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Fig. 5. Kohonen map where 0= positiveP wave, 1= negative, 2= bi-phase
and 3= double bump.

The proposed asymmetric basis function network was used as the
feature extractor in a problem ofP wave classification with a Kohonen
network [16]. Defining the feature vector as

v =

�1

�2

j�2 � �1j


1


2

(9)

and for a two-dimensional map of5 � 5, the Kohonen network suc-
cessfully clustered the four basic types ofP waves: 0= positive, 1=
negative, 2= bi-phase and 3= double bump signals (Fig. 5).

V. CONCLUSION

A simple neural network with only two asymmetric basis functions
was shown to be an economical feature extractor for ECGP waves.
The radial basis function network is known to be an universal approx-
imator for continuous functions, but it may, eventually, require a large
and variable number of basis functions in order to achieve a prescribed
approximation error, when theP wave is M shaped or is strongly asym-
metric. For this type of signals, the feedforward neural nets also require
a large and variable number of hidden neurons, so that in the context of
P wave classification, the proposed net with only two fixed number of
asymmetric basis function seems to be a convenient feature extractor.

The proposed neural network can also deal with slow variations in
the morphology of the signal with time when the training mechanism
is kept active by the use of a small learning rate.
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The Generalization Error of the Symmetric and Scaled
Support Vector Machines

Jianfeng Feng and Peter Williams

Abstract—It is generally believed that the support vector machine
(SVM) optimizes the generalization error and outperforms other learning
machines. We show analytically, by concrete examples in the one dimen-
sional case, that the SVM does improve the mean and standard deviation
of the generalization error by a constant factor, compared to the worst
learning machine. Our approach is in terms of extreme value theory and
both the mean and variance of the generalization error are calculated
exactly for all cases considered. We propose a new version of the SVM
(scaled SVM) which can further reduce the mean of the generalization
error of the SVM.
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I. INTRODUCTION

Multilayer perceptrons, radial basis function (RBF) networks and
support vector machines (SVMs) are three approaches widely used in
pattern recognition. Compared to multilayer perceptrons and radial-
basis function networks, the SVM optimizes its margin of separation
and ensures the uniqueness of the final result. It seems that SVMs have
become established as a powerful technique for solving a variety of
classification, regression and density estimation tasks [1]. In practical
applications, it is also recently reported that the SVM outperforms con-
ventional learning algorithms [2].

How much does the SVM improve a machine’s generalization capa-
bility? A number of authors have carried out a detailed analysis on the
performance of the SVM [1], [3], [4]. Nevertheless, the exact behavior
of the SVM on generalization remains elusive; all results obtained to
date are upper bounds of the mean of the generalization error (see next
section for a definition).

Here we propose a novel approach in terms of extreme value theory
[5]–[7] to calculate the generalization error of an SVM exactly. Al-
though we confine ourselves to the case of one dimension, the conclu-
sions obtained are illuminating. First the mean and variance (or distri-
bution) of the generalization error are calculated exactly. In the liter-
ature only upper bounds of the mean are estimated. Second, our ap-
proach enables us to go a step further in comparing different learning
algorithms. We assert that the SVM improves both the mean and the
variance of the generalization error by a constant factor. Third, we pro-
pose a new version of the SVM, called thescaledSVM, which can
further reduce the mean of the generalization error. The basic idea of
the scaled SVM is to employ not only the support vectors but also the
means of the classes. The potential advantages are clear. The essence of
the SVM is to rely only on the set of samples which take extreme values,
the so-called support vectors. From the statistics of extreme values, we
know that the disadvantage of such an approach is that the information
contained in most samples (not extreme values) is lost, so that such an
approach is bound to be less efficient than one that takes into account
the lost information.

II. M ODELS

The models we are going to consider are the SVM and the worst
learning machine. For the former, the basic assumption is that learning
depends only on the support vectors, in accordance with maximiza-
tion of the separation margin. For the latter, we only assume that, after
learning, the machine is able to recognize the learned samples cor-
rectly. Unlike most approaches in the literature, where learning ma-
chines with high dimensional inputs are considered, here we consider
only the one-dimensional (1-D) case for the following reasons. First, in
the 1-D case, we can easily carry out a rigorous calculation of the mean
and variance of the generalization error. Second, we can fully under-
stand why and how the SVM outperforms the worst learning machine
and gain insights into how to further improve the generalization capa-
bility of a learning machine.

