
Considering Suppressed Packets

Improves Buffer Management in QoS Switches∗

Matthias Englert† Matthias Westermann†

Abstract

The following buffer management problem arises in
network switches providing differentiated services: At
the beginning of each time step, one packet can be
sent, and afterwards an arbitrary number of new packets
arrive. Packets that are not sent can be stored in a
buffer. Each packet is attributed by a deadline, and a
packet is automatically deleted from the buffer if it is
still stored in the buffer by the end of its deadline. The
differentiated service model is abstracted by attributing
each packet with a value according to its service level. A
buffer management strategy determines the packet to be
sent in each time step. The goal of a buffer management
strategy is to maximize the sum of the values of sent
packets.

We introduce the concept of suppressed packets
and present a deterministic strategy that is based on
this concept. We show that this strategy achieves
a competitive ratio of 2

√
2 − 1 ≈ 1.828, which is

the best known competitive ratio in the deterministic
case. Further, we present a memoryless version of this
strategy that achieves a competitive ratio of ≈ 1.893.
This is the first memoryless strategy that achieves
a competitive ratio less than 2, and the competitive
ratio of this strategy is even better than the ratios
of all previously known deterministic strategies. This
demonstrates the potential of the concept of suppressed
packets. In addition, we present a simple strategy
that achieves the optimal competitive ratio of min{(1+
α)/α, 2α/(α+1)} ≤

√
2, if only two packet values 1 and

α > 1 are possible.

1 Introduction

Quality of Service (QoS) guarantees for network ser-
vices allow service providers to address the service re-
quirements of customers by providing different levels of
service. In the network setting, where traffic volumes
may exceed network capacity, effective management of
packets at buffers in switches is a key to achieving QoS

∗Supported by DFG grant WE 2842/1.
†Department of Computer Science, RWTH Aachen, Germany.

{englert, marsu}@cs.rwth-aachen.de.

guarantees. By differentiating service levels, packets of
different types may be treated according to the level of
service they require.

1.1 The Model
Time is slotted in time steps. At the beginning of each
time step, one packet can be sent, and afterwards an
arbitrary number of new packets arrive. Hence, in the
first time step, i.e., time step 0, a packet cannot be
sent and only new packets arrive. The sequence of time
steps can also be regarded as a sequence of send and
arrival events σ1σ2 · · · , where each sending of a packet
corresponds to a send event and each arrival of a new
packet corresponds to an arrival event. Obviously, the
event sequence is partitioned into time steps, where the
first time step starts with the first event and a new time
step starts right before each send event.

Packets that are not sent can be stored in a buffer.
Each packet p is attributed by a deadline d(p), which is
greater than the time step in which p arrives. If a packet
p is still stored in the buffer by the end of time step d(p),
p is automatically deleted from the buffer at the end of
this time step. Note that an explicit bound on the size
of the buffer does not exist, instead the possible delay
of each packet is bounded. Hence, this model is known
as the bounded-delay model.

The differentiated service model is abstracted by
attributing each packet p with a value v(p) according
to its service level. A buffer management strategy
determines the packet to be sent in each time step. The
goal of a buffer management strategy is to maximize the
sum of the values of sent packets.

For a given sequence of events σ1σ2 · · · and a buffer
management strategy A, let SA

t denote the set of packets
sent by A by the end of event σt, and let BA

t denote the
set of packets stored in the buffer of A at the end of
event σt. Initially, define SA

0 := ∅ and BA
0 := ∅.

The notion of an online strategy is intended to
formalize the realistic scenario where the strategy does
not have knowledge about the whole input sequence of
arriving packets in advance. The online strategy gets
to know this sequence packet by packet, and has to act
without knowledge about the future. Online strategies

are typically evaluated in a competitive analysis. In this
kind of analysis the total value produced by the online
strategy is compared with the total value produced by
an optimal offline strategy.

For a given input sequence I of arriving pack-
ets, let OPT(I) denote the total value produced by
an optimal offline strategy. An online strategy is
called c-competitive if it produces total value at least
OPT(I)/c − κ, for each input sequence I of arriving
packets, where κ is a term that does not depend on I.
The value c is also called the competitive ratio of the
online strategy.

1.2 Related Work
Kesselman et al. [8] show that the greedy strategy
which always sends the available packet with maximum
value achieves a competitive ratio of 2 and, if only the
two packet values 1 and α > 1 are possible, a better
competitive ratio of 1 + 1/α. Chrobak et al. [5] present
a strategy that achieves a competitive ratio of 64/33
which is the only previously known deterministic upper
bound on the competitive ratio of this problem less
than 2. Note that this strategy is not memoryless.
Andelman, Mansour, and Zhu [1], Chin and Fung [4],
and Hajek [7] show a lower bound of (

√
5+1)/2 ≈ 1.618

on the competitive ratio of any deterministic strategy.
Chin et al. [3] present a randomized strategy that
achieves a competitive ratio of e/(e− 1) ≈ 1.582. Chin
and Fung [4] present a lower bound of 5/4 on the
competitive ratio of any randomized strategy.

Concurrently and independently of our work, Li,
Sethuraman, and Stein [11] developed the DP (for
dummy packets) strategy that achieves a competitive
ratio of 6/(

√
5 + 1) ≈ 1.854. Similar to our approach

they use an optimal provisional schedule and identify
two packets similar to our first- and max-packet. How-
ever, instead of considering suppressed packets they ma-
nipulate the buffer contents to store informations about
the past. In some situations, the value of a packet is
artificially reduced by a certain factor, and a dummy
packet is added to the buffer and linked to a real packet
stored in the buffer. Dummy packets are not sent but
they influence the behavior of the strategy. Their proof
is, in contrast to our proof, not explicitly based on a
potential function. Instead, the buffer of the optimal
offline strategy is modified after each step.

