
Chris Jenkins 9801604

Etch-O-Sketch
A drawing program that bares more than a passing resemblance to that children's favourite, Etch-A-
Sketch. The user can draw a picture on Long Tank 0 by moving a 'cursor'. This cursor can be moved
in steps of one vertically, horizontally and diagonally. The screen may also be cleared.

Example output from Etch-O-Sketch:

Structure of the program tape:
T 56K

space PK

T 56K

space PZ

T 128K

space PZ

EZPF

Two custom subroutines were written for Etch-O-Sketch:

M3

PLOT_POINT

CLS

MASTER



Chris Jenkins 9801604

Name Purpose Location

PLOT_POINT Plots a point at the specified location 56

CLS Clears long tank 0 128

PLOT_POINT:
PLOT_POINT plots a point which can be seen by switching the CRT display to long tank 0. The X
parameter is placed into the location L + 50 and the Y parameter into location L + 51, where L is the
location into which PLOT_POINT is loaded. The coordinate origin is located at the bottom right of
the screen, with the x axis pointing to the left and the y axis pointing upwards. This was chosen to
make the implementation of the subroutine easier.

The subroutine plots a point by taking the long int 1 (stored in location 8M) and shifting it to the left x
times to give a long int pattern that is stored in location 2M. It then checks to see if the bit in long tank
0 that we wish to set has already been set. It does this by ANDing the pattern in 2M with the
appropriate row of long tank 0. If the result is non-zero then the bit has already been set and control is
returned to the caller. If the result is zero then the pattern is added to the appropriate row of long tank
0 and returns control to the caller.

Annotated Listing for PLOT_POINT:
GK set θ parameter

T 47K set M parameter - local variables and parameters live here

P 50θ

TZ

0 A 16M plant return link

1 T 44θ

2 XF

first, shift the pattern by x steps to get the right bit pattern to 
draw onto the screen

118-> 3 T 10#M pattern = INITIAL_PATTERN

4 A 8#M

5 T 2#M

6 XF

7 A 0M i = x - 1

8 S 8M

9 U 4M

10 XF if i = 0 then don't execute the loop body at all

11 G 20θ

loop

19-> 12 T 10#M

13 A 2#M left shift pattern by one

14 L 0D

15 T 2#M



Chris Jenkins 9801604

16 A 4M decrement i

17 S 8M

18 U 4M

19 E 12θ loop while i is not -ve

11-> 20 XF

now, check if there is already a point in the place that we want to
draw to - if there is one, then we don't need to draw another one

21 T 10#M take the initial SMC instruction opcode and add y*4 to it

22 A 1M

23 L 1F acc = y*4

24 U 15M

25 A 12M

26 T 27θ

27 H 0D SMC point 1 - masked_target = the target memory ANDed with pattern

28 C 2#M

29 U 6#M

30 G 43θ if masked_target is -ve then we don't need to do anything, so jump to
the end of the subroutine

31 S 8#M if masked_target > 0 then jump to the end of the subroutine

32 E 43θ

now draw the pattern onto long tank 0 by adding pattern onto the 
appropriate memory location

33 T 10#M take SMC point 2 and add y*4 to its initial value

34 A 15M

35 A 13M

36 T 40θ

37 A 15M take SMC point 3 and add y*4 to its initial value

38 A 14M

39 T 42θ

target = target + pattern

40 A 0D SMC point 2

41 A 2#M

42 T 0D SMC point 3

30,32-> 43 T 10#M clear the accumulator so that we jump back to the caller

44 EF

45 XF padding

46 XF

47 XF

48 XF

49 XF



Chris Jenkins 9801604

M 0 P 0F x - the caller should set this

1 P 0F y - the caller should set this

2 P 0F pattern (long int) - variable used to manipulate the pattern that
will

3 P 0F be added to the screen

4 P 0F i - used as a counter

5 P 0F filler

6 P 0F masked_target (long int ) - used to store the result of masking off
all bits

7 P 0F other than the one that we are about to set to see if that bit is
already set

8 P 0D INITIAL_PATTERN (long int constant) = 1. This pattern is left-shifted
to

9 P 0F get the pattern that we draw onto long tank 0

10 P 0F two words to clear the acc into when we want to clear it

11 P 0F

12 H 0D the initial value of SMC point 1

13 A 0D the initial value of SMC point 2

14 T 0D the initial value of SMC point 3

15 P 0F y*4 kept here

17 U 2F to help in planting return link

CLS:
CLS clears long tank 0 by clearing the accumulator and then then transferring the contents of the
accumulator to each long word in long tank 0, one at a time. Control is then returned to the caller.

