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Abstract

We show that a maximum-weight triangle in an undirected graph with n vertices and real
weights assigned to vertices can be found in timeO(nω+n2+o(1)), where ω is the exponent of
fastest matrix multiplication algorithm. By the currently best bound on ω, the running time of
our algorithm isO(n2.376). Our algorithm substantially improves the previous time-bounds for
this problem recently established by Vassilevska et al. (STOC 2006, O(n2.688)) and (ICALP
2006, O(n2.575)). Its asymptotic time complexity matches that of the fastest known algorithm
for finding a triangle (not necessarily a maximum-weight one) in a graph.

By applying or extending our algorithm, we can also improve the upper bounds on finding
a maximum-weight triangle in a sparse graph and on finding a maximum-weight subgraph
isomorphic to a fixed graph established in the papers by Vassilevska et al. For example, we
can find a maximum-weight triangle in a vertex-weighted graph with m edges in asymptotic
time required by the fastest algorithm for finding any triangle in a graph with m edges, i.e., in
time O(m1.41).
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1 Introduction
We consider a classical graph problem of finding a fixed subgraph in a graph. The most basic
version of that problem, that of finding a triangle (a cycle of length three, C3), is related to the
shortest path problem. It is well known that the asymptotic time complexity of finding a triangle in
a graph does not exceed that of matrix multiplication (cf. [10]) 1, that is,O(nω), where ω < 2.376

is the exponent of the fastest matrix multiplication algorithm [4] (see also [2]).
The more general problem of finding a maximum-weight triangle in a graph with vertex or

edge weights has been widely open for long time. Interestingly, its variant with vertex weights can
be regarded as a natural generalization of the 3-Sum problem and it is also related to a buyer-seller
problem in computational economics [12].

The first substantially sub-cubic upper time-bound for finding a maximum-weight triangle in
vertex weighted graphs has been established only recently by Vassilevska et al. in [12]. It has
been later improved by Vassilevska et al. [13], who observed that the problem of finding a max-
imum weight triangle in a vertex-weighted graph immediately reduces to the problem of finding
the so-called maximum witnesses of Boolean matrix product studied in [6, 11]. Hence, by the
upper time-bound O(n2.616) for the latter problem established in [11] (improved to O(n2.575) by
rectangular matrix multiplication in [6]), they could obtain the same upper time-bounds for finding
a maximum-weight triangle in a vertex weighted graph.

Generally, the triangle detection problem and its weighted variants constitute the most basic
instance of the subgraph isomorphism problem [8] and its weighted optimization variants , respec-
tively. Typically, an improved upper time bound on such a triangle problem yields an improved
upper time bound on the corresponding subgraph isomorphism problem (cf. [13]).

In this paper, we present a new algorithm for finding a maximum-weight triangle in a vertex
weighted graph. It does not rely on computing maximum witnesses of Boolean matrix product
and on contrary, it strongly utilizes the fact that the output to the problem is a single triangle.
By applying a recursive elimination scheme and fast matrix multiplication algorithm, we obtain
an algorithm whose running time is O(nω∗) = O(n2.376), where ω∗ = max{ω, 2 + o(1)}. The
running time of our algorithm matches that of the fastest algorithm for finding a triangle (not
necessarily one with the maximum-weight) in a graph.

Next, we study the same problem for sparse graphs with m edges (with the running time being
a function of m). Previously, Vassilevska et al. [13] designed an algorithm that finds a maximum-
weight triangle in time O(m

18−4 ω
13−3 ω ) = O(m1.45). We use our O(nω∗)-time algorithm for finding

a maximum-weight triangle to design an algorithm running in time O(m
2 ω∗

1+ω∗ ) = O(m1.41). The
running time of this algorithm matches that of the fastest algorithm for finding any triangle in a
graph, due to Alon et al. [1].

The problems of finding fixed cliques and more generally subgraphs isomorphic to fixed graph
are natural generalizations of the problem of finding a triangle in a graph. In [12, 13], Vassilevska et
al. considered the vertex-weighted variants of these problems, where the task is to find a maximum
(or, equivalently minimum) weight subgraph isomorphic to a fixed graph. The weight of a subgraph

1For sparse graphs, in particular, planar graphs, there are known more efficient algorithms for triangle detection
[10].

1



Problem Source Running-time Numerical running-time/Comments

maximum-weight triangle [12] O(B · n 3+ω
2 ) O(B · n2.688)

[12] O(n
3+ω

2 log n) O(n2.688); randomized

[13] O(n2+1/(4−ω)) O(n2.616)

[13] O(n2.575)

this paper O(nω∗) O(n2.376)

maximum-weight triangle [13] O(m
18−4 ω
13−3 ω ) O(m1.45)

graph with m edges this paper O(m
2 ω∗

1+ω∗ ) O(m1.41)

Table 1: Summary of results for the problem of finding a maximum-weight triangle. In all results,
n denotes the number of vertices, m number of edges, B is the number of bits of precision of the
input, ω < 2.376 is the exponent of the fastest matrix multiplication algorithm [4], and ω∗ =

max{ω, 2 + o(1)} (hence, ω∗ < 2.376).

is defined as the total weight of its vertices. Vassilevska et al. [13] obtained non-trivial time upper
bounds for these variants by applying their algorithm for a maximum-weight triangle. We improve
these bounds by using or extending our algorithm for a maximum-weight triangle.