Several restricted variants of this problem have been
considered. Define the span of a packet to be the
difference between its deadline and the time step in
which it arrives. An instance is s-bounded, if the span of
each packet is at most s, and an instance is s-uniform, if
the span of each packet is exactly s. Further, an instance
has agreeable deadlines, if for each packets p and each

packet p′ that arrives after p, d(p) ≤ d(p′). Note that
s-uniform instances are a special case of instances with
agreeable deadlines.

The lower bound of (
√

5 + 1)/2 on the competitive
ratio of any deterministic strategy in [1, 4] and the lower
bound of 5/4 on the competitive ratio of any randomized
strategy in [4] use only instances that are 2-bounded
and therefore also have agreeable deadlines. For s-
bounded instances, Chin et al. [3] present a strategy
that achieves a competitive ratio of 2 − 2/s + o(1/s).
This strategy achieves an optimal competitive ratio of
(
√

5 + 1)/2, for s = 2, 3, and a competitive ratio of√
3, for s = 4. Further, for 2-bounded instances, they

give a randomized strategy that achieves an optimal
competitive ratio of 5/4. For 2-uniform instances,
Chrobak et al. [5] present a strategy that achieves a
competitive ratio of ≈ 1.377 and a matching lower
bound. For instances with agreeable deadlines, Li,
Sethuraman, and Stein [10] give a strategy that achieves
an optimal competitive ratio of (

√
5 + 1)/2.

The following results refer to the similar FIFO
model, in which an explicit bound on the delay of each
packet does not exists, instead the size of the buffer is
bounded and reordering of packets is not allowed, i.e.,
the sequence of the sent packets is a subsequence of
the arriving packets. Kesselman et al. [8] show that
the greedy strategy achieves a competitive ratio of 2.
Kesselman, Mansour, and van Stee [9] introduce the
preemptive greedy strategy and prove that this strategy
achieves a competitive ratio of ≈ 1.983. Englert
and Westermann [6] show that the preemptive greedy
strategy achieves a competitive ratio of

√
3 ≈ 1.732,

which is the best known upper bound on the competitive
ratio of this problem. Kesselman, Mansour, and van
Stee [9] present a lower bound of ≈ 1.419 on the
competitive ratio of this problem.

1.3 Our Contributions.
In Section 2, we introduce the basic concept of pro-
visional schedules. After each event σt, our strategies
compute the so-called optimal provisional schedule for
the set of pending packets BONL

t stored in the buffer at
the end of σt. Note that this optimal provisional sched-
ule is computed under the assumption that new packets
do not arrive in the future.

In Section 3, we consider a first approach which is
simple and natural. For each send event, define the
first-packet as the packet that is basically earliest in the
respective optimal provisional schedule and the max-
packet as the packet that has basically maximum value
in the respective optimal provisional schedule. We study
the natural approach to send either the first-packet or
the max-packet, depending on the value of these two

packets. We state that this approach is very promising
if only two packet values 1 and α > 1 are possible,
i.e., for this case, we present a strategy based on this
approach that achieves an optimal competitive ratio of
min{1+α)/α, 2α/(α+1)} ≤

√
2. However, we also show

that this approach is disappointing for general packet
values, i.e., we prove that this approach cannot achieve
a competitive ratio better than 2. Note that there are
two natural greedy strategies: Either always send the
first-packet or always send the max-packet. These two
greedy strategies already achieve a competitive ratio of
2 [2, 8].

In Section 4, we enhance the first approach by in-
troducing the concept of suppressed packets. Consider
the optimal provisional schedule S for a set of pending
packets P . Suppose that a packet q ∈ P does not ap-
pear in S, but it can be added to S if another packet
p ∈ P that appears in S is removed from P and as a con-
sequence also from S. Then, q is called suppressed by
p. Obviously, if p is sent and p is not the first-packet, q
can appear in the optimal provisional schedule. Hence,
the sending of packets that are not first-packets can lead
to the appearance of suppressed packets in the optimal
provisional schedule. We present a deterministic strat-
egy that is based on the concept of suppressed packets
and show that this strategy achieves a competitive ra-
tio of 2

√
2 − 1 ≈ 1.828. Note that this the best known

competitive ratio in the deterministic case. In addition,
we present a memoryless version of this strategy that
achieves a competitive ratio of ≈ 1.893. This is the first
memoryless strategy that achieves a competitive ratio
less than 2, and the competitive ratio of this strategy is
even better than the ratios of all previously known de-
terministic strategies. This demonstrates the potential
of the concept of suppressed packets. The proofs of this
results are given in Section 5.

2 Provisional Schedules

We introduce the basic concept of provisional schedules.
For two packets p and q, p ≺ q according to the
canonical order ≺, if either d(p) < d(q), or d(p) = d(q)
and v(p) > v(q), or d(p) = d(q), v(p) = v(q), and the
arrival event of p is before the arrival event of q (the
last condition only ensures that ties are broken in some
arbitrary but consistent way).

A provisional schedule S for a set of pending packets
P specifies which packet should be sent in which time
step. To simplify notation, a provisional schedule S is
sometimes regarded as a set of packets, e.g., we write
p ∈ S to indicate that the packet p is scheduled in S.
Let S(p) denote the time step at which a packet p ∈ S is
scheduled in a provisional schedule S. Obviously, only
one packet can be scheduled at each single time step

and, for each p ∈ S, S(p) ≤ d(p). A provisional schedule
S is called a schedule for a time step τ , if all packets in
S are scheduled after time step τ , i.e., for each p ∈ S,
S(p) ≥ τ + 1.

