algo-

1Let us notice that it is known that the notions of vertex-expansion and algebraic expansions are very closely
related. In particular, it is known that if a d-regular graph G is an α-expander then λ(G) ≤ d − α2

4+2α2 [1], and if
λ(G) = λ then G is an α-expander with α = d−λ

2d [3]. Observe that this relation is less tight when α = o(1). (See
[18] for a more detailed discussion about this relationship.)
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rithm has query complexity of O
(
d2·ln(n/ε)·

√
n

α2·ε3

)
and with probability 2

3
, it distinguishes between

an α-expander and a graph that is ε-far from any α∗-expander, where α∗ = O
(

α2

d2 log(n/ε)

)
.

Our property tester uses the algorithm proposed by Goldreich and Ron [16] with appropriately
set parameters and some parts of our analysis follow the ideas from that paper. And so, already
Goldreich and Ron proved that the algorithm accepts good expanders (though their arguments use
the algebraic notion of expanders). However, the missing part of the analysis in [16] and also the
most challenging part of our analysis is a proof that if a graph is far from any (sufficiently good)
expander then the algorithm will reject it. The main reason why this task is non trivial is that
while we quite well understand properties of expanders (see e.g., the survey exposition in [18]),
we know much less about graphs that are not expanders, and even less about the graphs that are far
from expanders.

The proof that our algorithm will reject graphs that are far from expanders is in Sections 4.1 –
4.3. We prove this property by first showing that graphs that are far from being an expander have
a large set of vertices for which the expansion is small. With this property at hand, we can prove
that for many vertices, a random walk starting at these vertices will not quickly converge to the
uniform distribution. This can be used to demonstrate that our algorithm will reject all graphs that
are far from expanders. This will imply that our algorithm is a tester for expansion.

Our property testing algorithm for vertex-expansions can be easily extended to edge-expansions
(see [18]), and the quantitative results are essentially identical. Furthermore, we can also test
the expansion defined in the algebraic sense using the notion of the spectral gap, or the second
largest eigenvalue of the normalized adjacency matrix, however this result is weaker than those
conjectured by Goldreich and Ron in [16].

Let us notice that since the relation between α and α∗ depends (weakly) on n, our result does
not imply the conjecture of [16].

1.2 Subsequent works
There have been three subsequent developments after a preliminary version of this paper was made
available. Independently of our paper, Kale and Seshadri [21] obtained an incomparable result for
testing expansion using algebraic techniques. They proved that the algorithm of Goldreich and
Ron in [16] rejects every graph that is Θ(α2/d)-far from every expander with degree at most 2d.
While this result improves the bound for the expansion, it sacrifices the bound for the maximum
degree from d to 2d. The revised version of that paper [22] then reduces the degree bound to d
leading to an improvement of the result presented in this paper. A similar improvement has been
achieved independently by Nachmias and Shapira [23], who combine the techniques from [16],
the conference version of this paper, and [21]. The two latter result prove the result conjectured in
[16] in the sense that there is no dependence on n required in the expansion gap of the tester.
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2 Preliminaries
Let G = (V,E) be an undirected graph with n vertices. Without loss of generality, we assume that
V = {1, . . . , n}. For a subset U ⊆ V we use G[U ] to denote the subgraph of G induced by U .
For a vertex v let deg(v) denote its degree. We assume that G is stored in the adjacency list model
for bounded degree graphs with degree bound d, i.e., deg(v) ≤ d for all v ∈ V . In this model, we
have constant time access to a function fG : [n] × [d] → [n] ∪ {+}. The value fG(v, i) is the ith
neighbor of v or a special symbol + if v has less than i neighbors. In this paper we will assume
d ≥ 4.

2.1 Expanders and graphs that are far from expanders
For a detailed exposition of expanders, their properties, and their applications, we refer, e.g., to a
recent survey by Hoory, Linial, and Wigderson [18].

In this paper, our main focus is on expanders defined through the notion of vertex-expansion.
For any two sets of vertices U,W ⊆ V , we denote byNG(U,W ) the neighborhood of U inW with
respect to the graph G, that is, NG(U,W ) = {v ∈ W \ U : ∃u ∈ U such that (v, u) ∈ E}. When
G is clear from the context, we will skip the dependency of G and write N(U, V ) instead.

Definition 2.1 Let α > 0. A graph G = (V,E) is an α-expander if for every U ⊆ V with
|U | ≤ n/2 it holds that |N(U, V )| ≥ α · |U |.