First, we observe that our algorithm for finding a maximum-weight triangle can be easily ex-
tended to find a maximum-weight clique K3 k (or, in general, to find a maximum-weight fixed
subgraph (either induced or not) with 3 k vertices) in time O(nω∗ k) = O(n2.376 k), for any con-
stant k. For other values of the size of the graphs, we design two algorithms. The first algorithm
finds a maximum-weight clique Kh (or, in general, any fixed subgraph with h vertices) in time
O(nbh/3c·ω∗+(h mod 3)). This algorithm improves the running time upon the fastest previously exist-
ing algorithms (see [13]) for all values of h ≥ 6.

Our second algorithm uses fast rectangular matrix multiplication (instead of that for square
matrices) and improves the running time even further (for values h mod 3 6= 0). And so, if h =

3 f + 1, then the second algorithm runs in time O(nf·ω(1, f+1
f

,1) + nf·(2+ 1
f
+o(1))), where ω(1, r, 1)

is the exponent of the multiplication of an n × nr matrix by an nr × n matrix. For h = 3 f + 2,
the running time is O(n(f+1)·ω(1, f

f+1
,1) + n(f+1)·(2+o(1))). By known result about ω(1, r, 1) [3, 4, 9],

this yields in particular running times of O(n2.376 f) for h = 3f, O(n2.376·f+1) for h = 3f + 1, and
O(n2.376f+1.844) for h = 3f + 2.

We also present a direct generalization of our algorithm for finding a maximum-weight triangle
to include the problem of finding a maximum-weight subgraph isomorphic to a fixed graph H on
h vertices in a vertex-weighted graph on n vertices. A direct generalization solves the maximum-
weight subgraph problem in time O(nδ + nh−1+o(1)), where δ is the exponent of fastest algorithm
for determining the existence of a subgraph isomorphic to H. By combining this method with that
of Alon et al. [1] for detecting simple fixed cycles, we obtain better bounds on finding maximum-
weight simple cycles on four and five vertices (C4 and C5) than those yielded by the aforementioned
algorithm using rectangular matrix multiplication.
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The bounds listed above subsume the corresponding ones from [13] (see Table 2).

Organization. In the next section, we describe our algorithm for finding a maximum-weight
triangle in a vertex weighted graph. In Section 3, we derive the upper time-bound on finding a
maximum-weight triangle for sparse graphs. In Section 4, we use our algorithm for a maximum-
weight triangle and extend it in order to derive upper time-bounds on finding maximum-weight
cliques and subgraphs in a vertex weighted graph. In the next section, we improve the bounds of
Section 4 by using rectangular matrix multiplication. Finally, in Section 6 we outline our direct
generalization of the algorithm for maximum-weight triangle to include maximum-weight sub-
graph isomorphic to a fixed subgraph and present its applications.

2 Finding a maximum-weight triangle in O(nω∗
) time

In this section, we present our recursive algorithm HTλ(G, I, K, J) for finding a maximum-weight
triangle in O(nω∗) time. It starts from a search region specified by three sets of vertices, each of
size n and sorted in weight increasing order, where the maximum weight triangle is supposed to
have precisely one vertex from each set. Letting λ to be a large integer (possibly depending on
n), the region is divided into λ3 subregions, where each subregion contains three sets of O(n/λ)

vertices. The algorithm determines for each subregion whether or not it contains a triangle in time
O((n/λ)ω). Even if Ω(λ3) of the subregions can contain a triangle, only O(λ2) among them
can contain a maximum-weight triangle. These O(λ2) subregions can be determined in O(λ3)

time. Our algorithm recurses on each of these O(λ2) subregions. By choosing appropriately λ, the
running time of our algorithm becomes O(nω∗).

The algorithm HTλ(G, I, K, J) is presented in details on the next page. Now, we will begin with
its analysis.

Lemma 1 The procedure HTλ is correct, that is, it returns a maximum-weight triangle (i, j, k), if
any, such that i ∈ I, j ∈ J, and k ∈ K.

Proof. The correctness of the algorithm follows from the two following observations:

1. just before pruning T , (p, r, q) ∈ T if and only if there is a triangle (i, k, j) with i ∈ [i0 +

(p − 1)` + 1, i0 + p`], k ∈ [k0 + (r − 1)` + 1, k0 + r`], and j ∈ [j0 + (q − 1)` + 1, j0 + q`];

2. (p, r, q) is then removed from T if and only if there is a (p ′, r ′, q ′) ∈ T with p < p ′, r < r ′,
q < q ′.

Indeed, the latter property implies that if there is a triangle (i, k, j) with i ∈ [i0 + (p − 1)` +

1, i0 + p`], k ∈ [k0 + (r − 1)` + 1, k0 + r`], and j ∈ [j0 + (q − 1)` + 1, j0 + q`], then the triple
(p, q, r) representing such triangles (i, k, j) is removed from T only if there is another triangle
(i ′, k ′, j ′) such that for some (p ′, r ′, q ′) ∈ T with p < p ′, r < r ′, q < q ′, we have i ′ ∈
[i0 +(p ′−1)`+1, i0 +p ′`], k ′ ∈ [k0 +(r ′−1)`+1, k0 +r ′`], and j ′ ∈ [j0 +(q ′−1)`+1, j0 +q ′`].
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procedure HTλ(G, I, K, J)

Input: A graph G = (V, E) with vertex weights (G is given as adjacency matrix)
vertices are numbered in non-decreasing weight order from 1 to n

subintervals I, K, and J of [1, . . . , n], of the same length κ assumed to be a power of λ

