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When babies suckle atamother’sbreast, they are rewarded intermittently with
a let-down of milk that results from secretion of oxytocin (video 1). Oxytocin is
synthesised by magnocellular neuronsin the hypothalamus, andis packaged in
neurosecretory vesicles. Each oxytocin neuron has one axon which projects
into the neurohypophysis where it gives rise to about 2,000 nerve endings, all
filled with vesicles. Oxytocin is secreted from these in response to action
potentials (spikes), generated in the cell bodies and propagated down the axon.
Normally, spiking is slow and asynchronous, but during suckling, every few
minutes, each neuron discharges a burst of spikes that results in a large pulse of
oxytocin. This milk-ejection reflex involves a positive feedback affecting the
excitability of the oxytocin cells, and a negative feedback that ‘spaces’ the
bursts. These involve the dendrites of oxytocin cells. Dendrites are where
neurons receive afferent inputs, but are also the sites of release of factors that
influence neuronal excitability. Dendritic secretion has both autocrine effects
(on the cell of origin) and paracrine effects (on adjacent cells); it can occur in
response to spike activity, but can also be triggered by stimuli that mobilise
intracellular Ca** stores. Here we show how synchronized bursting canariseina
neuronal network model that incorporates these features.

Video 1 The milk ejection reflex in conscious rats.
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The milk-ejection reflex

Oxytocin is made in several thousand magnocellular neurons whose cell
bodies mostly lie within the supraoptic nuclei and the paraventricular nuclei
of the hypothalamus. Each of these neurons has just one axon, and this axon
extends into the neurohypophysis, where it gives rise to about 2000 swel-
lings and nerve endings. Spikes propagated down the axons cause some of
these vesicles to fuse with the plasma membrane (calcium-dependent exocy-
tosis) and release their contents into the extracellular space from where it
enters the systemic circulation. Normally, oxytocin cells fire at 1-3 spikes/s,
but during suckling, every 5 min or so, they all discharge a brief burst of 50-
150 spikes in 1-3 s. These synchronised bursts result in the secretion of a
pulse of oxytocin into the systemic circulation; when this pulse reaches the
mammary gland a few seconds later, it causes cells of the mammary gland to
abruptly release milk into a collecting duct from which it can be extracted by
suckling.

The background activity of oxytocin cells is much the same in lactating
rats as in non-lactating rats; the cells fire slowly, asynchronously, and
nearly randomly. At first, suckling produces little change in this, except
that slow firing cells tend to speed up slightly, while faster firing neurons
slow down. However, after a few minutes of suckling, the first bursts
occur; these are small and involve only some cells, but progressively more
cells are recruited until all show intense bursts. Bursts are elicited
specifically by the suckling stimulus; many other stimuli cause oxytocin
secretion, but they produce a graded increase in electrical activity that is
identical in lactating and non-lactating rats, and which does not entail
bursting.

Milk-ejection bursts (Figure 1) vary in amplitude from cell to cell and
according to the strength of the suckling, but they are quite consistent in
their shape, especially from one burst to the next in any one cell.

The supraoptic nucleus

In each of the supraoptic nuclei there are about 2000 oxytocin cells
(Figure 2), each cell has 2-5 dendrites, and each dendrite contains more
than10,000 vesicles. The cells intercommunicate within “bundles” of 3-8
dendrites; in lactating rats, the bundles are separated from each other by glial
enclosures (thin sheet-like processes of specialised astrocytes “wrap round”
the bundles), but within each bundle the dendrites are directly apposed to
each other. In basal conditions, dendritic oxytocin release is not much
influenced by spike activity, but it can be evoked by stimuli that mobilize
intracellular Ca? ™. When oxytocin is released, it depolarizes oxytocin cells;
it also mobilizes Ca*™ from intracellular stores, promoting further release of
oxytocin.
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Priming

The mobilisation of Ca®>" can “prime” the dendritic stores of oxytocin,
making them available for subsequentactivity-dependentrelease (Figure 3).
During suckling, dendritic oxytocin release is detected before any increase in
the electrical activity of oxytocin cells, and before any increase in secretion
from the neurohypophysis, so it seems that the suckling input primes the
dendritic stores of oxytocin, making them available for activity-dependent
release.

Endocannabinoids

Oxytocin cells modulate their afferent inputs by producing endocannabi-
noids (and other substances), which inhibit excitatory inputs presynapti-
cally, and oxytocin itself suppresses inhibitory inputs by attenuating the
effects of GABA.

Oxytocin cells

Pituitary gland

Figure 1 Milk-ejection bursts. Magnocellular oxytocin neurons each have one axon
that projects into the neurohypophysis from where oxytocin is secreted into the general
circulation. During suckling, they display intermittent high frequency bursts of spikes
every few minutes. An example of one of these bursts is shown — the trace is a 2-s extract of
a trace from an extracellular recording.
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Figure 2 The supraoptic nucleus (SON) of the rat hypothalamus. A. Oxytocin cells
in the SON and paraventricular nucleus (PVN) are stained red by immunohistochemistry,
in a coronal section of the rat brain. 3V = third ventricle. B. Higher power view of the SON-
the mat of fibres at the base of the nucleus are dendrites. Figure courtesy of Vicky Tobin.