After each event σt, our strategies compute the
optimal provisional schedule St for the set of pending
packets BONL

t stored in the buffer at the end of σt

as follows: Start with an empty set S. Consider the
packets in BONL

t for inclusion into S in descending order
of their value (ties are broken in favor of smaller packets
according to the canonical order). A packet p is added
to the set S if

|{p′ ∈ S ∪ {p} | d(p′) ≤ τ ′}| ≤ τ ′ − τ ,

for each τ ′ ≥ τ with τ denoting the time step the event
σt belongs to.

The final set S can be interpreted as the optimal
provisional schedule St: Let pi ∈ S denote the i-th
smallest packet in S according to the canonical order.
Then, pi can be scheduled for the time step τ + i since
d(pi) ≥ τ + i due to

|{p′ ∈ S | d(p′) ≤ τ ′}| ≤ τ ′ − τ ,

for each τ ′ ≥ τ .
The optimal provisional schedule St is computed

under the assumption that new packets do not arrive in
the future. Further, note that St is a schedule for the
time step τ if the event σt belongs to the time step τ ,
i.e., packets cannot be scheduled for the past. Finally,
observe that the schedule St is in canonical order, i.e.,
for each pair of packets p, q ∈ St, St(p) < St(q) if and
only if p ≺ q.

3 First Approach

In this section, we consider a first approach which is
simple and natural. For each send event σt, define
the first-packet pf ∈ St−1 as the first packet in St−1

according to the canonical order and the max-packet
pm := argmaxp′∈St−1

v(p′) (ties are broken in favor of
the smallest packet according to the canonical order).
We study the natural approach to send either the first-
packet or the max-packet, depending on the value of
these two packets. We state that this approach is
very promising if only two different packet values are
possible. However, we also show that this approach is
disappointing for general packet values.

Consider only two different packet values 1 and
α > 1. Depending on α, the following simple strategy
always sends either the first-packet or the max-packet.

• If α <
√

2 + 1, send the first-packet.

• Otherwise, send the max-packet.

The following theorem states an upper bound on the
competitive ratio of this strategy. If the max-packet is
always sent, the proof of the competitive ratio 1 + 1/α
can be found in [8], and if the first-packet is always sent,
the competitive ratio 2α/(α + 1) follows directly from
the definition of the strategy.

Theorem 3.1. If only two packet values 1 and α > 1
are possible, the above strategy achieves a competitive
ratio of min {1 + 1/α, 2α/(α + 1)} ≤

√
2.

The following theorem states a matching lower
bound on the competitive ratio of any deterministic
strategy. The input sequence for this lower bound
can be found in the proof of a lower bound on the
competitive ratio for 2-bounded instances [8].

Theorem 3.2. If only two packet values 1 and α > 1
are possible, the competitive ratio of any deterministic
strategy is at least min {1 + 1/α, 2α/(α + 1)}.

Consider general packet values. There are two
natural greedy strategies: Either always send the first-
packet or always send the max-packet. These two
greedy strategies achieve a competitive ratio of 2 [2, 8].
The following natural strategy uses a parameter β > 1
and either sends the first-packet pf or the max-packet
pm, depending on the value of these two packets.

• If v(pf) ≥ v(pm)/β, send the first-packet pf .

• Otherwise, send the max-packet pm.

The following theorem shows that this approach
does not achieve a competitive ratio better than the
competitive ratio of the greedy strategies.

Theorem 3.3. The competitive ratio of the above strat-
egy is at least 2.

Proof. Depending on β, we distinguish the following two
cases.

• Suppose that β > 2.

The input sequence consists of n + 1 consecutive
phases defined as follows.

– Phase 1 ≤ i ≤ n consists of 2n−i time
steps. In the first time step of each phase,
2n−i packets with value 2i−1 and deadline
2n − 2n−i+1 + 1, . . . , 2n − 2n−i, respectively,
and 2n−i packets with value 2i and deadline
2n − 2n−i + 1, . . . , 2n, respectively, arrive. In
the remaining 2n−i−1 time steps, new packets
do not arrive.

– Phase n + 1 consists of one time step. In
this time step, one packet with value 2n and
deadline 2n arrives.

For this input sequence, the above strategy pro-
duces value

∑n
i=1(2

n−i ·2i−1)+2n, and the optimal
value is

∑n
i=1(2

n−i·2i)+2n. Hence, the competitive
ratio is

lim
n→∞

∑n
i=1 2n + 2n∑n

i=1 2n−1 + 2n
= 2 .

• Suppose that 1 < β ≤ 2.

The input sequence is an extension of the previous
one. It consists of n + 1 consecutive phases defined
as follows.

– Phase 1 ≤ i ≤ n consists of 2n−i time
steps. In the first time step of each phase,
2n−i packets with value 2i−1 and deadline
2n − 2n−i+1 + 1, . . . , 2n − 2n−i, respectively,
2n−i packets with value 2i and deadline 2n −
2n−i+1, . . . , 2n, respectively, and 2n−i packets
with value (2+ε)·2i−1 > 2i and deadline 2n+1

arrive. In the remaining 2n−i − 1 time steps,
new packets do not arrive.

– Phase n + 1 consists of one time step. In
this time step, one packet with value 2n and
deadline 2n arrives.