Output: Maximum-weight triangle (i, j, k), if any, such that i ∈ I, j ∈ J, and k ∈ K

let i0, j0, and k0 be such that
I = [i0 + 1, i0 + κ], K = [k0 + 1, k0 + κ], and J = [j0 + 1, j0 + κ]

` = κ/λ

if κ = 1 then
if (i0 + 1, j0 + 1, k0 + 1) is a (non-degenerate) triangle in G then return (i0 + 1, j0 + 1, k0 + 1);
stop

for all p, r = 1, . . . , λ do
form an `× ` Boolean matrix Apr such that for every 1 ≤ i ′ ≤ ` and 1 ≤ k ′ ≤ `:

Apr[i
′, k ′] =

{
1 if (i0 + (p − 1)` + i ′, k0 + (r − 1)` + k ′) ∈ E

0 otherwise.

for all r, q = 1, . . . , λ do
form an `× ` Boolean matrix Brq such that for every 1 ≤ k ′ ≤ ` and 1 ≤ j ′ ≤ `:

Brq[k
′, j ′] =

{
1 if (k0 + (r − 1)` + k ′, j0 + (q − 1)` + j ′) ∈ E

0 otherwise.

for all p, r, q = 1, . . . , λ do
compute Cr

pq = Apr × Brq (using the fast Boolean matrix multiplication algorithm)

T = ∅
for all p, r, q = 1, . . . , λ do

for all i ′, j ′ = 1, . . . , ` do
if Cr

pq(i
′, j ′) = 1 and (i0 + (p − 1)` + i ′, j0 + (q − 1)` + j ′) ∈ E then

T = T ∪ {(p, r, q)}

{ Observation 1: (p, r, q) ∈ T iff there is a triangle (i, k, j) with i ∈ [i0 + (p − 1)` + 1, i0 + p`],
k ∈ [k0 + (r − 1)` + 1, k0 + r`], and j ∈ [j0 + (q − 1)` + 1, j0 + q`] }

for every (p, r, q) ∈ T do
if there is a (p ′, r ′, q ′) ∈ T with p < p ′, r < r ′, q < q ′ then

remove (p, r, q) from T

{ Observation 2: (p, r, q) is removed from T iff there is a (p ′, r ′, q ′) ∈ T with p < p ′, r < r ′, q < q ′}
for every (p, r, q) ∈ T do

call HTλ(G, [i0 + (p − 1)` + 1, i0 + p`], [k0 + (r − 1)` + 1, k0 + r`], [j0 + (q − 1)` + 1, j0 + q`])

Return the maximum-weight triangle among the triangles returned by these calls
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It follows by the properties of the initial vertex numbering that then such a triangle (i, k, j) cannot
be any maximum-weight triangle. ut

To estimate the running time of the procedure HTλ we shall use the following lemma.

Lemma 2 Let λ be any positive integer. Let X be any subset of {1, 2, . . . , λ}3 which does not
contain any two t, t ′ such that t ′ has each coordinate greater than the corresponding one in t. The
cardinality of X is at most 3λ2 − 3λ + 1.

Proof. Define the relation ≺ such that (i, k, j) ≺ (i ′, k ′, j ′) iff i < i ′, k < k ′, and j < j ′. The
relation ≺ defines a partial order on {1, 2, . . . , λ}3. For each (t1, t2, t3) ∈ {1, 2, . . . , λ}3 that has at
least one coordinate equal to 1 define chain((t1, t2, t3)) to be the set of all triples in {1, 2, . . . , λ}3

of the form (t1 + i, t2 + i, t3 + i) for i = 0, 1, . . . Observe that chain(t) is indeed a chain in the
poset ({1, 2, . . . , λ}3,≺) and the chains chain(t) cover all the elements in {1, 2, . . . , λ}3. It follows
now from Dilworth’s lemma [7] that the cardinality of the largest anti-chain in the aforementioned
poset does not exceed the number of the triples with at least one coordinate equal to 1, which in
turn, is at most λ3 − (λ − 1)3 = 3λ2 − 3λ + 1. ut

Lemma 3 The running time of HTλ satisfies the recurrence

τ(κ) ≤ (3λ2 − 3λ + 1) · τ(κ/λ) +O(λ3−ω · κω + λ6) . (1)

Proof. Forming the Boolean matrices Apr and Brq, computing their products Cr
pq, and computing

T , take time O(λ2 · `2), λ3 · O(`ω) and O(λ3 · `2 + λ6), respectively. By Lemma 2, the final size of
T is at most 3λ2 − 3λ + 1. Hence, we obtain the following recurrence for the running time of HTλ:

τ(κ) ≤ O(λ2 · `2) + λ3 · O(`ω) +O(λ3 · `2 + λ6) + (3λ2 − 3λ + 1) · τ(`)

= O(λ3−ω · κω + λ6) + (3λ2 − 3λ + 1) · τ(κ/λ) .

ut

As an immediate corollary, by an appropriate choice of λ, we obtain our main result.

Theorem 4 A maximum-weight triangle in a vertex weighted graph on n vertices can be found in
time O(n2+o(1) + nω) < O(n2.376).