Model

Mathematical modelling involves:

o translating biological statements into differential equations or computational
algorithms

« simulating a biological system by rumning these equations on a computer to
generate “data” that can be compared with observational data
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“fitting” the model to observations by varying its parameters to ensure that the

model data matches the real data
“testing” the model by using it to generate new and unexpected predictions or

insights

Each model neuron is a modified leaky integrate-and-fire model (Figure 4),
sometimes called a spike-response model. Such models describe a system
that translates synaptic input (transient perturbations of voltage) into
spikes, by a threshold function. They integrate synaptic inputs over time,
calculating the cumulative balance of excitation and inhibition as devia-
tions from a resting potential. A leaky model represents these perturbations
as decaying towards the resting potential. A spike arises when the balance
of input exceeds a spike threshold. A modified model, or spike-response
model, incorporates activity-dependent changes in excitability to mimic
the effects of slow voltage and calcium-dependent conductances; these
may for example mimic hyperpolarising- or depolarising- after potentials
that follow spikes.
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Figure 3 Priming in oxytocin cells. The dendrites of oxytocin cells contain many
vesicles (shown as red organelles). These vesicles are normally located away from the
plasma membrane, so stimuli that increase spike activity (indicated as a green stimulus)
trigger release of oxytocin from axon terminals but not from dendrites. Some peptides can
cause release from the dendrites without increasing spike activity, by triggering an increase
in intracellular calcium release. In addition, some peptides can prime the dendritic stores —
moving vesicles close to the plasma membrane. After priming, these vesicles are available
for release in response to increases in spike activity.
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In the model described here, each oxytocin cell receives its own, random
synaptic input. This is modelled as stochastic fast excitatory and inhibitory
postsynaptic potentials (EPSPs and IPSPs, with realistic reversal potentials);
in the model, this input is (normally) balanced, reflecting an equal average
mixture of EPSPs and IPSPs (the neuronsreceive an approximately balanced
synaptic input, mainly involving the neurotransmitters glutamate and
GABA). The resting potential and spike threshold are fixed in line with
measurements made 7 vitro, and the size and time course of EPSPs and IPSPs
also match observations made iz vitro. These inputs are not directly affected
by suckling; they simply ensure that, in basal conditions, each cell has a
different, irregular, level of background spiking activity.

Activity-dependent effects on excitability
After every spike, oxytocin cells are transiently refractory to excitation; thisis
because of a hyperpolarising afterpotential (HAP) that results from a Ca® ™ -
dependent K" conductance, and which follows spikes in oxytocin cells
because spikes activate high threshold voltage-activated Ca®> " channels. This
ismodelled as a transient rise in spike threshold, and this alone is adequate for
reproducing the characteristic distribution of interspike intervals in vivo.
Another modification mimics the effect of a slower activity-dependent
afterhyperpolarisation (AHP). This is another Ca® " -dependent K" con-
ductance; it mediates a prolonged reduction in excitability after intense
activation, and it is enhanced in oxytocin cells in lactation. This mechanism
enables the model to fully reproduce the shape of milk-ejection bursts.

Dendritic oxytocin release

Oxytocin secretion from the neurohypophysis is facilitated at high spike
frequencies, and this has been studied extensively. We assume that activity-
dependent dendritic release is similarly non-linear, and so allow that
dendritic oxytocin release only occurs when spikes occur with an interspike
interval that is less than a critical value.

How much oxytocin is released depends on how much is available for
release. In dendrites, only vesicles close to the plasma membrane (and hence
close to voltage-gated Ca?* channels) are released by spikes. This readily-
releasable pool of vesicles is depleted when oxytocin is released and is
replenished during suckling — the priming effects.

Dendro-Dendritic intercommunication

Oxytocin cells are interconnected via dendrites—each model cell is given two
dendrites, each of which is part of abundle thatincludes dendrites from other
cells. Dendro-dendriticinteractions are modelled by elements that mimic the
excitatory actions of oxytocin, and this isimplemented as an activity-depen-
dent reduction in spike threshold that affects all the oxytocin cells that have
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dendrites in the bundle where oxytocin is released. In the model, the
maximum effect of oxytocin is limited to a depolarisation of 25 mV.

Endocannabinoid release

Oxytocin release is accompanied by production of endocannabinoids which
feed back to modulate synaptic input. Endocannabinoids are produced in
oxytocin cells as a consequence of the mobilisation of intracellular Ca*™*,
and act via CB1 receptors on afferent nerve terminals. The rate of release of
both EPSPs and IPSPs to all cells connected to a bundle is inhibited by the
effects of endocannabinoids produced in that bundle.

Building the model

To model individual oxytocin cells, we use a leaky integrate-and-fire model
(Figure 4), modified toincorporate activity-dependent changesin excitability.

Every cell in the model receives an independent synaptic input that is a
mixture of EPSPs and IPSPs. These are represented by Ngh, Ni,i which are
inhomogeneous Poisson processes of rate /I{Ei(t), /VL,—(I), ap(VE—Vrest),
ar(veest—Vv;) are the magnitude of single EPSPs and IPSPs at Vs, and vz and
vy are the excitatory and inhibitory reversal potentials.