For this input sequence, the above strategy pro-
duces value

∑n
i=1(2

n−i · (2 + ε) · 2i−1) + 2n, and
the optimal value is

∑n
i=1(2

n−i · (4+ ε) ·2i−1)+2n.
Hence, the competitive ratio is

lim
n→∞

lim
ε→0

∑n
i=1(2

n−i · (4 + ε) · 2i−1) + 2n∑n
i=1(2n−i · (2 + ε) · 2i−1) + 2n

= lim
n→∞

∑n
i=1 2n+1 + 2n∑n

i=1 2n + 2n
= 2 .

This concludes the proof of the theorem. �

4 Our Strategies

We enhance the natural approach to send either the
first-packet or the max-packet by introducing the con-
cept of suppressed packets. Consider the optimal provi-
sional schedule S for a set of pending packets P . Sup-
pose that a packet q ∈ P does not appear in S, but it
can be added to S if another packet p ∈ P that appears
in S is removed from P and as a consequence also from
S. Then, q is called suppressed by p.

More precisely, consider the optimal provisional
schedule St at the end of event σt for the set of pending

-

6

τ + 1 τ + 6 τ + 11 time

1

3

5
value δmax

L

e e e
e e u

e e

e e e e e e
Figure 1: The optimal provisional schedule for a time step τ with 8 packets and additional dummy packets of
value 0. The marked packet is scheduled on its deadline τ +6 and this is a tight time step. In addition, the set of
levels L = {(τ + 3, 5), (τ + 5, 2), (τ + 6, 3), (τ + 12, 1)} and δmax

L are depicted. In the second step of our strategy,
the level (τ + 6, 3) would be added to the set of levels for the tight time step τ + 6. Since the level (τ + 5, 2) is
dominated by the level (τ + 6, 3), it does not need to be retained.

packet BONL
t . For each p ∈ St, let Sp

t denote the
optimal provisional schedule at the end of event σt for
the set of pending packets without p, BONL

t \ {p}. If
Sp

t \ St 6= ∅, let st(p) := Sp
t \ St denote the packet that

is suppressed by p ∈ St. Note that st(p) is well defined,
since |Sp

t \ St| ≤ 1. For simplicity, if Sp
t \ St = ∅, let

st(p) be a dummy packet with value 0 and an infinite
deadline.

In addition, we need further preliminaries. Consider
the optimal provisional schedule S for a time step τ . A
time step τ ′ > τ is called a tight time step in S if

|{p′ ∈ S | d(p′) ≤ τ ′}| = τ ′ − τ .

Roughly speaking, a tight time step is a time step that
prevents further packets with an earlier deadline from
being added to the schedule. Another characterization
is the following. A tight time step is a time step in which
a packet is scheduled on its deadline, i.e., τ ′ is a tight
time step in S if and only if a packet p ∈ S exists with
S(p) = d(p) = τ ′. Note that, for a suppressed packet p′

and each packet p ∈ S with S(p) ≤ τ ′ where τ ′ denotes
the earliest tight time step that is greater or equal than
d(p′), v(p′) ≤ v(p).

For a time step τ and a packet value δ, (τ, δ) is called
a level. An intuition for a level is the following: For a
certain level (τ, δ), our strategy provides an increase of
the total value of sent packets by at least δ in each
time step less or equal than τ . If in one of these time
steps the actual value of the sent packet is less than
δ, our strategy can nevertheless guarantee the claimed
increase by amortization.

For a set of levels L and a time step τ , let δmax
L (τ)

denote the value of the level in L with maximum value
that contains time step τ , i.e.,

δmax
L (τ) := max{δ′ | (τ ′, δ′) ∈ L, τ ≤ τ ′} .

If {δ′ | (τ ′, δ′) ∈ L, τ ≤ τ ′} = ∅, define δmax
L (τ) :=

0. Roughly speaking, the function δmax
L describes the

upper envelope of all levels in L. Figure 1 depicts the
optimal provisional schedule for a time step τ including
a tight time step. In addition, a set of levels L and δmax

L

are depicted.
Our strategy uses a parameter β > 1. For each

event σt, a set of levels Lt is defined. Initially, define
L0 := ∅. For each event σt, our strategy does the
following.

1. If σt is the send event of a time step τ :

Define pf ∈ St−1 as the first packet in St−1

according to the canonical order and

pm := argmax
p′∈St−1

(v(p′) + (β − 1) · v(st−1(p′)))

(ties are broken in favor of the smallest packet
according to the canonical order).

If

max{v(pf), δmax
Lt−1

(τ)}

≥ v(pm) + (β − 1) · v(st−1(pm)
β

,

send pf . Otherwise, send pm.

2. After event σt, i.e., after a packet has been sent or
has arrived:

Compute St and set

Lt := Lt−1∪{(τ ′,min{v(p) | p ∈ St, d(p) ≤ τ ′}) |
τ ′ is a tight time step in St} .

Note that our strategy does not have to compute the
optimal provisional schedules completely new at each
event. Instead, it suffices to remove and to insert the
respective packets. Further, note that our strategy does
not have to accumulate all levels. Instead, it suffices to
retain only the values of δmax

Lt
for future time steps.

The following theorem shows that our strategy
achieves the best known competitive ratio in the de-
terministic case. The proof of this theorem follows in
the next section.

Theorem 4.1. The above strategy achieves the compet-
itive ratio r := 2

√
2− 1 ≈ 1.8284 for β := 1 + 1/

√
2.

The above strategy can easily be transformed to
the following memoryless strategy that does not have to
store δmax

Lt
. For each event σt, our memoryless strategy

does the following.