Let us remind that our main goal is to study graphs with degree at most d. With this in mind,
we have the following definition of graphs that are ε-far from expanders.

Definition 2.2 A graphG is ε-far from any α-expander if one has to modify more than εdn entries
in fG to obtain an α-expander.

Equivalently, G is ε-far from any α-expander if one has to modify more than εdn/2 edges to
obtain a graph G′ that has maximum degree at most d and that is an α-expander.

2.1.1 Strong expanders and parameter βd

We will also use the notion of strong expanders.

Definition 2.3 A graph G = (V,E) is called β-strong expander if for every U ⊆ V holds
|N(U, V )| ≥ β ·min{|U |, |V \ U |}.

It is not hard to see that if a graph G with maximum degree d∗ is an α-expander then it is also
α/d∗-strong expander. Indeed, if G = (V,E) is an α-expander then for every subset U ⊆ V , if
|U | ≤ |V |/2 then |N(U, V )| ≥ α · |U |. On the other hand, if |U | > |V |/2, then |V \ U | ≤ |V |/2,
and hence |N(V \ U, V )| ≥ α · |V \ U |. This in turn, because each vertex in G has degree at most
d∗, implies that |N(U, V )| ≥ |N(V \U,V )|

d∗
≥ α

d∗
|V \ U |.

Let β∗d be the largest number for which there is a d-regular β∗d-strong expander. It is not difficult
to prove that for every d ≥ 3 we have β∗d ≥ c > 0 for a certain constant c (e.g., by considering a
random d-regular graph, cf. [14, 18]), and therefore, from now on, we will use βd = min{β∗d , 1

3
} =

Θ(1), with the meaning that for every d ≥ 3 there is a βd-strong expander of maximum degree d.

4



2.2 Random walks and Markov Chains
The main technical tool in our analysis will be the study of random walks on G. We describe a
random walk by a transition matrix P . For any two vertices u, v ∈ V , we let P (u, v) denote the
probability to move from vertex u to v.

We will first make sure that the random walk is on a regular graph and that the graph is not
bipartite (this is because it is known that for such a connected graph the random walk converges
to a uniform distribution). This will be achieved by a standard trick of adding (virtually, without
modifying the graph) to each vertex v, 2d−deg(v) self-loops. In this way we obtain a (2d)-regular
graph. For two vertices v, w, we define P (v, w) = 1

2d
, if (v, w) ∈ E and P (v, w) = 0, otherwise.

Furthermore, we define P (v, v) = 2d−deg(v)
2d

= 1− deg(v)
2d

.
To analyze the random walk we will use some standard tools from the analysis of Markov

chains. We give here a brief introduction following the exposition in [20]. Let M be a Markov
chain with finite state space Ω and stationary distribution π = (πx)x∈Ω. Let P : Ω2 → [0, 1]
denote the matrix of its transition probabilities. We use P t(x, ·) to denote the distribution at time
t for given initial state x, i.e., P t(x, S) is the probability that the Markov chain with initial state x
ends after t steps in a state y ∈ S. We assume that M is ergodic (connected and aperiodic) and is
reversible, i.e., that πx · P (x, y) = πy · P (y, x) for all x, y ∈ Ω. We define Q(x, y) = πx · P (x, y)
for all x, y ∈ Ω.

Definition 2.4 The variation distance with respect to the initial state x is defined as

∆x(t) = max
S⊆Ω

∣∣P t(x, S)− π(S)
∣∣ = 1

2

∑
y∈Ω

∣∣P t(x, y)− π(y)
∣∣ .

In our analysis we will also frequently use an extension of Definition 2.4, which is the notion
of the variation distance between two arbitrary probability distributions.

Definition 2.5 The variation distance between two probability distributions X and Y over the
same finite domain Ω is defined as

dTV (X ,Y) = max
S⊆Ω
|PrX [S]−PrY [S]| = 1

2

∑
ω∈Ω

|PrX [ω]−PrY [ω]| .

Definition 2.6 The rate of convergence of M with initial state x to the stationary distribution is
defined as

τx(ζ) = min{t : ∆x(t
′) ≤ ζ for all t′ ≥ t} .

We also call τx(ζ) the mixing time of the Markov chain.