Proof. Let us consider the recurrence (1) for the running time of HTλ. Let n be the initial size of
the input instance and let λ = λ(n) ≥ 1 be a (possibly constant) function of n. Then, Lemma 3
implies that there is a positive constant c such that for all N being powers of λ with λ ≤ N ≤ n:

τ(N) ≤ c · λ2 · τ(N/λ) + c ·Nω · λ3−ω + c · λ6 . (2)

With the inequality (2), easy induction on k implies that for all k with λk ≤ n we have:

τ(n) ≤ ck · λ2k · τ(n/λk) + nω ·
k∑

i=1

ci λ1+(2−ω) i +

k∑

i=1

ci λ4+2 i .
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Hence, if we set k = logλ n then we obtain,

τ(n) ≤ ck · λ2k · τ(n/λk) + nω · λ ·
k∑

i=1

(c λ2−ω)i + λ4 ·
k∑

i=1

(c λ2)i

≤ clog n/ log λ · λ2 log n/ log λ · O(1) + nω · λ ·
log n/ log λ∑

i=1

(c λ2−ω)i + c1+log n/ log λ · λ6+2 log n/ log λ

= O(clog n/ log λ · λ6 · n2) + nω · λ ·
log n/ log λ∑

i=1

(c λ2−ω)i .

Now, we know that c is a small constant and we have the freedom of choosing λ. We choose λ

depending on whether ω = 2 + o(1) or not.

• If there is a positive constant ε with ω ≥ 2 + ε then we set λ = (2c)1/ε. Let us first observe
that clog n/ log λ = nlog c/ log λ = n

log c
log(2c)/ε ≤ nε and

log n/ log λ∑

i=1

(c λ2−ω)i ≤
log n/ log λ∑

i=1

(c λ−ε)i =

log n/ log λ∑

i=1

2−i ≤ 1 .

Hence,

τ(n) ≤ O(clog n/ log λ λ6 n2) + nω λ

log n/ log λ∑

i=1

(c λ2−ω)i ≤ O(n2+ε) +O(nω) ≤ O(nω) .

• If ω ≤ 2 + o(1) then we will set λ = n1/ log log n and the running time becomes:

τ(n) ≤ O(clog n/ log λ · λ6 · n2) + nω · λ ·
log n/ log λ∑

i=1

(c λ2−ω)i

≤ O((log n)log c · λ6 · n2) + nω · λ ·
log n/ log λ∑

i=1

ci

≤ O((log n)log c · n2+6/ log log n) + n
ω+ 1

log log n · O((log n)log c)

= n2+o(1) .

ut

3 Improved bounds for sparse graphs
By arguing analogously as in the proof of Theorem 2 in [13], we can refine the upper bound from
Theorem 4 in the case of sparse graphs as follows.
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Corollary 5 A maximum-weight triangle in a vertex weighted graph with m edges and no isolated
vertices can be found in time O(m

2 ω∗
1+ω∗ ) < O(m1.41).

Proof. Let G = (V, E) be the input graph and let X be the set of all vertices in V of degree at
most δ. It follows that |V \ X| ≤ 2m/δ. In time O(mδ), we can enumerate all triangles in G

that contain a vertex in X and find a maximum-weight one among them. On the other hand, a
maximum-weight triangle in G that has all vertices in V \ X can be found in time O((m/δ)ω∗) by
Theorem 4. By setting δ = m

ω∗−1
1+ω∗ , we obtain the corollary. ut

4 Finding max-weight clique Kh and H-subgraphs
In this section, we present a construction that extends the algorithm for finding a maximum-weight
triangle to include finding a maximum-weight clique or any maximum-weight subgraph isomor-
phic to a given graph.

Theorem 6 A maximum-weight clique Kh in a vertex weighted graph on n vertices can be found
in time

O(nbh/3c·ω∗+(h mod 3)) .

Proof. Let f = bh/3c. Suppose first that h = 3f. Form a new graph G ′ in which each vertex
corresponds one to one to a Kf in the original graph G and the weight of such a vertex equals the
total weight of the vertices in this Kf. Two vertices in G ′ are connected by an edge if and only
if the corresponding cliques form an K2f clique in G. Observe that G ′ has O(nf) vertices and it
can be constructed in time O(n2f). Furthermore, a maximum-weight triangle in G ′ corresponds
to a maximum-weight Kh clique in G. Therefore, by using Theorem 4 to find a maximum-weight
triangle in G ′, we can find a maximum-weight clique in G in time O(nω∗).

Next, let us consider the case h = 3f + 2. Find all cliques Kf and Kf+1 that are subgraphs of
G. Divide the Kf+1 subgraphs into O(n) groups of size O(nf). For each such two groups a and b

(a can be equal to b) and the Kf subgraphs form a tripartite graph Ga,b whose vertices in the first
part, second part and the third part are in one to one correspondence with: the Kf+1 subgraphs in
the first group, the Kf+1 subgraphs in the second group, and the Kf subgraphs of G, respectively.
The weights of the vertices in Ga,b are equal to the total weights of the corresponding cliques in
G. There is an edge between two vertices in Ga,b if the corresponding cliques are disjoint and
induce the clique in G whose size equals the sum of their sizes. Observe that all the constructions
can be easily done in total time O(n2f+2). Now note that a maximum-weight triangle among the
maximum-weight triangles in the graphs Ga,b yields a maximum-weight Kh in G. By Theorem 4,
it takes time O(n2 × (nf)ω∗).