Let us first introduce the model used here. Suppose that the correct
separating function, or target hyperplane, is sign(�) as shown in Fig. 1.
Suppose that we observet positive examplesx(1); . . . ; x(t) > 0 and
t negative examplesy(1); . . . ; y(t) < 0 and let us write

x(tt) = minfx(i); i = 1; . . . ; tg

for the minimum of the positive examples and

y(tt) = maxfy(i); i = 1; . . . ; tg

Fig. 1. Schematic representation of the SVM (above) and the worst learning
machine (below). The task is to separate the disks (filled) from the circles
(hollow). The true separation is assumed to be given by the dashed vertical
line. After learningt examples, the separating hyperplane for the SVM is at
z(tt) = (1=2)x(tt) + (1=2)y(tt) (above) while the separating hyperplane
for the worst learning machine is atz(tt) = x(tt) (below). The error region,
in either case, is the region between the dashed line and the solid line.

for the maximum of the negative examples. This case is separable so
that the SVM will use the threshold

z(tt) = 1
2
x(tt) + 1

2
y(tt) (1)

for classifying future cases, as shown in the upper part of Fig. 1. A
newly observed� will be said to belong to thex or y populations de-
pending on whether� > z(tt)or� < z(tt). Note thatz(tt) is a random
variable.

Any threshold valuez(tt) lying betweeny(tt) andx(tt) will cor-
rectly classify the data. We call the extreme case

z(tt) = x(tt) (2)

theworst learning machine,where we have chosen the upper endpoint
for definiteness, as shown in the lower part of Fig. 1.

A. Generalization Error

We define thegeneralization errorto be the probability of misclas-
sification. Suppose that� is observed. An error occurs if either

1) z(tt) and� are both positive, but� is less thanz(tt), or
2) z(tt) and� are both negative, but� is greater thanz(tt).

The generalization error�(t) is therefore a random variable

�(t) =P (0 < � < z(tt))Ifz(tt)>0g + P (z(tt) < � < 0)

� Ifz(tt)<0g (3)

whereIA is the indicator function of the eventA, in other wordsIA
has the value 1 ifA occurs and 0 otherwise. The meaning of (3) is that
if z(tt) > 0, the value of�(t) is the probability that� lies between 0
andz(tt); alternatively, ifz(tt) < 0, the value of�(t) is the probability
that� lies betweenz(tt) and 0. In brief, the generalization error�(t) is
the probability of error on the next case, after observing the datax(i)
andy(i) for i = 1; . . . ; t, and assuming that the next case is classified
using the thresholdz(tt).

The generalization error�(t) is a random variable depending on�
and z(tt), wherez(tt) itself depends on the values of thex(i) and
y(i). In the literature theexpectationof �(t) is called the generalization
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error. Here we are able to calculate not only the mean of�(t), but also
its variance etc., so we prefer to call the random variable�(t) itself the
generalization error.

III. SYMMETRIC CASES

Assume first that thex(i) and�y(i) are independently identically
distributed (i.i.d.). This means that the distributions ofx(i) andy(i)
are antisymmetric about the origin. We assume that� has probability
1/2 of having the same distribution as anx(i) and probability 1/2 of
having the same distribution as ay(i). In other words� has an equal
chance of belonging to the two classes.

If the thresholdz(tt) is defined by the SVM formula given by (1),
then bothz(tt) and� have symmetric distributions about the origin.
The two probabilities in the generalization error (3) are therefore the
same, so that�(t) can be written as

�(t) = 1
2
P (j�j < jz(tt)j): (4)

The probability of error must be less than one-half since there can be
no error ifz(tt) is negative and� has a positive distribution, or ifz(tt)
is positive and� has a negative distribution. We now establish results
for the distribution of�(t) in various cases.

A. Uniform Distribution

Suppose that eachx(i) � U(0; 1) is uniformly distributed on[0; 1]
for i = 1; . . . ; t and, similarly, that eachy(i) � U(�1; 0) is uni-
formly distributed on[�1; 0]. Then, by assumption,� isU(�1; 1) so
that, in view of (4) we have

�(t) = 1
2
jz(tt)j: (5)

To calculate the mean and variance of�(t) we first introduce a lemma.1

Lemma 1: Suppose thatx(i) � U(0; 1) are identically and inde-
pendently distributed fori = 1; . . . ; t. Whent ! 1 we have

P x(tt) �
x

t
= exp(�x) (x > 0): (6)

In other words, the distribution density ofx(tt) is t exp(�tx).
Proof: From example 1.7.9 in [5] we know thatP (�(tt) � 1�

x=t) = exp(�x) for �(tt) representing the largest maximum ofx(i).
Then equation (6) is a simple consequence of the symmetry between 1
and 0 of the uniform distribution.