1. If σt is the send event of a time step τ :

Define pf ∈ St−1 as the first packet in St−1

according to the canonical order and

pm := argmax
p′∈St−1

(v(p′) + v(st−1(p′))/2)

(ties are broken in favor of the smallest packet
according to the canonical order).

If

v(pf) ≥ v(pm) + v(st−1(pm))/2
β

,

send pf . Otherwise, send pm.

2. After event σt, i.e., after a packet has been sent or
has arrived:

Compute St.

The following theorem shows that our memoryless
strategy achieves a better competitive ratio than all
previously known deterministic memoryless and even
non-memoryless strategies. The proof of this theorem
follows in the next section.

Theorem 4.2. The memoryless strategy achieves the
competitive ratio r := (2β2 + β − 5)/2 ≈ 1.893 for
β := 4 cos((π−arccos(3

√
3/16))/3)/

√
3 (β is the largest

real root of X3 − 4X + 1).

5 Analysis of the Strategies

In this section, we give the proofs of Theorem 4.1 and
Theorem 4.2.

5.1 Proof of Theorem 4.1
Proof. Let OPT denote an optimal offline strategy, and
let ONL denote our online strategy. W.l.o.g. assume
that the sequence of packets p1p2 · · · sent by OPT is in
canonical order, i.e., for each 1 ≤ i < j, either pi ≺ pj

or pi is sent before pj arrives. Note that each sequence
of sent packets can easily be converted into canonical
order by rearranging its packets.

For simplicity, we assume that, at each send event,
ONL and OPT always send a packet, i.e., if the buffer
of one of these strategies is empty at a send event, we
suppose that a dummy packet of value 0 is sent. Further,
we assume, for each time step, that a packet is scheduled
in the optimal provisional schedule, i.e., we suppose
that the schedule is filled up with dummy packets
with an infinite deadline and value 0 (see Figure 1).
The definitions of pf and pm depend on a send event.
Nevertheless, we refer to pf and pm without explicitly
referencing a send event. It is always obvious from the
context which send event is meant.

Our proof is based on a potential function argu-
ment. In the following, we give some basic ideas. If
we could show, for each time step, that the value of
the packet sent by OPT in this step is at most r times
more valuable than the packet sent by ONL in this step,
the theorem would follow immediately. Of course this
is not true: Time steps can exist such that the value of
the packet sent by OPT in this step is much larger than
the value of the packet sent by ONL in this step. For
this case, there are two basic scenarios.

In the first scenario, OPT sends a packet p that was
not sent by ONL yet, i.e., p is still stored in the buffer
of ONL. In this case, value is lent on p, i.e., a (r− 1)/2
fraction of the value of p is allocated to this time step.
This lent value has to be amortized by the time step
when p leaves the buffer of ONL (either because it is
sent or because its deadline expires). The lent value
cannot be amortized for more than one packet in one
time step. Hence, we maintain, for each time step, the
invariant that all packets on which value is lent can be
scheduled in a feasible schedule (see Lemma 5.1). This
guarantees, for each time step, that the deadline of at
most one packet on which value is lent expires.

In the second scenario, OPT sends a packet p that
was sent by ONL in a previous time step. In this
case, we allocate value that is amortized in previous
time steps as follows. For a certain level (τ, δ), ONL
provides an increase of the total value of sent packets
by at least δ in each time step less or equal than τ . If
in one of these time steps the actual value of the sent
packet is less than δ, ONL can nevertheless guarantee
the claimed increase by amortization (see the V (Lt, St)
term in the potential function which is defined later).

Hence, ONL can guarantee the value δmax
Lt

(d(p)) at the
send event σt when OPT sends p. It remains to amortize
the value v(p) − δmax

Lt
(d(p)) in previous time steps (see

the A(Lt, B
OPT
t \BONL

t) term in the potential function
which is defined later).

In the following, these basic ideas are formalized.
For a set of levels L and a packet p, define

mL(p) := min{v(p), δmax
L (d(p))} .

Then, for a set of levels L and a set of packets P , define

A(L,P) :=
∑
p∈P

(v(p)−mL(p)) .

The following observation states an upper bound on
A(Lt, B

OPT
t \BONL

t)−A(Lt−1, B
OPT
t−1 \BONL

t−1).

Observation 1. Fix an event σt and define

∆A := A(Lt, B
OPT
t \BONL

t)−A(Lt−1, B
OPT
t−1 \BONL

t−1) .

• Suppose that σt is an arrival event. Then

∆A ≤ 0 .

• Suppose that σt is a send event in which ONL sends
the packet p and OPT sends the packet q.

– If q 6∈ BONL
t−1 and p ∈ BOPT

t ,

∆A ≤ v(p)−mLt−1(p)− (v(q)−mLt−1(q)) .

– If q ∈ BONL
t−1 and p ∈ BOPT

t ,

∆A ≤ v(p)−mLt−1(p) .

– If q 6∈ BONL
t−1 and p 6∈ BOPT

t ,

∆A ≤ −(v(q)−mLt−1(q)) .

– If q ∈ BONL
t−1 and p 6∈ BOPT

t ,

∆A ≤ 0 .

Proof. For a set of levels L, a set of packets P , and a
level (τ ′, δ′), obviously A(L∪(τ ′, δ′), P) ≤ A(L,P). The
successive application of this argument yields

(5.1) A(Lt, B
OPT
t−1 \BONL

t−1) ≤ A(Lt−1, B
OPT
t−1 \BONL

t−1) .