Definition 2.7 (Conductance [27]) The conductance of a Markov chain M is defined as

Φ = Φ(M) = min
S⊆Ω,0<π(S)≤ 1

2

Q(S, S)

π(S)
,

where Q(S, S) =
∑

(x,y)∈E,x∈S,y∈S Q(x, y) and S = Ω \ S.
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Proposition 2.8 [26] Let M be a finite, reversible, ergodic Markov chain with loop probabilities
P (x, x) ≥ 1

2
for all states x. Let Φ be the conductance of M. Then the mixing time of M satisfies

τx(ζ) ≤ 2Φ−2(ln(π−1
x ) + ln(ζ−1)) ,

for any choice of initial state x.

The previously defined random walk on G can be viewed as a Markov chain MG with state
space Ω = V and transition matrix P . It is well-known (and easy to see) that if G is connected
then MG is ergodic, reversible, has P (x, x) ≥ 1

2
for all x ∈ V , and the stationary distribution of

MG is uniform. Further, the conductance ΦG of MG is given by

ΦG = Φ(MG) = min
U⊆V,|U |≤|V |/2

|E(U, V \ U)|
2 d · |U |

,

where E(U, V \ U) is the set of edges of edges between U and V \ U .
Notice also that for an α-expander we have

ΦG = min
U⊆V,|U |≤|V |/2

|E(U, V \ U)|
2 d · |U |

≥ min
U⊆V,|U |≤|V |/2

|N(U, V )|
2 d · |U |

≥ α

2 d
.

3 Testing expanders
In this section we present a property testing algorithm for expanders and state our main theorem
which describes its performance. The algorithm is essentially the algorithm proposed by Goldreich
and Ron [16] for testing expanders with the parameters set appropriately to facilitate our analysis.

EXPANSIONTESTER(G, `,m, s)
repeat s times

Select a vertex v uniformly at random from V
Perform m independent random walks of length ` starting from v
Count the number of pairwise collisions between

the endpoints of these m random walks
if the number of pairwise collisions is greater than 1+7ε

n

(
m
2

)
then reject

accept

The query complexity of the algorithm is O(`ms). In the next section, we will prove the
following main result of this paper.

Theorem 1 Let 0 ≤ ε ≤ 0.0017. Algorithm EXPANSIONTESTER with s ≥ 48
ε

, m ≥ 12·s·
√
n

ε2
, and

` ≥ 16·d2·ln(n/ε)
α2 , accepts every α-expander with probability at least 2

3
and rejects every graph that

is ε-far from any c·α2

d2·ln(n/ε)
-expander with probability at least 2

3
, where c > 0 is a large enough

constant. The query complexity of this algorithm is O
(
d2·ln(n/ε)·

√
n

α2·ε3

)
.

6



In what follows we use α∗ = c·α2

d2·ln(n/ε)
, and thus our goal is to show that algorithm EXPAN-

SIONTESTER accepts every α-expander with probability at least 2
3

and rejects every graph that is
ε-far from any α∗-expander with probability at least 2

3
.

4 Analysis
The main idea of algorithm EXPANSIONTESTER is to exploit the relation between good expansion
and fast convergence of random walks (in regular graphs) to the uniform distribution [16]. The
length of the random walk is chosen in such a way that for an α-expander the distribution of the
endpoints of the random walk will be close to the uniform distribution. The algorithm compares
the number of collisions among the endpoints with the expected number of collision in the uniform
distribution. If this number is too large then the algorithm rejects. The key and most challenging
part of the analysis (which forms Sections 4.1 – 4.3) is to prove that if a graph is far away from
every α∗-expander (with α∗ = c·α2

d2·ln(n/ε)
) then the rejection will most likely happen.

It has already been proved in [16] (see the proof of Lemma 1 in [16] and also [5]) that the
variance of this process is relatively small.

Lemma 4.1 (Goldreich, Ron [16]) Let Xv be the random variable for the number of collisions
among the endpoints of m random walk of length ` starting from vertex v. Let P `

v denote the
distribution of the endpoint of this random walk. Then the following holds:

E[Xv] =

(
m

2

)
· ‖P `

v‖2
2 and Var[Xv] ≤ 2 · (E[Xv])

3/2 .

With this result, we can follow the arguments of Goldreich and Ron [16] to show that an
α-expander is accepted provided that the random walks are sufficiently long. Let us consider
an α-expander and a random walk of length ` = 16d2·ln(n/ε)

α2 ≥ 8d2·(ln(n)+ln(n/ε))
α2 . By applying

Proposition 2.8 we observe that for any starting vertex v ∈ V , the variation distance between P `
v

and the uniform distribution is at most ε/n. This yields ‖P `
v‖2

2 ≤ (1 + ε)2/n. By combining this
bound with Lemma 4.1 and Chebyshev’s inequality, we can obtain the following lemma (a similar
lemma is proven for algebraic notion of expansion in [16]).