Lemma 1 tells us the asymptotic distribution ofx(tt) whent is suf-
ficiently large. In fact this extreme value distribution is applicable to a
wide class of initial distributions [5] so that our approximation is less
restrictive than might appear. For a given random sequencex(i) we
could calculate its exact distribution rather than its asymptotic distri-
bution, which would provide further information about the behavior in
small samples. Nonetheless, from here on in this section we shall as-
sume that bothx(i) andy(i) are uniformly distributed, which implies
that the distribution of� is also (piecewise) uniform, and we shall use
the approximation given by Lemma 1 for the distributions of the ex-
tremes.

According to (5) the generalization error isjz(tt)j=2. Now

jz(tt)j = z(tt)Ifz(tt)>0g � z(tt)Ifz(tt)<0g

so that, by symmetry, and usingh�i to denote the expected value, we
have

hjz(tt)ji =2 z(tt)Ifz(tt)>0g

= x(tt)Ifx(tt)+y(tt)>0g

1In the following, we use the convention that all terms of orderO(exp(�t))
in an equality are omitted.

+ y(tt)Ifx(tt)+y(tt)>0g : (7)

We can evaluate the two terms in (7) using Lemma 1 as follows. The
first term is

x(tt)Ifx(tt)+y(tt)>0g

= x(tt)
0

�x(tt)

t exp(ty)dy

= hx(tt)(1� exp(�tx(tt)))i

=
1

0

x(1� exp(�tx))t exp(�tx))dx

=
1

t
�

1

4t
=

3

4t
:

The second term is

y(tt)Ifx(tt)+y(tt)>0g

= y(tt)
1

�y(tt)

t exp(�tx) dx

= hy(tt) exp(ty(tt))i

=
0

�1

y exp(ty)t exp(ty)dy

= �
1

4t
:

Hencehjz(tt)ji = 1=2t. Since�(t) = jz(tt)j=2, we have the following
theorem.

Theorem 1: The mean of the generalization error of the SVM is
given by

h�(t)i =
1

4t
:

Although the proof of Theorem 1 is straightforward, it is very inter-
esting to see the implications of its conclusion. In the literature, dif-
ferent upper bounds for the mean of the generalization error of the SVM
have been found (see, for example, [3]). However, it seems that the re-
sult of Theorem 1 is the first derivation of the exact value of the mean.

It is generally believed that the generalization error of the SVM is
improved relative to other conventional learning rules. By how much
is it improved? We answer in the following theorem.

Theorem 2: For the worst learning machine, the mean of the gener-
alization error is given by

h�(t)i =
1

2t
:

Proof: For the worst learning machine we havez(tt) = x(tt) so
that the second term in (3) vanishes. In that case

�(t) = P (0 < � < x(tt)) = x(tt)=2

assuming� isU(�1; 1). The result then follows from Lemma 1. Note
that the same result would follow if we chosez(tt) = y(tt) as the worst
learning machine, or if we chose eitherx(tt) or y(tt) at random.

It is well known in the literature that the mean of the generalization
error of a learning machine decays at a rate ofO(1=t) independently of
the distribution of input samples. The mean of the generalization error
of both the SVM and the worst learning machine is of order1=t as we
should expect. The illuminating fact here is that the SVM improves the
mean of the generalization error by a factor of two compared with the
worst learning machine. We should emphasize that the conclusion in
Theorem 2 is independent of distributions, i.e., the generalization error
of the worst learning machine is universally1=2t (see Lemma 3 in [7]
for a proof). Nevertheless, for the SVM, the conclusion in Theorem
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Fig. 2. Figure showing the exact distribution of the generalization error�(t)
for t = 5. The distribution is concentrated on the interval0 � x � 0:5. The
distribution for the SVM has density4t(1 � 2x) assuming exponential
distributions for the underlying variables. The distribution for the worst learning
machine has density2t(1� 2x) .