Suppose that σt is an arrival event. Then, BOPT
t \

BONL
t = BOPT

t−1 \BONL
t−1 . Hence, A(Lt−1, B

OPT
t \BONL

t) =
A(Lt−1, B

OPT
t−1 \BONL

t−1). Together with Inequality (5.1),
this yields the first statement of the observation.

Suppose that σt is a send event in which ONL
sends the packet p and OPT sends the packet q. Then,
p ∈ BONL

t−1 \BONL
t and q ∈ BOPT

t−1 \BOPT
t .

• If q 6∈ BONL
t−1 and p ∈ BOPT

t ,

BOPT
t \BONL

t = {p} ∪ (BOPT
t−1 \BONL

t−1) \ {q} .

• If q ∈ BONL
t−1 and p ∈ BOPT

t ,

BOPT
t \BONL

t = {p} ∪ (BOPT
t−1 \BONL

t−1) .

• If q 6∈ BONL
t−1 and p 6∈ BOPT

t ,

BOPT
t \BONL

t = (BOPT
t−1 \BONL

t−1) \ {q} .

• If q ∈ BONL
t−1 and p 6∈ BOPT

t ,

BOPT
t \BONL

t = (BOPT
t−1 \BONL

t−1) .

Together with Inequality (5.1), this yields the second
statement of the observation. �

For a set of levels L and the optimal provisional
schedule S for a time step τ , define

V (L, S) :=
∑
p∈S

(δmax
L (S(p))−mL(p)) .

Note that
∑

p∈S δmax
L (S(p)) =

∑
τ ′≥τ+1 δmax

L (τ ′), since
for each time step a packet is scheduled in S. The fol-
lowing observation states an upper bound on V (Lt, St)−
V (Lt−1, St−1). The proof of this observation is similar
to the proof of Observation 1.

Observation 2. Fix an event σt in a time step τ and
define

∆V := V (Lt, St)− V (Lt−1, St−1) .

• If σt is an arrival event,

∆V ≤ 0 .

• If σt is a send event in which ONL sends pf ,

∆V ≤ mLt−1(pf)− δmax
Lt−1

(τ) .

• If σt is a send event in which ONL sends pm,

∆V ≤ mLt−1(pm)− v(st−1(pm))
+mLt−1(pf)− δmax

Lt−1
(τ) .

Proof. In order to show

(5.2) V (Lt, St) ≤ V (Lt−1, St) ,

we prove, for a set of levels L, the optimal provisional
schedule S, and a level (τ ′, δ′), where τ ′ is a tight time

step in S and, for each packet p ∈ S with d(p) ≤ τ ′,
v(p) ≥ δ′ that

V (L ∪ (τ ′, δ′), S) ≤ V (L, S) .

The successive application of this argument yields In-
equality (5.2).

The last inequality follows immediately if, for each
p ∈ S,

(5.3) δmax
L∪(τ ′,δ′)(S(p))−mL∪(τ ′,δ′)(p)

≤ δmax
L (S(p))−mL(p) .

Obviously, for each p ∈ S, mL∪(τ ′,δ′)(p) ≥ mL(p).
Hence, Inequality (5.3) is true if, for each p ∈ S,
δmax
L∪(τ ′,δ′)(S(p)) ≤ δmax

L (S(p)).
Suppose that a p ∈ S exists with δmax

L∪(τ ′,δ′)(S(p)) >

δmax
L (S(p)). Then, δmax

L∪(τ ′,δ′)(S(p)) = δ′ and S(p) ≤
τ ′. Hence, d(p) ≤ τ ′ since τ ′ is a tight time step
in S. This implies that δmax

L∪(τ ′,δ′)(d(p)) ≥ δ′. Then,
min{v(p), δmax

L∪(τ ′,δ′)(d(p))} ≥ δ′ since v(p) ≥ δ′ due to
the definition of δ′. As a consequence,

δmax
L∪(τ ′,δ′)(S(p))−mL∪(τ ′,δ′)(p)

= δ′ −min{v(p), δmax
L∪(τ ′,δ′)(d(p))}

≤ δ′ − δ′ = 0 .

Further, δmax
L (S(p)) − mL(p) ≥ 0 since δmax

L (S(p)) ≥
δmax
L (d(p)). Altogether, this yields Inequality (5.3).

In the following, we show the three statements of
the observation. Fix an event σt in a time step τ .

• Suppose that σt is an arrival event in which a packet
p arrives.

Due to Inequality (5.2), it remains to show that
V (Lt−1, St) ≤ V (Lt−1, St−1). Obviously,∑

p′∈St

δmax
Lt−1

(S(p′)) =
∑

τ ′≥τ+1

δmax
Lt−1

(τ ′)

=
∑

p′∈St−1

δmax
Lt−1

(S(p′)) .

Hence, it remains to show that∑
p′∈St\St−1

mLt−1(p) ≥
∑

p′∈St−1\St

mLt−1(p) .

Only the following three possibilities exist for St:
St = St−1, St = {p} ∪ St−1, or St = {p} ∪ St−1 \
{st(p)}. The above inequality follows immediately
in the first and second case. In the third case, we
have to show that

min{v(p), δmax
Lt−1

(d(p))}
≥ min{v(st(p)), δmax

Lt−1
(d(st(p)))} .

Obviously, v(p) ≥ v(st(p)). Further, a tight time
step τ ′ ≥ d(p) exists in St−1 such that each packet
in St−1 with a deadline smaller or equal than τ ′ has
a value of at least v(st(p)). Hence, a level (τ ′, δ′)
with δ′ ≥ v(st(p)) exists in Lt−1. As a consequence,
δmax
Lt−1

(d(p)) ≥ v(st(p)).