Spike generation
The membrane potential v; of cell 7 obeys

ANy,

Avi  Vrest—VU; 2 dN’ .
i} — Zrest i + Z aE(UE_Ui) ) _al(Ui_UI) 1,i
=

dt

dt T dt (1)
where 7 is the membrane time constant, and v, is the resting potential,
A spike is produced in cell 7 at time ¢t =¢#, s =1,2,...,, it vi(t}) = T;(#}),
where T;(t) is the spike threshold at time t. After the spike, v;is reset to Vyes.
Activity-dependent changes in excitability and the effects of oxytocin are
modelled by effects on spike threshold:

Ti = To + Tuar,i+ Tanpi—Tor,i (2)

where T, is a constant.
Tuap; models the effect of a HAP in cell i by

Tuapi = kHAPH(tfii)e_([_[l)/THAP (3)

where kyap, Tyapare constants, f; = maxs{tf : § < t}, and H(x) is the Heavi-
side step function. This gives a transient increase in spike threshold after
each spike.
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Similarly, T,z models the effect of the AHP. The AHP builds up
slowly, leading to a significant reduction of excitability only after intense
activity. The variables f,i=1,...,n represent the recent activity of each
neuron, and

I [ ()

+
dt TAHP i<t

(4)

where 7,44p is the decay constant of the AHP, and J(x) is the Dirac delta
function. We set

4
Tanpi = Kanp fft_;_—zl (5)
1 1

where kspp, fi, are constants adjusted to match the characteristics of
spontaneous firing in oxytocin cells.

Effects of oxytocin

The network topology (Figure 5) — the description of how cells are inter-
connected - is represented by matrices ¥ = {Cf}, k=1,..., n; ¢f =1 if
dendrite j of cell 7 is in bundle k, and zero otherwise. The increase in

excitability due to oxytocin is modelled by Tor,

dY:jotT,i _ TOTz +k9TZZ Z CS _]];le_;/n (6)

=1 j=1 Im=1

where 1,7, korare constants, p}" (t) is the release rate from dendrite m of cell j,
and the sums pick up all the cells whose dendrites share the same bundle as
celli. The oxytocin-dependent reduction of the spike threshold islimited to a
maximum (To7 ) Of 25mV.

Modelling oxytocin release from the dendrites
The readily-releasable pool of oxytocin in dendrite j of cell 7 is r}, where

L= —i + k(1) —P(1), (7)

where 1,is a time constant, k,(t) is the rate of priming due to suckling (k,(1) is
a positive constant during suckling and zero otherwise), and p’ is the
instantaneous release rate from dendrite j. Release is proportional to the
readily-releasable pool, so

pit) = k(1) Y 8(t—£-A) (8)
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dendrites

bundles

Figure 5 Structure of the model network Oxytocin cells in the supraoptic nucleus
have 1-3 large dendrites, most of which project ventrally (shown by immunocytochem-
istryin A. These dendrites many neurosecretory vesicles (shown by electron microscopy in
B). In the model, cells (C, blue) have two dendrites (red) that are coupled within bundles
(yellow). The organization of the oxytocin network is shown in D; the yellow boxes
represent dendritic bundles.

where k; is the maximum fraction of the pool that can be released by a spike,
A is a fixed delay before release, and the summation extends over the set
{#f < t,—671 < 1,4}, with 7,4 a constant. Thus, only spikes occurring at
intervals of less than t,,; induce any release from dendrites. We set 7,,;= 50
ms, but the exact value is not critical.

Modelling the effects of endocannabinoids
The variables ¢(t), k = 1, ..., n, represent the concentration of endocanna-
binoids in each bundle, and evolve according to

dék € & 2 K j
E:_a—i_kECZZCiji (9)

i=1 j=1
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where 75¢is the decay time constant, and kg scales the amount of oxytocin
released within the bundles into an increase of endocannabinoid concen-
tration. The rates of EPSPs and IPSPs are equally affected by endocanna-
binoids:

A0 = 1= > ckFan(ex) 7 (0) (10)
k

where 2, (t), x= E,I are the unmodified synaptic input rates for dendrite j of
neuron i, o is the maximal fractional attenuation of the input, and

64

Pl =Gy
th

(11)

where g, is a constant. The parameter values are given in Table 1 unless
otherwise stated. The equations were integrated numerically by the Euler-
Maruyama method with a time step of 0.1 ms. The MATLAB code for
simulating the system is given in http://www.informatics.sussex.ac.uk/
users/er28/otnet/.

Network topology (Figure 5)

The network has # neurons and 7, bundles, and each neuron has two
dendrites in different bundles. To assign dendrites to bundles for a network
ofnneurons, and foranintegerd > 0, we startby considering a set of n, = (2n/
d) empty bundles. For each neuron we select two bundles as follows. The
indexofthefirstbundle (i;) isselectedatrandom from{1,2,. . .., 1.}, the second
index is selected at random from {1,2,.. .., n,}/{i;}, ensuring that no neuron
hastwo dendritesin the same bundle. This, repeated forall neurons, leadstoa
random allocation of dendrites into bundles.