Lemma 4.2 (Accepting expanders) Let 0 < ε < 1, m ≥ 12·s·
√
n

ε2
and ` ≥ 8d2·(ln(n)+ln(n/ε))

α2 . Then
Algorithm EXPANSIONTESTER accepts every α-expander with probability at least 2

3
.

Proof : Let Xv be the random variable for the number of collisions of m random walks of length
` starting at vertex v. By combining Lemma 4.1 with Chebyshev’s inequality we obtain,

Pr
[
|Xv − E[Xv]| ≥ ε · E[Xv]

]
≤ Var[Xv]

ε2 · E[Xv]2
≤ 4

ε2 ·m · ‖P `
v‖2

≤ 4 ·
√
n

ε2 ·m
,

where the last inequality follows from the fact that ‖P `
v‖2 ≥ 1√

n
, since P `

v is a probability distribu-
tion. Hence, by choosing

m ≥ 12 · s ·
√
n

ε2
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we obtain
Pr
[
|Xv − E[Xv]| ≥ ε · E[Xv]

]
≤ 1

3s
.

Therefore, by the union bound we obtain

Pr
[
∀v ∈ S : |Xv − E[Xv]| ≤ ε · E[Xv]

]
≥ 2

3
.

Thus, using the fact that E[Xv] =
(
m
2

)
· ‖P `

v‖2
2 by Lemma 4.1, with probability at least 2

3
we obtain

that there are at most

(1 + ε)

(
m

2

)
(1 + ε)2

n
=

(1 + ε)3

n

(
m

2

)
≤ 1 + 7ε

n

(
m

2

)
collisions for each v ∈ S. Hence, the algorithm accepts with probability at least 2

3
. 2

Lemma 4.3 (Rejections) Let 0 < ε < 0.1. Let G = (V,E) be a graph and for each v ∈ V let
P `
v be the distribution of the endpoint of an `-step random walk starting at v. If there exists a set
U ⊆ V of cardinality at least δn, 0 < δ < 1

2
, such that for every u ∈ U the variation distance of

P `
u to the uniform distribution is at least 6

√
ε, then algorithm EXPANSIONTESTER run with s ≥ 2

δ

rejects with probability at least 2
3
.

Proof : We first show that any distribution with variation distance at least 6
√
ε to the uniform

distribution will result in a high expected number of collisions for our random walks. If U denotes
the uniform distribution, then the variation distance between P `

v and U is 1
2
·‖P `

v−U‖1. By Lemma
4.1, the expected number of collisions is

(
m
2

)
·‖P `

v‖2
2. The smaller this expected value is, the harder

is to distinguish the corresponding distribution from the uniform distribution, which minimizes
this expected value. Thus, we are looking for a probability vector P `

v with ‖P `
v − U‖1 ≥ 3

√
ε that

minimizes ‖P `
v‖2

2. We claim that this is attained by a vector with n
2

elements with values 1+3
√
ε

n
and

n
2

elements with values 1−3
√
ε

n
, in which case ‖P `

v‖2
2 = 1+9ε

n
.

To see this, let us first observe that any P `
v with ‖P `

v − U‖1 ≥ 3
√
ε that minimizes ‖P `

v‖2
2 will

satisfy ‖P `
v − U‖1 = 3

√
ε. Next, let us consider any vector P `

v = (p1, . . . , pn) with pi ≥ pi+1 ≥ 0
for every 1 ≤ i < n, and

∑
i pi = 1. Let t be such that pt ≥ 1

n
> pt+1. Since we want to consider

P `
v with ‖P `

v − U‖1 = 3
√
ε, we have

∑t
i=1

(
pi − 1

n

)
=
∑n

i=t+1

(
1
n
− pi

)
= 1.5

√
ε. Conditioned

on
∑t

i=1

(
pi − 1

n

)
= 1.5

√
ε,
∑t

i=1 p
2
i is minimized when all pi (with 1 ≤ i ≤ t) are identical,

that is, when pi = 1
n

+ 1.5
√
ε

t
for i ≤ t. Similarly, conditioned on

∑n
i=t+1

(
1
n
− pi

)
= 1.5

√
ε,∑n

i=t+1 p
2
i is minimized when pi = 1

n
− 1.5

√
ε

n−t for all i > t. Hence, assuming that vector P `
v

has t elements greater than or equal to 1
n

, under the conditions above ‖P `
v‖2

2 is minimized when t
elements have value 1

n
+ 1.5

√
ε

t
and the other n − t elements have value 1

n
− 1.5

√
ε

n−t , in which case
‖P `

v‖2
2 = 1

n
+ 9ε

4

(
1
t

+ 1
n−t

)
. Since the last term is minimized when t = n − t, we conclude that

‖P `
v‖2

2 ≥ 1+9ε
n

.
Next, we know from the proof of Lemma 4.2 that the observed number of collisions is with

probability at least 1− 1
3s

at least (1− ε) times its expectation. Thus, we get that with probability
at least 1− 1