Annotated Listing for CLS
GK

0 A 19θ plant return link

1 T 18θ

2 T D

3 T 2D

4 T 4D

5 T 6D

6 T 8D

7 T 10D

8 T 12D

9 T 14D

10 T 16D

11 T 18D

12 T 20D

13 T 22D

14 T 24D

15 T 26D



Chris Jenkins 9801604

16 T 28D

17 T 30D

18 E F return link

19 U 2F constant to help planting return link

Master Routine:
The master routine does the majority of the work. It clears long tank 0 and then enters the main loop.

In the main loop, a point is plotted at the coordinates (x, y) where x is stored in the location 0M and y
is stored in the location 1M. The routine then stops and waits for the user to dial input on the rotary
dial. Depending on the number dialled, the routine either moves the cursor in the desired direction
(and therefore increments or decrements x and/or y), or clears the screen by calling CLS. The routine
then loops back to the start of the main loop.

Annotated Listing for Master Routine
GK

T 47K set M parameter

P 119θ

TZ

T 45K set H parameter - this points to PLOT_POINT

P 56F

TZ

0 XF

1 A 1θ clear long tank 0 using CLS

2 G 128F

main_loop

CLS-> 3 T 2M clear  acc

4 A 0M plot a point at (x, y)

5 T 50H

6 A 1M

7 T 51H

8 A 8θ

9 G 0H call PLOT_POINT

PLOT_POINT->

16, 36->

10 T 2M clear acc and wait for input

11 ZF

12 U 3M store the input

13 XF

14 R 0D divide by two to get the value entered

15 S 4M

16 G 10θ input = 0 => no user input so re-read the input

17 S 4M

18 G 37θ input = 1 => move down and to the left

19 S 4M



Chris Jenkins 9801604

20 G 45θ input = 2 => move down

21 S 4M

22 G 50θ input = 3 => move down and to the right

23 S 4M

24 G 58θ input = 4 => move left

25 S 4M

26 G 63θ input = 5 => clear screen

27 S 4M

28 G 67θ input = 6 => move right

29 S 4M

30 G 72θ input = 7 => move up and left

31 S 4M

32 G 80θ input = 8 => move up

33 S 4M

34 G 85θ input = 9 => move up and to the right

35 S 4M

36 G 10θ input = 10 => user pressed 0, which isn't allowed => re-enter input

18-> 37 T 2M move down and to the left

38 A 0M increment x (remember, the x axis points to the left)

39 A 4M

40 T 0M

41 A 1M decrement y

42 S 4M

43 T 1M

44 E 93θ break out of this block

20-> 45 T 2M move down

46 A 1M decrement y

47 S 4M

48 T 1M

49 E 93θ break

22-> 50 T 2M move down and to the right

51 A 0M decrement x

52 S 4M

53 T 0M

54 A 1M decrement y

55 S 4M

56 T 1M

57 E 93θ break

24-> 58 T 2M move to the left

59 A 0M increment x (remember, the x axis points to the left)

60 A 4M

61 T 0M

62 E 93θ break

26-> 63 T 2M clear the screen

64 A 64θ clear long tank 0 using CLS



Chris Jenkins 9801604

65 G 128F

66 E 93θ break

28-> 67 T 2M move to the right

68 A 0M decrement x

69 S 4M

70 T 0M

71 E 93θ break

30-> 72 T 2M move up and to the left

73 A 0M increment x (remember, the x axis points to the left)

74 A 4M

75 T 0M

76 A 1M increment y

77 A 4M

78 T 1M

79 E 93θ break

32-> 80 T 2M move up

81 A 1M increment y

82 A 4M

83 T 1M

84 E 93θ break

34-> 85 T 2M move up and to the right

86 A 0M decrement x

87 S 4M

88 T 0M

89 A 1M increment y

90 A 4M

91 T 1M

92 E 93θ break

check that x and y are still within the bounds of our 'screen'

44, 49, 57, 62, 66, 71, 79, 84, 92->

93 T 2M if x >= 35 then x = 34

94 A 0M

95 S 5M

96 G 100θ

97 T 2M

98 A 7M

99 T 0M

96-> 100 T 2M if x < 0 then x = 0

101 A 0M

102 E 105θ

103 T 2M

104 T 0M



Chris Jenkins 9801604

102-> 105 T 2M if y >= 16 then y = 15

106 A 1M

107 S 6M

108 G 112θ

109 T 2M

110 A 8M

111 T 1M

108-> 112 T 2M if y < 0 then y = 0

113 A 1M

114 E 117θ

115 T 2M

116 T 1M

114-> 117 T 2M loop to main_loop

118 E 3θ

0M P 8F x = 16

1 P 4F y = 8

2 P 0F dump accumulator here

3 P 0F user input stored here

4 P 0D =1

5 P 17D =35

6 P 8F =16

7 P 17F =34

8 P 7D =15

 