Model behavior

Overview(Figures 6 & 7)

In the model, in the absence of a suckling input, cells fire spikes indepen-
dently at a rate that depends on the level of synaptic input, and with
interspike interval distributions very similar to those of oxytocin cells
recorded in vivo. When the suckling input (k,) is switched on, there is (at
first) little change in this background activity, but there is progressive
priming of activity-dependent oxytocin release, accompanied by production
of endocannabinoids. As these begin to take effect, faster firing cells tend to
slow down and slower firing cells tend to speed up. Then, after a delay,
synchronised bursts arise throughout the network and recur every few
minutes.
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Table 1 Model parameters (a.u., arbitrary units)

Name Description Value Units
n Number of cells 48

np Number of bundles 12

T Membrane time constant 10.8 ms
Vrest Resting potential —-62 mV
ap(VE—Vrest) EPSP amplitude 4 mV
ar(Veest—Vr) IPSP amplitude 4 mV
VE EPSP reversal potential 0 mV
v IPSP reversal potential —80 mV
Ag Excitatory input rate 80 Hz
A1 Inhibitory input rate 80 Hz
Kuap HAP, maximum amplitude 40 mV
THAP HAP, decay time constant 12.5 ms
Kanp AHP, maximum amplitude 40 mV
TaHP AHP, time constant 2 3
fn AHP, half-activation constant 45 a.u.
Tor Time decay of oxytocin-induced depolarization 1 s
kot Depolarization for unitary oxytocin release 0.5 mV
A Time delay for oxytocin release 5 ms
Tor,max Maximum oxytocin-induced depolarization 25 mV
kp Priming rate 0.5 s
T Time constant for priming 400 s

k, Fraction of dendritic stores released per spike (max) 0.045

Tec Time constant for [EC] decay 6 3
Kec Endocannabinoid increase per unit oxytocin release 0.0025 a.u.
€ [EC] threshold for synaptic attenuation 0.03 a.u.
Trel Maximum interspike interval for release 50 ms
o Fractional attenuation of synaptic input rate (max) 0.6

Example simulations

Figure 8 shows simulations from a network of 48 neurons and 12 bundles
(with amean of 8 dendrites per bundle) with the topology as in Figure 6 (the
results are similar in networks of up to 3000 neurons). Synchronized bursts
occur when, and only when, the suckling input is present; i.e., priming of
dendritic release is essential. The model parameters were tuned to match the
interspike interval distributions of oxytocin cells and the temporal char-
acteristics of bursts (Table 1). With these parameters, bursts contain 50-70
spikes in 1-3 s (0.9-4.6 s in vivo), and recur at intervals of ~4 min, in close
agreement with in vivo observations.

Interspike interval histograms (Figure 9) constructed between bursts
match in vivo data indistinguishably, so the model accounts well for the
background activity of the oxytocin cells, as well as bursting activity.
Normally, all cells participate in the reflex in the model, and the
mean variation in burst onset is about 200 ms, close to measurements



Modelling the Milk-Ejection Reflex 13

Suckling input . spikes Soma
(primes releasable dendrite 1] - Il T T a).(?.’.'..
pool) HAP AHP
+
\ Tor W é
. -
¢"‘ ' h
R IPSPs % EPSPs
r P ‘$ o “
L
Taag, p 5 .
bundle EC - | synaptic input |

Figure 6 The structure of a single model neuron A single model neuron receives
random EPSPs and IPSPs, and its excitability is modelled as a dynamically changing spike
threshold that is influenced by a HAP (parameter Ty4p), and a slower AHP (T,4yp). Each
neuron interacts with neighbouring neurons by two dendrites that project to bundles
(vellow), and its excitability is increased when oxytocin is released in these bundles (To7).
Activity-dependent production of endocannabinoids (EC) feeds back to reduce synaptic
input rates.

in vivo. Model neurons display a brief silence before many bursts; in the
model, endocannabinoids released from the first cells that burst can
suppress synaptic input enough to inhibit other oxytocin cells before
they are activated by oxytocin release, and similar pre-burst silences
occur in vivo.

Roles of the HAP and AHP

In the model, the shape of bursts is determined by the AHP, which reduces
the peak firing rate and shortens the burst duration. Removing the AHP has
little effect on the timing of bursts, as it activated relatively little at back-
ground firing rates.

The HAP parameters were fixed to provide a good match to the interspike
interval distribution between bursts. The choice of parameters affects the
timing of bursts, as the HAP limits the occurrence of short interspike
intervals; more short intervals increases the rate of depletion of dendritic
oxytocin, but also increases the frequency of events that can trigger a burst.

Pacemaker activity

As invivo there are no fixed ‘leader’ or ‘follower’ cells in the network, and the
order in which neurons start to burst varies randomly with each burst.
Bursting in the model is thus an emergent activity due to the interplay
between the single neuron dynamics and network dynamics. The lack of a
marked leader/follower character is accentuated by the homogeneous
arrangement of the connections in the network, as all bundles contained the
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Figure 7 The behavior of one model cell during a burst. The upper two red traces
show the times of occurrence of all oxytocin release events in the two dendritic bundles to
which the cell is connected. Below this is the soma activity: the blue line shows the spike
threshold, showing the effects of post-spike activity changes and of oxytocin; the black line
(V) shows the impact of EPSPs and IPSPs. The bottom three traces show Tyap, Tagpand Tor.

same number of dendrites. We also considered a network with the same
number of cellsand bundles (and the same mean connectivity) but where the
numberofdendritesvariedin eachbundle, andin this, burstsare morelikely to
startin regions of the network where dendritic bundling is more pronounced.