3s
we have that the number of collisions is greater than

(1− ε) ·
(
m

2

)
· ‖P `

v‖2
2 ≥

(1− ε)(1 + 9ε)

n
·
(
m

2

)
>

1 + 7ε

n
·
(
m

2

)
,
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where in the last inequality we used the fact that ε ≤ 0.1.
The probability that algorithm EXPANSIONTESTER selects a vertex from U as one of the start-

ing vertices for the random walk is 1− (1− δ)s, and therefore, by our analysis above, the overall
probability of the rejection is at least

(1− (1− δ)s) ·
(

1− 1

3s

)
≥ 2

3

for δ < 1
2

and s ≥ 2
δ
. 2

4.1 Being far from expanders
The main contribution of this paper is a proof that a graph that is ε-far from any α∗-expander is
indeed rejected by algorithm EXPANSIONTESTER with probability at least 2

3
. To prove this we

first show that any graph that is ε-far from any α∗-expander has a small cut that separates a large
set of vertices from the rest of the graph, i.e., it has a small ratio cut. (In this section we use the
parameter βd defined in Section 2.1.1.)

Lemma 4.4 Let 0 < ε < 1 and α∗ ≤ 1
10

. If G = (V,E) has a subset of vertices A ⊆ V with
|A| ≤ 1

12
εn such that G[V \ A] is an 4α∗

βd−1
-expander, then G is not ε-far from any α∗-expander.

Proof : To prove the lemma, we show that if there is A ⊆ V with |A| ≤ 1
12
εn such that G[V \A]

is an 4α∗

βd−1
-expander, then we can modify 1

2
εdn edges in G to obtain a graph G∗ that has maximum

degree at most d and is an α∗-expander. Since each edge appears in the adjacency list of two
vertices, we can obtain G∗ by changing at most εdn entries in the functional representation of G.
Hence, G is not ε-far from any α∗-expander.

We first argue that we can restrict our attention to the case ε ≤ 9
d
. To see this, let us recall that

there are 3-regular expanders (e.g., Ramanujan graphs) where the second largest eigenvalue λ is at
most 2

√
2 + ε for every positive ε (see, e.g., [14] or [18]). Then, the relation between λ and vertex

expansion (cf. [3]) implies that such graphs have vertex expansion at least 0.1. With this, we can
modify any graph G of maximum degree at most d, d ≥ 3, into a 1

10
-expander of maximum degree

at most d by first removing at most 3n edges (to ensure that every vertex is of maximum degree at
most d−3) and then adding at most 3

2
n edges of a 3-regular 1

3
-expander. Therefore, since α∗ ≤ 1

10
,

if ε > 9
d
, then any graph of maximum degree at most d can be transformed into an α∗-expander by

modifying at most 1
2
εdn edges. Thus, if ε > 9

d
then no graph of maximum degree at most d is ε-far

from any α∗-expander. Hence, we have to consider only the case ε ≤ 9
d
.

Let us now focus on the case ε ≤ 9
d
. For simplicity of the presentation we assume that |A| is

even; extension to the general case is straightforward.
We will construct G∗ from G using the following procedure:

1. Remove all edges incident to A.

2. Add a (d− 1)-regular βd−1-strong expander on A.

9



3. Remove an arbitrary matching M of size |A|/2 from G[V \ A]; let VM denote the set of
endpoints of the edges in M .

4. Add an arbitrary matching between A and VM .

Before we will proceed on, let us first observe that G[V \A] has always a matching of size at least
|A|/2, and hence Step 3 in our construction can be always performed. Indeed, since G[V \ A] is
a 4α∗

βd−1
-expander, G[V \ A] must have at least |V \ A| − 1 edges. Since G[V \ A] is of maximum

degree at most d, a greedy matching algorithm (choose a spanning tree T of G[V \ A], choose an
arbitrary edge e incident to a leave of T , add e to the matching, and remove all edges adjacent to
e) will find in G[V \ A] a matching of size at least |V \A|−1

d
.