The proof of case h = 3f + 1 is analogous. For each group a of the Kf+1 subgraphs we form a
tripartite graph Ga whose vertices in the first part are in one to one correspondence with the Kf+1

subgraphs in a, whereas the vertices in each of the two remaining parts are in one to one corre-
spondence with the Kf subgraphs of G. The vertex weights and edges are specified analogously as
in case of Ga,b and all the constructions take timeO(nf+1×nf). Analogously, a maximum-weight

7



triangle among the maximum-weight triangles in the graphs Ga yields a maximum-weight Kh in
G. ut

It is easy to extend the result from Theorem 6 to arbitrary induced subgraphs isomorphic to a
given graph H on h vertices. We use an analogous construction to that in the proof of Theorem
6. We decompose H into three induced subgraphs Hi (possibly isomorphic), i = 1, 2, 3, and
for each isomorphism between an induced subgraph of G and Hi, we form a separate node in
an auxiliary graph. Two such nodes are connected by an edge if the union of the corresponding
isomorphisms yields an isomorphism between the subgraph induced by the vertices of the two
underlying subgraphs and the subgraph of H induced by the vertices of the Hi images (required
to be different) of the two isomorphisms. (In case H = Kh, it has not been necessary to have
separate nodes for different isomorphisms between an induced subgraph of G and a clique which
is a subgraph of Kh because of the symmetry between the vertices in the clique with respect to Kh.)

Furthermore, since any subgraph (not necessarily induced) of G on h vertices which is isomor-
phic to H is a subgraph of the induced subgraph of G on the same h vertices, finding (not nec-
essarily induced) subgraphs reduces to finding induced subgraphs of the same size. The induced
subgraphs correspond to all possible super-graphs of H on h vertices. This yields the following.

Theorem 7 Let H be a fixed graph on h vertices. A maximum-weight induced subgraph of a vertex
weighted graph on n vertices that is isomorphic to H can be found in time

O(nbh/3c·ω∗+(h mod 3)) .

In asymptotically the same time complexity one can find a maximum-weight subgraph (not neces-
sarily induced) isomorphic to H.

5 Refinement by using fast rectangular matrix multiplication
The algorithms and the bounds from Theorems 6 and 7 can be improved for h mod 3 6= 0 if we
use fast rectangular matrix multiplication algorithms (instead of fast square matrix multiplication).

Let ω(1, σ, 1) denote the exponent of the multiplication of an n × nσ matrix by an nσ × n

matrix. In order to improve Theorems 6 and 7 in terms of ω(1, σ, 1), we need to generalize the
procedure HTλ(G, I, K, J) to include the case where the sizes of the intervals I, K and J are not nec-
essarily equal. We also relax the requirement that vertices are numbered in non-decreasing weight
order by requiring solely that within each of the three input intervals I, K and J, the numbering has
this property.

For any σ, 1
2
≤ σ ≤ 2, let HT

〈σ〉
λ (G, I, K, J) denote such an analogous generalized procedure,

where the sizes of I, K, and J (besides being powers of λ) satisfy |I| = |J| and |K| = |I|σ. The key
difference in the body of HT

〈r〉
λ compared with that of HTλ is that since the matrices Apr and Brq

are now of sizes κ/λ× (κ/λ)σ and (κ/λ)σ×κ/λ, respectively, we use the fast rectangular Boolean
matrix multiplication algorithm with the exponent ω(1, σ, 1) instead of the fast square one with
the exponent ω.

By performing an analysis of HT
〈σ〉
λ analogous to that of HTλ, we obtain the following lemma.
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procedure HT
〈σ〉
λ (G, I, K, J)

Input: A graph G = (V, E) with vertex weights (G is given as adjacency matrix)
vertices are numbered in non-decreasing weight order from 1 to n

subintervals I, K, and J of [1, . . . , n], of the length κ, κσ, and κ, respectively,
where κ, κσ, and (κ/λ)σ are powers of λ

Output: Maximum-weight triangle (i, j, k), if any, such that i ∈ I, j ∈ J, and k ∈ K

let i0, k0, and j0 be such that I = [i0 + 1, i0 + κ], K = [k0 + 1, k0 + κσ], and J = [j0 + 1, j0 + κ]

if κ = 1 then
if (i0 + 1, j0 + 1, k0 + 1) is a (non-degenerate) triangle in G then return (i0 + 1, j0 + 1, k0 + 1);
stop

for all p = 1, . . . , λ, r = 1, . . . , λσ do
form an κ

λ
× (κ

λ
)σ Boolean matrix Apr such that for every 1 ≤ i ′ ≤ κ

λ
and 1 ≤ k ′ ≤ (κ

λ
)σ:

Apr[i
′, k ′] =

{
1 if (i0 + (p − 1)κ

λ
+ i ′, k0 + (r − 1)(κ

λ
)σ + k ′) ∈ E

0 otherwise.

for all r = 1, . . . , λσ, q = 1, . . . , λ do
form an (κ

λ
)σ × κ

λ
Boolean matrix Brq such that for every 1 ≤ k ′ ≤ (κ

λ
)σ and 1 ≤ j ′ ≤ κ

λ
:

Brq[k
′, j ′] =

{
1 if (k0 + (r − 1)(κ

λ
)σ + k ′, j0 + (q − 1)κ

λ
+ j ′) ∈ E

0 otherwise.

for all p, q = 1, . . . , λ and r = 1, . . . , λσ do
compute Cr

pq = Apr × Brq (using the fast rectangular Boolean matrix multiplication algorithm)

T = ∅
for all p, q = 1, . . . , λ and r = 1, . . . , λσ do

for all i ′, j ′ = 1, . . . , κ
λ

do
if Cr

pq(i
′, j ′) = 1 and (i0 + (p − 1)κ

λ
+ i ′, j0 + (q − 1)κ

λ
+ j ′) ∈ E then

T = T ∪ {(p, r, q)}

{Observation 1: (p, r, q) ∈ T iff there is a triangle (i, k, j) with i ∈ [i0 + (p − 1)κ
λ