Synchronization

With no suckling input, the firing of oxytocin cells in the model is uncor-
related (as in vivo). Between bursts, spiking activity is characterised by small
but increasing cross-correlation of firing rates, a consequence of the
strengthening of the interactions between cells. Activity becomes more
irregular close to a burst, indicated by an increasing index of dispersion of the
firing rate. Both results agree with experimental findings in vivo. In the
model, the increased variability arises because, towards a burst, activity
produces both dendritic oxytocin release, with excitatory consequences,
and endocannabinoid production, with inhibitory consequences. If
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Figure8 Synchronized bursting in model oxytocin cells Each row of the raster shows
the spike activity of just one of the 348 cells in a network model; each bar shows the timing
of a spike. Bursts are approximately synchronized, while background activity is asyn-
chronous. The red trace below shows how T changes during a burst in one of the cells; each
spike causes a large transient rise in 7. As oxytocin is released, this causes a fall in T that is
offset by a slow rise caused by the AHP. Note how similar this profile is to the extracellularly
recorded voltage trace of oxytocin cells in Figure 1.

endocannabinoid release is eliminated (by setting « =0) then there is no
increase in variability.

In a network of 1000 neurons with just two dendrites in each bundle,
bursts are rare, propagate slowly, and involve only some cells. More
dendrites in each bundle leads to faster propagation of bursts and better
synchronization. Figure 10 illustrates how a burst is propagated between
cells, and shows the effects of varying the degree of random connectivity.
With random coupling, large networks can be rapidly synchronized even if
the couplingis sparse. If cells are coupled less randomly (i.e. more regularly),
synchronization is poorer and “travelling waves” can arise.

Post-Burst silences

Bursts are followed by long silent periods (up to 20 s), very similar to post-
burst silences in vivo. In vivo, the silence is variable in duration (7-56 s),
indicating that it is not simply the deterministic consequence of an activity-
dependent AHP. In the model, the post-burst silence is mainly a conse-
quence of the prolonged suppression of afferent input, following the
increase in endocannabinoids. I vivo, a few otherwise typical oxytocin
cells show no bursts at milk ejection but instead fall silent. A similar



16  Chapter 1

60
A
Frequency
(spikes/s)
' Mk Sl
f - 1
100 ] 1007 5 min
B ]
L ]
Frequency H
(spikes/s) i
4 : i
1
‘ .
4 .
. 3 e .08
2o wal et
0— T = 1 U T T T
0 20 40 60 0 20 40 60
100 ]
C 100]
Frequency °
(spikes/s) -
: -
l‘ . L]
O 0
0 20 40 60 O 20 40 60
Time (s) Spike number in burst

Figure 9 Comparison of bursting activity in real and modelled oxytocin cells
A. Milk-ejection bursts triggered in an oxytocin cell ir2 vivo by i.c.v. injection of oxytocinin a
urethane-anaesthetised rat. B. A milk-ejection burst in an oxytocin cell recorded in vivo
(red) and a model cell (blue) plotted as instantaneous firing rate (each point is the
reciprocal of the interval since the previous spike). This profile is indistinguishable to
burst profiles observed in vivo. C: Mean profiles of milk-ejection bursts from a real oxytocin
cell (red) (Datafile) and from a model cell (blue). Each profile is constructed from 17 bursts,

and shows the mean (+ S.E.) instantaneous firing rate plotted for each interspike interval
within the bursts

phenomenon can be replicated in the model by assuming that some

neurons do not express oxytocin receptors (by setting kor=0 for these
neurons).

Dendritic storage
In the model, the dendritic stores of readily-releasable vesicles are incre-
mented by the suckling input. Their average level increases between bursts
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Figure 10 Dependence of bursting on synaptic input (Left) In simulations of the
model network, bursting behaviour is observed only within a range of values for the
excitatory input. A minimum level of excitation is necessary to start the reflex. Increasing
the input rate speeds up bursting until the excess of oxytocin release causes an abrupt
breakdown. Bar colours correspond to varying the threshold for frequency-dependent
release, defined as the maximum interspike interval allowed for dendritic release.(Right)
The effect of a spatially inhomogeneous input on bursting activity. Cells were subject to
(balanced) inputs of rate 2= /(1 + €), with &€ drawn from a normal distribution. Plotted is
the bursting frequency (based upon 50 min of dynamics; average over five trials with
independently distributed rates) vs the SD of €. Bars are SD; the dashed line is a linear fit.

despite activity-dependent depletion, and bursts tend to occur when the
stores are relatively large. The mean level at the time of bursts correlates
strongly with the logarithm of the inter-burst interval. Figure 11 plots the
rate of change of the stores against the store level. The decrease in slope at
high levels reflects a reduction of the average release rate, and is a conse-
quence of the suppression of afferent input as a result of endocannabinoid
release. This stops release from becoming regenerative, and allows the stores
to increase further. In this phase, the network activity becomes more
irregular because of the opposing feedback mechanisms: local activity-
dependent excitation by dendritic oxytocin release, and suppression of
afferent input by endocannabinoids. If just a few neighbouring cells show
coincidentally increased activity due to stochastic variation in their input
rates, and if they have large enough stores, then enough oxytocin can be
released to trigger a burst.