Now, basic algebraic manipulations using the assumption that |A| ≤ 1
12
εn, d ≥ 4, and ε ≤ 9

d
,

give us the following lower bound for the size of the greedy matching:

max{1, |V \ A| − 1

d
} ≥ |V \ A|

2d
≥
n(1− 1

12
ε)

2d
≥ 1

24
εn ≥ |A|/2 .

Now, once we see that the construction above can be always performed, let us observe that if
G has maximum degree at most d then so has G∗, and that G∗ is obtained from G by modifying
at most d |A| + (d − 1) |A|/2 + |A|/2 + |A| = (d + 1 + d/2) |A| ≤ 2 d |A| ≤ 1

2
εdn edges in G.

Therefore now, we only have to prove that G∗ is an α∗-expander.
To show that G∗ is an α∗-expander we have to prove that for any set X ⊆ V with |X| ≤ n/2,

|NG∗(X, V )| ≥ α∗ |X|. Let us define B = V \ A and fix an arbitrary set X ⊆ V with |X| ≤ n/2.
Let XA = X ∩ A and XB = X ∩ (V \ A). The situation is depicted in Figure 1.

We will distinguish between two cases depending on whether |XA| ≥ 2|XB| or |XA| < 2|XB|.

Case I: |XA| ≥ 2|XB|. We have

|NG∗(X, V )| ≥ |NG∗(XA, V \X)| ≥ |NG∗(XA, V \X) ∩B| .

Observe that NG∗(XA, V \X) ∩ B is the set of neighbors of the vertices in XA that are contained
in B \XB. Consider Step 4 of our construction of graph G∗. In Step 4 we insert to G∗ a matching
between A and VM . Consider the edges that match the vertices of XA ⊆ A with VM ⊆ B. By
the matching property, every vertex from VM is matched with exactly one vertex in A. Therefore,
there are at least |XA| − |XB| such matching edges that connect XA with VM \XB. This implies
that

|NG∗(XA, V \X) ∩B| ≥ |XA| − |XB| .

Since we assumed that |XA| ≥ 2|XB|, the inequality above yields the following:

|NG∗(XA, V \X) ∩B| ≥ |XA| − |XB| ≥ 1
2
|XA| ≥ 1

3
(|XA|+ |XB|) = 1

3
|X| ≥ α∗|X| .

This proves the first case.
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Case II: |XA| < 2|XB|. To deal with the case |XA| < 2|XB|, we distinguish between the subcase
that min{|XA|, |A \XA|} > 3α∗|XB |

βd−1
and min{|XA|, |A \XA|} ≤ 3α∗|XB |

βd−1
.

If min{|XA|, |A \XA|} > 3α∗|XB |
βd−1

, then we will exploit the fact that X is well connected to the
remainder of the graph. Since in Step 2 of our construction of G∗ we add a βd−1-strong expander
on the set A, we know that every subset Z ⊆ A has at least βd−1 ·min{|Z|, |A \ Z|} neighbors in
A. Hence,

|NG∗(XA, V \X) ∩ A| ≥ βd−1 ·min{|XA|, |A \XA|} .

Now we use our assumption that min{|XA|, |A \XA|} > 3α∗|XB |
βd−1

to obtain

βd−1 ·min{|XA|, |A \XA|} ≥ βd−1 ·
3α∗|XB|
βd−1

= 3α∗|XB| ≥ α∗|X| ,

where the last inequality follows from our assumption that |XA| < 2|XB|. Now we combine these
two bounds to obtain the required inequality:

|NG∗(X, V )| ≥ |NG∗(XA, V \X) ∩ A| ≥ βd−1 ·min{|XA|, |A \XA|} ≥ α∗|X| .

To analyze the other subcase where min{|XA|, |A \ XA|} ≤ 3α∗|XB |
βd−1

, we first establish the
following claim.

Claim 4.5
|NG∗(X, V )| ≥ 4α∗|XB|

βd−1

−min{|XA|, |A \XA|} .

Proof : Let us first observe that in G, since G[V \A] is an 4α∗

βd−1
-expander, XB has at least 4α∗|XB |

βd−1

neighbors in V \ (A ∪XB). Unfortunately, Step 3 of our construction of G∗ removes a matching
from XB. We have to argue that after the addition of an arbitrary matching in Step 4 there are still
enough edges connecting X to V \X .