• Suppose that σt is a send event in which ONL sends
pf .

Due to Inequality (5.2), it remains to show that

V (Lt−1, St) ≤ V (Lt−1, St−1)
+mLt−1(pf)− δmax

Lt−1
(τ) .

Obviously, St = St−1 \ {pf} and, for each p ∈ St,
St(p) = St−1(p). Hence,∑

p∈St

(δmax
Lt−1

(St(p))−mLt−1(p))

=
∑

p∈St−1

(δmax
Lt−1

(St−1(p))−mLt−1(p))

−(δmax
Lt−1

(τ)−mLt−1(pf)) .

• Suppose that σt is a send event in which ONL sends
pm.

Due to Inequality (5.2), it remains to show that

V (Lt−1, St) ≤ V (Lt−1, St−1)
+mLt−1(pm)− v(st−1(pm))
+mLt−1(pf)− δmax

Lt−1
(τ) .

Obviously,∑
p∈St−1

δmax
Lt−1

(St−1(p))

= δmax
Lt−1

(τ) +
∑
p∈St

δmax
Lt−1

(St(p)) .

Hence, it remains to show that

(5.4) mLt−1(pf) + mLt−1(pm) +
∑
p∈St

mLt−1(p)

≥ v(st−1(pm)) +
∑

p∈St−1

mLt−1(p) .

Only the following two possibilities exist for St:
St = St−1 \ {pm} or St = {st−1(pm)} ∪ St−1 \
{pm, f}, where f is the packet in St−1 with mini-
mum value and a deadline smaller or equal to the
first tight time step in St−1 (ties are broken in fa-
vor of the largest packet according to the canonical
order).

– Suppose that St = St−1 \ {pm}.
A tight time step τ ′ exists in St−1 that pre-
vents st−1(pm) from being scheduled in St−1.
The value of each packet in St−1 with a
deadline smaller or equal than τ ′ is at least
v(st−1(pm)). Hence, a level (τ ′, δ′) with δ′ ≥
v(st−1(pm)) exists in Lt−1. This implies that
δmax
Lt−1

(d(pf)) ≥ v(st−1(pm)). Then,

min{v(pf), δmax
Lt−1

(d(pf))} ≥ v(st−1(pm)) ,

since v(pf) ≥ v(st−1(pm)). This yields In-
equality (5.4).

– Suppose that St = {st−1(pm)}∪St−1\{pm, f}.
Due to the definition of f , v(pf) ≥ v(f) and
a level (τ ′, δ′) with τ ′ ≥ d(f) and δ′ ≥ v(f)
exists in Lt−1. Hence,

min{v(pf), δmax
Lt−1

(d(pf))}
≥ min{v(f), δmax

Lt−1
(d(f))} .

Further, a tight time step τ ′′ ≥ d(st−1(pm))
exists in St−1 that prevents st−1(pm) from be-
ing scheduled in St−1. Hence, a level (τ ′′, δ′′)
with δ′′ ≥ v(st−1(pm)) exists in Lt−1. This
implies that

min{v(st−1(pm)), δmax
Lt−1

(d(st−1(pm)))}
= v(st−1(pm)) .

Altogether, this yields Inequality (5.4).

This concludes the proof of the observation. �

For each event σt, define the potential function

Φt := r
∑

p∈SONL
t

v(p)−
∑

p∈SOPT
t

v(p)

−A(Lt, B
OPT
t \BONL

t)− V (Lt, St)

+
r − 1

2

∑
p∈Ct

v(p) ,

where Ct ⊆ BONL
t \ BOPT

t is specified later (see
Lemma 5.1). Initially, define C0 := ∅. In order to prove
the theorem, we show that the potential function Φt is
monotonously increasing in t, for appropriately chosen
sets of packets Ct ⊆ BONL

t \BOPT
t .

Obviously, Φ0 = 0, since SONL
0 = SOPT

0 = BOPT
0 =

BONL
0 = L0 = C0 = ∅ by definition. Then, if the

potential function Φt is monotonously increasing in t,
ΦT ≥ 0, where σT is the last event. As a consequence,
r
∑

p∈SONL
T

v(p) ≥
∑

p∈SOPT
T

v(p), since A(Lt, B
OPT
t \

BONL
t) ≥ 0 and V (Lt, St) ≥ 0, for each event σt, and

CT ⊆ BONL
T \BOPT

T = ∅. This yields the theorem.
It remains to show that the potential function

Φt is monotonously increasing in t, for appropriately
chosen sets of packets Ct ⊆ BONL

t \ BOPT
t . The

following lemma states how to choose, for each event
σt, Ct ⊆ BONL

t \ BOPT
t such that certain lower bounds

on
∑

p′∈Ct
v(p′)−

∑
p′∈Ct−1

v(p′) are true.

Lemma 5.1. Define

∆Ct :=
∑

p′∈Ct

v(p′)−
∑

p′∈Ct−1

v(p′) .

For each event σt, the set of packets Ct ⊆ BONL
t \BOPT

t

can be chosen such that the following is true.

(a) If σt is a send event in which ONL and OPT send
the same packet p,

∆Ct ≥ −v(pf) .

(b) If σt is a send event in which ONL sends a packet
p ∈ Ct−1 and OPT sends a packet q 6∈ St−1,

∆Ct ≥ −v(p)− v(pf) .

(c) If σt is a send event in which ONL sends a packet
p 6∈ Ct−1 and OPT sends a packet q 6∈ St−1,

∆Ct ≥ −v(pf) .