+ 1, i0 + pκ
λ
],

k ∈ [k0 + (r − 1)(κ
λ
)σ + 1, k0 + r(κ

λ
)σ], and j ∈ [j0 + (q − 1)κ

λ
+ 1, j0 + qκ

λ
] }

for every (p, r, q) ∈ T do
if there is a (p ′, r ′, q ′) ∈ T with p < p ′, r < r ′, q < q ′ then

remove (p, r, q) from T

{Observation 2: (p, r, q) is removed from T iff there is a (p ′, r ′, q ′) ∈ T with p < p ′, r < r ′, q < q ′. }
for every (p, r, q) ∈ T do

call HT
〈σ〉
λ (G, [i0 + (p−1)κ

λ
+ 1, i0 + pκ

λ
], [k0 + (r−1)κσ

λσ + 1, k0 + rκσ

λσ ], [j0 + (q−1)κ
λ

+ 1, j0 + qκ

λ
])

return the maximum-weight triangle among the triangles returned by these calls
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Lemma 8 One choose the parameter λ to ensure that the procedure HT
〈σ〉
λ (I, K, J) returns a

maximum-weight triangle (i, j, k), if any, where i ∈ I, j ∈ J, and k ∈ K, in time O(|I|ω(1,σ,1) +

|I|2+o(1) + |I|1+σ+o(1)).

Proof. We proceed as in the proof of Lemma 3, but this time to compute the matrices Cr
pq we

use fast rectangular matrix multiplication. Forming the Boolean matrices Apr and Brq takes time
O(λ1+σ · κ

λ
· (κ

λ
)σ) = O(κ1+σ), computing their products Cr

pq takes time O(λ2+σ · (κ/λ)ω(1,σ,1)),
and computing T takes timeO(λσ ·κ2 +λ4+2σ). Using the arguments from Lemma 2, the final size
of T is at most λ2+σ − (λ − 1)2(λσ − 1) = 2λ1+σ + λ2 − 2λ − λσ + 1. Since we consider λ ≥ 1,
this is always bounded from above by 2λ1+σ + λ2. Hence, we obtain the following recurrence for
the running time of HT

〈σ〉
λ :

τ(κ) ≤ O(κ1+σ) +O(λ2+σ · (κ/λ)ω(1,σ,1)) +O(λσ · κ2 + λ4+2σ) + (2λ1+σ + λ2) · τ(κ/λ)

≤ O(λ2+σ κω(1,σ,1) + λ6) + (2λ1+σ + λ2) τ(κ/λ) ,

with the base case τ(1) = O(1).
Since we have assumed that 1

2
≤ σ ≤ 2 and since λ is a parameter that we can set as an arbitrary

integer, one can solve this recurrence (see Appendix A) analogously as in the proof of Theorem 4
to conclude that the running time of the algorithm is τ(κ) = O(κω(1,σ,1) + κ2+o(1) + κ1+σ+o(1)). ut

Equipped with Lemma 8, we can improve the bound form Theorem 6 for h 6= 3 f as follows.
Consider first the case when h = 3 f + 2. Find all cliques Kf and Kf+1 that are subgraphs of

G. Next, form a new graph G ′′, where vertices are in one to one correspondence with the found
cliques and their weight equals the total weight of the corresponding clique. Two vertices in G ′′

are adjacent if the corresponding cliques induce a clique in G ′′ whose size equals the sum of their
sizes. Next, number the vertices of G ′′ such that the vertices corresponding to the Kf+1 cliques
occur in a continuous interval in non-decreasing weight order as well as those corresponding to the
Kf cliques occur in a continuous interval in non-decreasing weight order.

Set I and J to the first of the aforementioned intervals and K to the second one, and run the
procedure H

〈σ〉
λ (I, K, J) for G ′′ and σ = log|I| |K|, where 1

2
≤ σ < 1.2 Observe that by Lemma 8

and by the definitions of G ′′, I, K and J, the triangle returned by H
〈σ〉
λ (I, K, J), if any, corresponds

to a maximum-weight Kh in G. By Lemma 8, monotonicity of the time taken by the multiplication
of an n×nσ matrix by an nσ×n matrix with respect to n and σ, and straightforward calculations,
H
〈σ〉
λ (I, K, J) takes time O((nf+1)ω(1, f

f+1
,1) + (nf+1)2+o(1)) for sufficiently large λ.

The proof in case h = 3 f + 1 is analogous with the exception that now I and J are set to
the interval of vertices corresponding to Kf cliques whereas K is set to the interval of vertices
corresponding to Kf+1 cliques. By analogous arguments, we conclude that in this case we can find
a maximum-weight Kh in time O((nf)ω(1, f+1

f
,1) + nf (2+ 1

f
+o(1))).

By combining our improvements with Theorem 6, we obtain the following theorem.

2The simplifying assumption about the sizes of the intervals being the power of λ can be achieved by increasing
the sizes by a multiplicative factor less than λ via adding dummy vertices.
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Theorem 9 Let h be a positive integer, and let f = bh/3c. A maximum-weight clique Kh in a
vertex weighted graph on n vertices can be found in time Th(n), where

Th(n) =





O(nf ω∗) h mod 3 ≡ 0

O(nf·ω(1, f+1
f

,1) + nf (2+ 1
f
+o(1))) h mod 3 ≡ 1

O(n(f+1)ω(1, f
f+1

,1) + n(f+1)(2+o(1))) h mod 3 ≡ 2

Similarly as in the previous section, the results from Theorem 9 can be extended to finding a
maximum-weight fixed graph.