To prove this, we will argue that during the construction of G∗ most of the edges either remain
or are replaced by other edges connecting XB with V \ X . Let us consider an arbitrary edge
(x, y) ∈ M with x ∈ XB and y /∈ XB. Note that by our construction we have y ∈ B \ XB.
(The situation is depicted in Figure 2.) In Step 3 of the construction of G∗, after removing edge
(x, y), in Step 4 we match x and y with some vertices x′, y′ from A, respectively. We observe that
if x′ ∈ A \XA then we get a new edge from X to V \X in G∗ that compensates for the removal
of (x, y). Similarly, if y′ ∈ XA we get a new edge between X and V \ X . Only if x′ ∈ XA

and y′ ∈ A \ XA then we do not have a substitution for the edge (x, y). But in this case, we
match one vertex from XA and one vertex from A \ XA. Hence, this case can happen at most
min{|XA|, |A \XA|} times. This implies

|NG∗(X, V )| ≥ 4α∗|XB|
βd−1

−min{|XA|, |A \XA|} ,

which proves the claim. 2
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Now, we prove the remaining subcase when |XA| < 2|XB| and min{|XA|, |A\XA|} ≤ 3α∗|XB |
βd−1

.

By combining Claim 4.5 with the bound min{|XA|, |A \XA|} ≤ 3α∗|XB |
βd−1

, we obtain

|NG∗(X, V )| ≥ 4α∗|XB|
βd−1

−min{|XA|, |A\XA|} ≥
4α∗|XB|
βd−1

− 3α∗|XB|
βd−1

=
α∗|XB|
βd−1

≥ α∗|X| ,

where the last inequality uses the fact that βd−1 ≤ 1
3
. This completes the proof of Lemma 4.4. 2

Once we have Lemma 4.4, we can show that if a graph is far from any expander then there
exists a small cut that separates a large set of vertices from the rest of the graph.

Corollary 4.6 LetG = (V,E) be ε-far from any α∗-expander with α∗ ≤ 1
10

. Then there is a subset
of vertices A ⊆ V with 1

12
εn ≤ |A| ≤ 1

2
(1 + ε)n such that |NG(A, V )| < 4α∗

βd−1
|A|.

Proof : Let G be a graph that is ε-far from any α∗-expander. Let A1 = ∅. We apply Lemma 4.4
with A = A1, from which it follows that G[V \A] is not a 4α∗

βd−1
-expander. Thus there must be a set

A2 ⊆ V \A of size at most n/2 with |NG(A2, V \A)| ≤ 4α∗

βd−1
· |A2|. If |A1 ∪A2| < 1

12
εn then we

repeat this approach. We set A = A1 ∪A2 and apply Lemma 4.4 to obtain a new set A3 of at most
n/2 vertices with small neighborhood. We can repeat this process until |

⋃
iAi| ≥

1
12
εn. Now, let

us write A = |
⋃
iAi|. By our construction we have |A| ≤ 1

2
(1 + ε)n.

To see that |NG(A, V )| ≤ 4α∗

βd−1
· |A|, we first observe that our construction ensures that for

every i, we have |NG(Ai, V \
⋃
j<iAj)| ≤

4α∗

βd−1
· |Ai|. Then we obtain:

|NG(A, V )| ≤
∑
i

|NG(Ai, V \
⋃
j<i

Aj)| ≤
∑
i

4α∗

βd−1

· |Ai| =
4α∗

βd−1

· |A| .

2

4.2 A small ratio cut implies bad mixing time
With Corollary 4.6 at hand, to complete our analysis it remains to show that the existence of a
small cut separating a large fraction of vertices from the rest of the graph implies that for many
starting vertices a random walk converges slowly to the uniform distribution.

Let A be a set of vertices with |A| ≤ 1
2
(1 + ε)n and |NG(A, V )| ≤ γ|A| for γ ≤ 1

10(`+1)
. Let us

define the graph GA to be the graph induced by A ∪ NG(A, V ), that is, GA = G[A ∪ NG(A, V )].
We consider a random walk on GA = (VA, EA) (let us remind that the random walk is defined on a
(2d)-regular graph: for every vertex we add self-loops to obtain a (2d)-regular graph and then we
consider a random walk on this graph).

Our random walk will start in a vertex chosen uniformly at random from VA and it will take `
steps. Let Yi denote the indicator random variable for the event that the ith vertex of the random
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walk is in NG(A, V ). Since the starting vertex is chosen uniformly at random and since the sta-
tionary distribution is uniform, we know that the ith vertex is distributed uniformly at random in
V . Hence,

Pr[Yi = 1] =
|NG(A, V )|
|VA|

.