Paradoxical behaviors

Increased spike activity between bursts enhances depletion of the readily-
releasable pool and so can delay or even suppress bursting. Conversely, an
increase in inhibitory input can promote the reflex in a system which fails to
express bursting because of insufficient priming (Figure 10). Such
“paradoxical” behaviours have been extensively described in vivo; for
example, injections of the inhibitory neurotransmitter GABA into the
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Figure 11 Impact of network topology on the propagation of bursting. The
network topology is critical for whether bursting is synchronous, or whether it occurs
as a travelling wave through the network. A, Schematic diagram illustrating a network
with a ring structure (p =0, top) and with random rewiring (p > 0, bottom); blue circles
indicate neurons, yellow boxes indicate bundles. One dendrite (in green) is randomly
chosen and re-assigned; this is shown for only one neuron but the rule was applied to all
neurons independently. B-E, Raster plots of spikes generated in networks with increasing
probability of rewiring: p=0 (B), 0.05 (C), 0.5 (D), 0.95 (E).

supraopticnucleus of a suckled, lactating rat can trigger milk-ejection bursts;
conversely, many stimuli that activate oxytocin cells suppress the reflex.
Occasionally a single burst can occur shortly after removing the suckling
stimulus. This feature is also shared (occasionally) by the reflex in vivo, and
indicates that suckling itself is not a strictly necessary trigger.
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Network structures

In the model, during suckling, neurons that are strongly excited produce
endocannabinoids that reduce the overall input level. This defends the
system from over-excitation, and maintains the network in an optimal range
for bursting. This is important, because bursting is possible only within a
range of values of synapticinput. The exact range depends on the strength of
the coupling between spike activity and dendritic secretion. At a low level of
excitation, an increase in synaptic input favours bursting by increasing the
frequency of release episodes which can trigger a burst. However, above a
critical level, such release events may be so frequent that stores are not
replenished fast enough for the stores to reach the critical level required to
trigger a burst. Bursts become rarer and less predictable, until eventually
over-excitation disrupts the reflex. Spatial inhomogeneity in the stochastic
input can also degrade the reflex. The system performs optimally when the
activity is relatively homogeneous between oxytocin cells, a conclusion
previously drawn from experimental studies.

Discussion

During lactation, oxytocin is released in pulses following quasi-synchronous
bursts of spike activity in oxytocin cells. Here, computer-based modelling
shows that such bursting can arise as an emergent property of a spiking
neuronal network. The model does not incorporate all elements of the
physiology of oxytocin cells, but is a minimalist representation to help
identify the key processes.

Key model assumptions

In formulating this model, we are hypothesising that, during lactation, the
oxytocin system is organized as a pulse-coupled network where neurons
interact by dendritic release of oxytocin, coupled non-linearly to electrical
activity. This requires a stimulus-dependent process of priming of the
dendritic stores, whereby these are made available for activity-dependent
release. Dendritic release of oxytocin occurs only when the neuron’s firing
rate is sufficiently large, so interactions between neurons are rare and erratic
between bursts and in the absence of the suckling stimulus, leading to
asynchronous spiking except during the bursts themselves; the network is
essentially thus a pulse-coupled network.

Emergent behavior

In thismodel, bursting arises as an emergent behaviour of a sparsely connected
population of neurons. Bursting can begin at any of many foci of neuronal
interactions — within any of the dendritic bundles that link just a few of the
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neurons, from where it will spread out to the remaining bundles. Bursting
arises by positive feedback through activity-dependent release of oxytocin,
and this is down-regulated after a burst (by depletion of the pool of readily-
releasable oxytocin); the core mechanism is thus analogous to a mechanism
used in some other models of bursting — positive feedback followed by
synaptic depression. The topology of the networks is different — the present
network is sparsely connected compared to others, and the biological
substrate is different — here the intercommunication is dendro-dendritic
rather than synaptic.

Making biological inferences from the model

Matching the model to data helps us to understand the likely importance of
several biological phenomena. First, the AHP has a role only in shaping the
burst profile; it contributes little to burst timing or to post-burst silences.
Second, although the core mechanism inducing bursts is activity-dependent
positive feedback, negative feedbacks also are also important. In the real
system there are many negative feedback mechanisms involving several
signalling molecules, here these are represented by only one — the endo-
cannabinoids, and this is an oversimplification. In the model, endocanna-
binoid production is proportional to oxytocin release. The dynamics of the
effects of endocannabinoids differ from those of oxytocin, and the dual
effects promote increased variability in firing rate as the system swings from
excitation to inhibition. The “upswings” mean that, for a given mean firing
rate, there are more clusters of short intervals towards the end of an
interburst interval, and they are more likely to be correlated between
neurons, making them more potent as potential burst-triggering events.
At the same time, the depressive effects on mean firing rate means that at
high synaptic input rates there is less depletion of the releasable pool of
oxytocin. Together, these effects mean that the rate at which bursts arise is
relatively independent of synaptic input rate over a reasonably wide range.