Theorem 10 For any fixed integer h, let H be any graph on h vertices. A maximum-weight induced
subgraph of a vertex weighted graph on n vertices that is isomorphic to H can be found in time
Th(n), where the function Th(n) is defined in Theorem 9.

In asymptotically the same time complexity one can find a maximum-weight subgraph (not
necessarily induced) isomorphic to H.

Coppersmith [3] and Huang and Pan [9] proved the following facts.

Fact 11 [3, 9] Let ω = ω(1, 1, 1) < 2.376 and let α = sup{0 ≤ r ≤ 1 : ω(1, r, 1) = 2+o(1)} >

0.294. Then ω(1, r, 1) ≤ β(r), where β(r) = 2 + o(1) for r ∈ [0, α] and β(r) = 2 + ω−2
1−α

(r −

α) + o(1) for r ∈ [α, 1].

(Observe a useful fact, that if our goal is to compute (f+1)·ω(1, f
f+1

, 1), then the bounds in Fact
11 simplify it to (f+1)·ω(1, f

f+1
, 1) = (f+1)·(2+ω−2

1−α
( f

f+1
−α)+o(1)) = 2− (ω−2) α

1−α
+f·ω+o(f) <

1.844 + f ·ω + o(f).)

Fact 12 [9, Section 8.1] ω(1, 2, 1) < 3.334, and for every r > 1, we have ω(1, r, 1) ≤ ω+r−1.

(Section 8.1 in [9] contains some discussion about stronger bounds for ω(1, r, 1) for other
values r > 2.)

Therefore, for example, by using the bounds from Facts 11 and 12, we have (see also Table 2):

T3(n) = O(nω∗) < O(n2.376) ,

T4(n) = O(nω(1,2,1) + n3+o(1)) < O(n3.334) ,

T5(n) = O(n2·ω(1, 1
2
,1) + n4+o(1)) < O(n4.220) ,

T6(n) = O(n2 ω∗) < O(n4.752) ,

T3f(n) = O(nf ω∗) < O(n2.376 f) ,

T3f+1(n) = O(nf ω∗+1) < O(n2.376 f+1) ,

T3f+2(n) = O(nf ω∗+1.844) < O(n2.376 f+1.844) .

Note that, for example, this bound subsumes the upper bounds of Theorem 6 for K4, K5, and
for K3f+2 for every f ≥ 1.
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6 Further extensions
Finally, we directly generalize our method for finding a maximum-weight triangle to include the
problem of finding a maximum-weight subgraph isomorphic to a fixed graph H on h vertices in a
vertex-weighted graph on n vertices.

The generalized algorithm starts from a search region specified by h sets of vertices, each of
size n and sorted in weight increasing order, where the maximum weight subgraph isomorphic
to H is supposed to have precisely one vertex from each set. Letting λ to be a large constant, the
region is divided into λh subregions, where each subregion contains h sets ofO(n/λ) vertices. The
algorithm determines for each subregion whether it contains a subgraph isomorphic to H or not in
time O((n/λ)δ). By a straightforward generalization of Lemma 2 to include h-tuples instead of
triplets, onlyO(λh−1) among the subregions can contain a maximum-weight subgraph isomorphic
to H. These O(λh−1) subregions can be determined in constant time (but being a function of h

and λ). The generalized algorithm recurses on each of these O(λh−1) subregions. It runs in time
O(nδ + nh−1+o(1)), where δ is the exponent of fastest algorithm for determining the existence of a
subgraph isomorphic to H.

Theorem 13 If a vertex weighted graph G on n vertices contains a subgraph isomorphic to a
fixed graph H on h vertices then such a maximum-weight subgraph can be found in G in time
O(nδ + nh−1+o(1)), where δ is the exponent of fastest algorithm for determining the existence of a
subgraph isomorphic to H.

While this result is weaker than those from the previous two sections for h ≥ 6, it leads to
some interesting improvements for h = 4, 5. Alon et al. [1] showed that for any fixed h, if a graph
on n vertices contains a copy of Ch (a simple cycle on exactly h vertices) then one such a copy can
be detected in time O(nω log n). This fact together with Theorem 13 yield the following corollary,
which subsumes Theorem 10 for C4 and C5.

Corollary 14 For h ∈ {4, 5}, if a vertex weighted graph on n vertices contains a copy of Ch then
such a maximum-weight cycle Ch can be found in the graph in time O(nh−1+o(1)).

7 Conclusions
We have shown that finding a maximum-weight triangle is asymptotically not more difficult than
matrix multiplication. Consequently, we could substantially improve prior upper time-bounds on
finding a maximum-weight clique of a constant size and a maximum-weight subgraph isomorphic
to a fixed graph.

A natural question arises whether or not our results for vertex weighted cliques are asymptoti-
cally optimal.
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A Appendix: Solving the recurrence from Lemma 8
Let us remind that in the proof of Lemma 8, we want to show that for an appropriate choice of
parameter λ, the solution to the recurrence

τ(N) ≤ O(λ2+σ Nω(1,σ,1) + λ6) + (2λ1+σ + λ2) τ(N/λ) , (3)

with the base case τ(1) = O(1) and 1
2
≤ σ ≤ 2, is τ(n) = O(nω(1,σ,1) + n2+o(1) + n1+σ+o(1)).