By linearity of expectation, the expected number of vertices from NG(A, V ) that are visited by our
random walk is

E
[∑̀
i=0

Yi
]

= (`+ 1) · |NG(A, V )|
|VA|

≤ γ · (`+ 1) .

Therefore the probability that any vertex from NG(A, V ) is visited during the random walk is

Pr[∃i : Yi = 1] ≤ E
[∑̀
i=0

Yi
]
≤ γ · (`+ 1) .

Let us now move to the random walk in G. The claim above implies that the probability that
an `-step random walk in G starting at a vertex chosen uniformly at random from A will remain
in A with probability at least max {0, 1− γ · (`+ 1)}. Now, by setting γ ≤ 1

10(`+1)
, we stay in A

with probability at least 9
10

. Therefore, there must be a set U ⊆ A of at least |A|/2 vertices such
that a random walk starting from a vertex in U remains in A with probability at least 3

4
. Next, let

us observe that since |V \A| ≥ 1
2
(1− ε)n, in the uniform distribution, a vertex from the outside of

A must be chosen with the probability |V \A||V | ≥
1−ε

2
, in contrast to the distribution of the endpoints

of an `-step random walk in G starting at a vertex from U , where this probability is at most 1
4
. This

implies that the variation distance of the distribution of the endpoints of an `-step random walk
starting in U to the uniform distribution is at least 1−2ε

4
. We conclude:

Lemma 4.7 Let A be a set of points with |A| ≤ 1
2
(1 + ε)n and |NG(A, V )| ≤ |A|

10(`+1)
. Let P `

v be
the distribution of the endpoints of an `-step random walk starting in v. Then there exists a set U ,
|U | ≥ |A|/2, such that for every v ∈ U , the variation distance from P `

v to the uniform distribution
is at least 1−2ε

4
.

4.3 Putting everything together: proof of Theorem 1
Now, we are ready to conclude the proof of Theorem 1.

Let us define α∗ = βd−1

40(`+1)
= Θ( α2

d2·ln(n/ε)
), where we use the fact that βd−1 = Θ(1). Notice

that this ensures that α∗ ≤ 1
10

. We will prove that if G is an α-expander then Algorithm EXPAN-
SIONTESTER will accept G with probability at least 2

3
and if G is ε-far from any α∗-expander then

it will be rejected with probability at least 2
3
.

The first claim follows directly from Lemma 4.2 and hence we only have to prove the latter
claim. Let us consider a graph G = (V,E) of maximum degree at most d that is ε-far from any
α∗-expander. By Corollary 4.6, G has a set of vertices A with 1

12
εn ≤ |A| ≤ 1

2
(1 + ε)n and

|N(A, V )| ≤ 4α∗|A|
βd−1

. Hence, by our setting of α∗, we have |N(A, V )| ≤ |A|
10(`+1)

. Next, by Lemma

13



4.7, there exists a set U of cardinality at least |A|/2 ≥ 1
24
εn such that for each vertex v ∈ U , P `

v

has variation distance to the uniform distribution of at least 1−2ε
4

, which in turns, is at least 6
√
ε for

ε < .0017. Finally, we apply Lemma 4.3 to conclude that G is rejected with probability at least 2
3
.

This implies the proof of Theorem 1. ut

5 Conclusions
Since quite a few results on property testing in sparse graphs involve some notion of expansion, the
understanding of the effect of expansion on property testing seems to be one of the key challenges
on the way to understand property testing in sparse graphs. In this paper, we make a major step
toward the understanding of this relation by analyzing a property testing algorithm for expansion of
graphs that has been proposed by Goldreich and Ron [16]. Goldreich and Ron [16] conjectured that
their algorithm is indeed a property tester for expansion and in this paper, we showed that (under
a different, combinatorial notion of expansion and with a somewhat larger gap in the expansion
between the graphs that are to be accepted and those to be rejected) the proposed algorithm is
indeed a property tester for expansion.
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A
B

X A
X

B

Figure 1: We consider an arbitrary set X = XA∪XB and prove that it is well connected to the rest
of the graph.
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x’ y’
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Figure 2: Let (x, y) ∈ M be an edge with x ∈ XB and y ∈ B \XB. The only way that we do not
have a substituion for (x, y) after its removal in Step 3 and the addition of an arbitrary matching in
Step 4 is when x′ ∈ XA and y ∈ A \XA.
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