(d) If σt is a send event in which ONL sends pf and
OPT sends a packet q ∈ St−1 \ {pf},

∆Ct ≥ −2 · v(pf) + v(q) .

(e) If σt is a send event in which ONL sends pm 6∈ Ct−1

and OPT sends a packet q ∈ St−1 \ {pm},

∆Ct ≥ −v(pf)− v(st−1(q)) + v(q) .

(f) If σt is a send event in which ONL sends pm ∈ Ct−1

and OPT sends a packet q ∈ St−1 \ {pm},

∆Ct ≥ −v(pm)− v(pf)− v(st−1(q)) + v(q) .

(g) If σt is an arrival event,

∆Ct = 0 .

Proof. In order to show the lemma, we maintain, for
each event σt in a time step τ , the invariant

∀τ ′ ≥ τ : |{p′ ∈ Ct | d(p′) ≤ τ ′}| ≤ τ ′ − τ ,

i.e., all packets in Ct can be scheduled in a feasible
schedule. Due to the invariant, at most one packet with
a deadline less or equal than τ + 1 exists in Ct. Recall
that Ct ⊆ BONL

t \BOPT
t . Hence, the deadline of at most

one packet in Ct expires in the next time step τ + 1.
Obviously, the invariant is true for C0 = ∅. By

induction over t, we show how to choose appropriately
the set of packets Ct ⊆ BONL

t \ BOPT
t such that the

invariant and the statements in the lemma are true. Due
to space limitations this case analysis is omitted. �

For each σt, the upper bounds on A(Lt, B
OPT
t \

BONL
t) − A(Lt−1, B

OPT
t−1 \ BONL

t−1) from Observation 1,
the upper bounds on V (Lt, St) − V (Lt−1, St−1) from
Observation 2, and the lower bounds on

∑
p′∈Ct

v(p′)−∑
p′∈Ct−1

v(p′) from Lemma 5.1 are used in a straight-
forward case analysis to show Φt − Φt−1 ≥ 0. Due to
space limitations this case analysis is omitted. �

5.2 Proof of Theorem 4.2
Proof. In our non-memoryless strategy either pf or pm

is sent depending on the condition

max{v(pf), δmax
Lt−1

(τ)}

≥ v(pm) + (β − 1) · v(st−1(pm)
β

.

The only difference of our memoryless strategy to
our non-memoryless strategy is that this condition is
replaced by

v(pf) ≥ v(pm) + v(st−1(pm))/2
β

.

The fact that either pf or pm is sent based on the
aforementioned condition is only exploited in the case
analysis of the proof of Theorem 4.1. Other parts of
the proof are not affected by a change of this condition.
However, note that A(Lt, B

OPT
t \BONL

t) and V (Lt, St)
depend on Lt and that our memoryless strategy does
not compute Lt. However, it suffices that Lt is defined
in the proof.

Using the above observations, we can adopt the
proof of Theorem 4.1. For each event σt, the potential
function has to be redefined

Φt := r
∑

p∈SONL
t

v(p)−
∑

p∈SOPT
t

v(p)

−A(Lt, B
OPT
t \BONL

t)− V (Lt, St)

+α
∑
p∈Ct

v(p) ,

with α := (β2 − 3)/2.
For each event σt, the upper bounds from Observa-

tion 1, the upper bounds from Observation 2, and the

lower bounds from Lemma 5.1 are used in a straightfor-
ward case analysis to show Φt−Φt−1 ≥ 0. Due to space
limitations this case analysis is omitted. �

References

[1] N. Andelman, Y. Mansour, and A. Zhu. Competi-
tive queueing policies for QoS switches. In Proceed-
ings of the 14th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 761–770, 2003.

[2] E.-C. Chang and C. Yap. Competitive on-line schedul-
ing with level of service. Journal of Scheduling,
6(3):251–267, 2003.

[3] F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor,
J. Sgall, and T. Tichý. Online competitive algorithms
for maximizing weighted throughput of unit jobs. Jour-
nal of Discrete Algorithms, 4(2):255–276, 2006.

[4] F. Y. L. Chin and S. P. Y. Fung. Online scheduling
with partial job values: Does timesharing or random-
ization help? Algorithmica, 37(3):149–164, 2003.

[5] M. Chrobak, W. Jawor, J. Sgall, and T. Tichý. Im-
proved online algorithms for buffer management in QoS
switches. In Proceedings of the 12th European Sympo-
sium on Algorithms (ESA), pages 204–215, 2004.

[6] M. Englert and M. Westermann. Lower and upper
bounds on FIFO buffer management in QoS switches.
In Proceedings of the 14th European Symposium on
Algorithms (ESA), pages 352–363, 2006.

[7] B. Hajek. On the competitiveness of on-line schedul-
ing of unit-length packets with hard deadlines in slotted
time. In Proceedings of the 2001 Conference on Infor-
mation Sciences and Systems (CISS), pages 434–438,
2001.

[8] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir,
B. Schieber, and M. Sviridenko. Buffer overflow man-
agement in QoS switches. SIAM Journal on Comput-
ing, 33(3):563–583, 2004.

[9] A. Kesselman, Y. Mansour, and R. van Stee. Improved
competitive guarantees for QoS buffering. Algorith-
mica, 43(1–2):63–80, 2005.

[10] F. Li, J. Sethuraman, and C. Stein. An optimal
online algorithm for packet scheduling with agreeable
deadlines. In Proceedings of the 16th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
801–802, 2005.

[11] F. Li, J. Sethuraman, and C. Stein. Better online buffer
management. In Proceedings of the 18th ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2007. To
appear.