New questions that arise from the model

The model makes it possible to study how bursting behaviour relates to
network connectivity. Mathematically, the network can be described by a
bipartite graphG = {NUB, E}, where N is the set of neurons, B the set of
bundles, and E the set of connections from neurons to bundles such that, for
neuron g in N and bundle b in B, (a, b)¢E if a has a dendrite in b (Figure 12)
The network topology is specified by O = {0}, i=1,...,n,j=1,...,n,, where
0;;=1if neuron 7 has a dendrite in bundle j, and 0;; = 0 otherwise. If dendro-
dendritic connections are formed at random, then O is a random binary
matrix whose rows satisty > 0; = 2. From the graph G = {NUB, E} we can
derive the graphs Gy = {N, Ey} and Gg = {B, Eg} for connections between
the neurons and the bundles respectively. The edge set of Gy, Ey contains all
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Figure 12 How bursting behaviour relates to network connectivity. AThe network
can be described by a bipartite graph, where Nis the set of neurons, B the set of bundles, and
E the set of connections from neurons to bundles such that, for neuron ain N and bundle »
in B, if a has a dendrite in b. From these graph we can derive graphs Gy and Gg for
connections between the neurons and the bundles respectively.For the network to be
collectively activated during a burst it must be connected, i.e. any two neurons must be
connected by some path. B plots the probability that a network of 1000 cells with two
dendrites/cell will be fully connected for different numbers of dendrites per bundle, above
a critical value of about 4.5 the network is almost certainly fully connected. C shows how
the critical value is affected by the number of neurons in the network.

pairs of neurons which share at least one bundle, while the edge set of G, Ep
contains all pairs of bundles which are ‘bridged’ by at least one neuron. For
Gp, the node degrees represent the number of dendrites in the corresponding
bundles, i.e. d; = > 0j,.j=1,...,mp. I the bundles are formed at random, the
latter form a set of identically distributed random variables of mean
d = 2n/n,. The average number of connections formed by each neuron
can then be estimated as 2(d—1).

For the network to be collectively activated during a burst it must be
connected, i.e. any two neurons must be connected by some path. The
probability that the network is connected can be estimated by approximat-
ing Gy (or Gp) with a random graph of same size and average degree; a
random graph of 7 nodes is almost certainly connected if its average degree is
> log n, suggesting that a network of n neurons will be connected if
d > 1 +1ogn. However, the oxytocin network has different topological



22 Chapter 1

properties, so we compared the fraction of connected networks in a sample
of 1000 random networks and 1000 approximating random graphs, with
varying d. For each value of 4 we considered a set of #» neurons and
nj) =2n/ dbundles. Then, for each neuron i we chose (uniformly at random)
two bundles of indices (i,15), i1, =1, ..., 2N/J,, i1iz, and set 0, = 0; = 1.
Finally, bundles with no dendrites were removed from the bundle set. The
result is a graph of # neurons and n, = ng—nf) bundles, where ngf) is the
number of empty bundles. The mean number of dendrites per bundle was
then recomputed as d = 2n/n,. We calculated the average degree of the
resulting network and then generated a random graph with the same
average degree. We confirmed the validity of the approximation with a
network of 1000 neurons (which isabout as many as there are oxytocin cells
in one supraoptic nucleus). Figure 12 plots the critical value of 4 for the
random graph; the predicted value for » = 1000is 4.45. When d is larger than
this, more than 85% of the generated networks are fully connected. This
result is in accord with the empirically observed connectivity of oxytocin
cells (oxytocin cells have 1-3 dendrites in bundles of 3-8 dendrites).

Model topology and wave propagation

The topology of the oxytocin network is important for both the generation
and the synchronization of bursts. The interconnections within bundles,
combined with the excitatory effect of oxytocin, lead to a positive feedback
which sustains burst generation. At the same time, random connections
between bundles reduce the typical path length between any two neurons of
the network, enhancing synchronization.

We studied a network of 384 neurons with dendrites in 96 bundles using a
different, ring topology. Here, neurons are grouped in clusters, those in a
given cluster project to the same two bundles, and each bundle receives
dendrites only from two adjacent clusters, forming a chain-like structure.
This is equivalent to assuming that neurons preferentially contact their
closest neighbours. In this network, bursting is not synchronized; two wave
fronts travel along the network and it takes ~5 s for a burst to be propagated
across the whole network. Figure 11 shows the results in networks with
increasing probability of rewiring p. Starting from the ring topology, we
randomly rewired one dendrite for each neuron with probability p. As the
probability of rewiring increases (i.e. with more random connectivity),
bursts become progressively more synchronized. Thus, the bursting syn-
chronization is sensitive to the network topology, and is observable with a
small-world type topology.

Bursting, spiking and multiscale dynamics
Whereas neurons exchange information mostly via spikes, endocrine
cells rely on hormonal pulses to signal to their target tissues. For many
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neurons, clustered spike activity can be optimally effective in inducing
the required changes on the targets, but for endocrine cells to generate a
signal large enough to be read at a distance, their secretory activity must
not only be optimal for each cell, their activity must also be co-
ordinated; hence peptide hormone signals are generally pulsatile. Many
neurons in the brain produce a peptide as well as a conventional
transmitter, and many peptides have effects on organismal behaviour
that are hormone-like, in that they act at dispersed and distant targets to
produce prolonged organisational changes. For a hormone-like, pulsatile
signal to be produced reliably, the activity of a population of peptide-
secreting neurons must be co-ordinated in a physiologically plastic
manner. In the present model, network interactions are solely mediated
by spikes with interspike intervals less than t..; similar spike doublets
are thought to play a critical role in the synchronization of network
activity in many neural systems.