The proof of this fact follows the arguments used in the proof of Theorem 4. Let us first
introduce the notation A = 2λ1+σ + λ2, B = c · λ2+σ and C = c · λ6, where c is a positive constant
for which we can rewrite the recurrence (3) to obtain:

τ(N) ≤ A · τ(N/λ) + BNω(1,σ,1) + C .

With this recurrence, an easy proof by induction yields for all integers k, k ≤ log n/ log λ:

τ(n) ≤ Ak · τ(n/λk) + B · nω(1,σ,1) ·
k−1∑

i=0

(A/λω(1,σ,1))i + C ·
k−1∑

i=0

Ai .

If we set k = log n/ log λ then we will obtain:

τ(n) ≤ O(Alog n/ log λ) + B · nω(1,σ,1) ·
log n/ log λ−1∑

i=0

(A/λω(1,σ,1))i + C ·Alog n/ log λ

≤ O(C ·Alog n/ log λ) + B · nω(1,σ,1) ·
log n/ log λ−1∑

i=0

(A/λω(1,σ,1))i .

Before we continue, let us define µσ = max{2, 1+σ} and so that A ≤ 3 λµσ . With this notation,
the bound above can be simplified to the following:

τ(n) ≤ O(λ6 · nµσ+log 3/ log λ) +O(λ2+σ · nω(1,σ,1)) ·
log n/ log λ−1∑

i=0

(3 · λµσ−ω(1,σ,1))i .

Now, let us consider two cases.

• If there is a positive constant ε with ω(1, σ, 1) ≥ µσ + ε then we will choose λ = 61/ε

to obtain the inequalities log 3/ log λ ≤ ε and 3 · λµσ−ω(1,σ,1) ≤ 3 · λ−ε = 1
2
. The latter

inequality implies also that
∑k−1

i=0 (3 · λµσ−ω(1,σ,1))i ≤ 2. Hence, we obtain:

τ(n) ≤ O(λ6 · nµσ+log 3/ log λ) +O(λ2+σ · nω(1,σ,1)) ·
k−1∑

i=0

(3 · λµσ−ω(1,σ,1))i

≤ O(nµσ+ε + nω(1,σ,1)) = O(nω(1,σ,1)) .
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• If ω(1, σ, 1) ≤ µσ + o(1) then we will choose λ = n1/ log log n.

τ(n) ≤ O(λ6 · nµσ+log 3/ log λ) +O(λ2+σ · nω(1,σ,1)) ·
k−1∑

i=0

(3 · λµσ−ω(1,σ,1))i

≤ O
(
n

µσ+ log 3 log log n
log n

+ 6
log log n + n

ω(1,σ,1)+ 2+σ
log log n · 3 log n

log λ · (λmax{µσ−ω(1,σ,1),0})
log n
log λ

)

≤ O(nµσ+o(1) + nω(1,σ,1)+o(1)+max{µσ−ω(1,σ,1),0}) ≤ O(nµσ+o(1) + nω(1,σ,1)+o(1))

≤ O(nµσ+o(1)) = O(n2+o(1) + n1+σ+o(1)) .

This yields the proof of Lemma 8. ut
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Problem Source Running-time Numerical runtime

maximum-weight fixed [13] O(nω+1) O(n3.376)

subgraph with 4 vertices this paper O(nω(1,2,1) + n3+o(1)) O(n3.334)

maximum-weight C4 this paper O(n3+o(1)) O(n3+o(1))

maximum-weight fixed [13] O(nω+2) O(n4.376)

subgraph with 5 vertices this paper O(n2·ω(1, 1
2
,1) + n4+o(1)) O(n4.220)

maximum-weight C5 this paper O(n4+o(1)) O(n4+o(1))

maximum-weight fixed [13] O(n4+2/(4−ω)) O(n5.232)

subgraph with 6 vertices this paper O(n2 ω∗) O(n4.752)

maximum-weight fixed [13] O(n4+3/(4−ω)) O(n5.848)

subgraph with 7 vertices this paper O(n2 ω(1, 3
2
,1) + n5+o(1)) O(n5.752)

maximum-weight fixed [13] O(n2 ω+2 + n4+o(1)) O(n6.752)

subgraph with 8 vertices this paper O(n3 ω(1, 2
3
,1) + n6+o(1)) O(n6.596)

maximum-weight fixed [13] O(n2 ω+3) O(n7.752)

subgraph with 9 vertices this paper O(n3 ω∗) O(n7.128)

maximum-weight fixed [12] O(n
(3+ω) f

2 ); randomized O(n2.688 f)

subgraph with 3f vertices [13] O(n2.575·f)

this paper O(nω∗·f) O(n2.376·f)

maximum-weight fixed

subgraph with 3f + 1 vertices this paper O(nf ω(1, f+1
f

,1) + nf (2+ 1
f
+o(1))) O(n2.376·f+1)

maximum-weight fixed

subgraph with 3f + 2 vertices this paper O(n(f+1) ω(1, f
f+1

,1) + n(f+1) (2+o(1))) O(n2.376·f+1.844)

Table 2: Summary of results for finding maximum-weight cliques of size greater than 3 and fixed
induced subgraphs. In all results, n denotes the number of vertices, m number of edges, B is
the number of bits of precision of the input, ω < 2.376 is the exponent of the fastest matrix
multiplication algorithm [4], ω∗ = max{ω, 2 + o(1)} (hence, ω∗ < 2.376), and ω(1, r, 1) is the
exponent of the multiplication of an n× nr matrix by an nr × n matrix [3, 9].
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