Limitations of the model

The present model produces a close match to electrophysiological data, and
its strength is the simplicity of the core representation of a single neuron;
this makes it possible to explore how properties of the network, affect the
system behaviour. The simplifications that we made in modelling the reflex
are mainly unlikely to have had any major influence, with two possible
exceptions. First, we have not included intracellular [Ca®*] changes as a
variable, although we know that mobilisation of intracellular Ca**
can trigger dendritic oxytocin release, and therefore probably contributes
to oxytocin release during milk-ejection. Implicitly we assumed that this
overlaps with activity-induced oxytocin release and hence can be
neglected, but in some circumstances oxytocin release triggered by Ca*™
release from intracellular stores might precipitate a burst. Second, we
modelled dendritic release as a relatively common deterministic event.
In fact, dendritic release probably occurs as the relatively rare exocytosis of
large vesicles that each contain a large amount of oxytocin (about 85,000
molecules) — and the release process is likely to be stochastic, with interval
length governing the probability of release rather than determining it.
Whether this will affect the model behaviour substantially remains to be
tested.

stores

Perspectives

The model described here is a “systems level model.” It describes the
behavior of a complex system in a concise way; it does not include repre-
sentations of the full level of detail that is known, but it tests our
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understanding of the ways in which particular qualitative behaviors arise. A
system, in this sense, is just an arrangement of circumstances that makes
things happen in a certain way. We look to model something that has a
defined, and measurable input and output, that are connected by known or
hypothesised rules. This could be a signalling pathway within a single cell,
but often we apply the ‘systems’ tag to things that involve higher level
processing, with multiple components, many of which may be unknown.
The purpose of such modelling can be said to be to generate hypotheses
about the types of processing that take place, and about how it might be
organized.

In this case, the measurable output is the spike activity observed in oxytocin
cells during suckling. These derive from extracellular recordings, so while
we know much about spike generation in oxytocin cells from in vitro
recordings, there islittle to be gained by a fully biophysical model of oxytocin
cells because we have no intracellular recordings of the bursting activity of
oxytocin cells with which to compare the model performance. There is little
point in generating predictions about things that cannot be measured, and
which depend upon assumptions that involve dubious extrapolations from
data derived under conditions that deviate in uncertain ways from the
situation to be modelled.

Even the present model displays outcomes that would have been
hard to predict and are correspondingly hard to explain; the more
detailed a model is, the harder it is to understand why it does what it
does. If the aim of a model is to test the completeness and limitations of
our understanding, it is important to build a model that can be
understood, and amenable to systematic investigation. The more para-
meters that a model has, the harder it is to systematically study its
behavior — and these difficulties increase exponentially with the num-
ber of free parameters. Keeping models simple is essential for making
them useful.

Glossary

The supraoptic nucleus is an aggregation of magnocellular neurosecre-
tory neurons that, on both the left and right side of the brain, islocated at the
ventral surface of the brain directly adjacent to the rostro-lateral edge of the
optic chiasm. The nucleus contains just two types of neuron, oxytocin
neurons and vasopressin neurons, all of which project a single axon to the
posterior pituitary gland.

The Heaviside step function, H, has a value of zero for a negative
argument and one for a positive argument. It is used to represent a signal that
switches on at a specified time and stays on indefinitely.
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The Dirac delta J(x), used to model a tall narrow ‘spike’ function, is zero
everywhere except at x = 0 where its value is infinitely large, so that its total
integralis 1. It can be viewed as the derivative of the Heaviside step function.

Asmall-world networkisa graphin whichmostnodesare notneighbors
ofeachanother, yetmostnodescanbereached fromanyothernodebyasmall
number of steps (i.e. via a short chain of mutual acquaintances).

A bipartite graph is one whose vertices can be divided into two disjoint
setssuch that every edge connects a vertex in one of the sets toa vertex in the
other.

Endocannabinoids are “endogenous cannabinoids”: molecules that
act at specific cannabinoid receptors (in this case CB1 receptors). CB1
receptors are widely expressed in the brain, often on nerve endings.
Cannabinoids are produced in some neuronal populations in response to
raised intracellular calcium, and act on afferent nerve endings that
express these receptors to inhibit transmitter release; cannabinoids are
thus retrograde transmitters.

In vitro preparations here refer to electrophysiological studies of supra-
optic neurons in a hypothalamic slice preparation.

The neurosecretory vesicles are (relatively) large membrane bound
vesicles tightly packed with oxytocin (and other fragments of the precursor
protein from which oxytocin is cleaved). Each contains about 85,000
molecules of oxytocin. The tight packing of the peptides mean that under
the electron microscope, these vesicles have an electron-dense core, and so
these are often referred to as “large dense-cored vesicles” to distinguish them
from the small clear synaptic vesicles in which conventional neurotrans-
mitters, such as glutamate and GABA, are packaged.

Dataset 1

Excel file giving raw data of spike times from thirteen successive milk-ejection
bursts recorded from a single oxytocin cell in a urethane-anaesthetised rat, from
the experiments reported by Dyball and Leng (1987). Each cell entry is the
instantaneous frequency (the reciprocal of the interspike interval for successive
interspike intervals), and each column records a single burst. The yellow areas
highlight pre-burst activity; the bursts are aligned to the first occurrence of an
interspike interval of <100 ms in a long sequence of short intervals.
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