1 is obtained using the assumption of a uniform distribution of input
samples. For any given distribution, we could calculate its mean gen-
eralization error as developed in Theorem 1. For example, the exact
mean generalization error for the symmetric uniform case is in fact
t=2(2t+ 1)(t+ 1) � 1=4t and for the exponential distribution men-
tioned below it is1=2(2t+ 1) � 1=4t. The key and most challenging
question is whether this conclusion is universal, i.e., independent of
input distribution, or not. A detailed analysis is outside the scope of the
present letter and we will report it in [8].

The generalization error of the SVM is often expressed in terms of
the separation margin. We can do so here as well. Denote the separation
margin byd = x(tt) � y(tt).

Theorem 4: The mean of the generalization error of the SVM is

h�(t)i =
hdi

8
:

Proof: Sincehx(tt)i = h�y(tt)i = 1=t, the conclusion follows
from Theorem 1.

B. Variance

So far we have shown how the SVM improves performance in terms
of the mean of the generalization error. How does thevarianceof the
generalization error of the SVM compare with conventional learning
rules? We have the following results.

Theorem 4: For the worst learning machine the variance of the gen-
eralization error�(t) is

var(�(t)) =
1

4t2
:

For the SVM the variance is

var(�(t)) =
1

16t2
:

Proof: From the proof of Theorem 2, we know that
�(t) = x(tt)=2 for the worst learning machine, so that the result fol-
lows from Lemma 1. For the SVM we have�(t) = jx(tt) + y(tt)j=4.
Now

hjx(tt) + y(tt)j2i

= hx(tt)2i+ 2hx(tt)ihy(tt)i+ hy(tt)2i

= var(x(tt)) + var(y(tt))

+ (hx(tt)i+ hy(tt)i)2

= var(x(tt)) + var(y(tt)) = 2=t2

Fig. 3. Graph of2th� (t)i as a function of� in the case� = 0:2 and� = 0:8.

where we have used the symmetry of the distributions ofx(tt) and
�y(tt) to sethx(tt)i+ hy(tt)i = 0, and Lemma 1 to obtain the vari-
ances. Henceh�(t)2i = 1=8t2. Since the variance ish�(t)2i � h�(t)i2

andh�(t)i = 1=4t, the result follows.
Theorem 4 implies that the SVM also improves the standard devia-

tion of the generalization error by a factor of two compared with the
worst leaning machine. It seems that results on var(�(t))have not previ-
ously been reported in the literature. We could go further and calculate
the exact distribution of the generalization error. For example, Fig. 2 il-
lustrates the distribution of the generalization error for the SVM and the
worst learning machine. For the SVM, suppose that thex(i) andy(i)
are positively and negatively exponentially distributed, so that� has a
Laplace distribution. Then it can be shown that2�(t) has a power-func-
tion distribution with density2t(1 � x)2t�1 whereas, for the worst
learning machine,2�(t) always has a power-function distribution with
densityt(1� x)t�1. Fig. 2 shows the two distributions for�(t) in the
caset = 5.

IV. NONSYMMETRIC CASES

In the previous section we considered the SVM with symmetric input
distributions. Certainly we do not expectx(i) and�y(i) to be iden-
tically distributed in practical problems. In this section we therefore
assume that eachx(i) � U(0; a) and eachy(i) � U(�b; 0) where
a; b > 0. According to Lemma 1, the limiting distributions ofx(tt)
andy(tt) now have densities(t=a) exp(�tx=a) and(t=b) exp(ty=b),
respectively. Correspondingly the distribution of� has constant density
1=2a on the interval(0; a) and1=2b on the interval(�b; 0).

In the nonsymmetric case it is not obvious where the optimal sepa-
rating hyperplane should lie. We therefore consider the general case of
a threshold

z�(tt) = �x(tt) + �y(tt) (�+ � = 1): (8)

Since this always lies betweeny(tt) andx(tt), any such threshold will
correctly classify the data. The worst learning machines correspond to
� = 0 and� = 1 and the SVM corresponds to� = 1=2.

The generalization error (3) is now given by

��(t) =
1

2a
(�x(tt) + �y(tt))If�x(tt)+�y(tt)>0g

�
1

2b
(�x(tt) + �y(tt))If�x(tt)+�y(tt)<0g: (9)

We can evaluate the expectations of the four components on the right
to obtain

x(tt)If�x(tt)+�y(tt)>0g =
a

t
1�

�b

�a+ �b

2
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y(tt)If�x(tt)+�y(tt)>0g =�
b

t

�a

�a+ �b

2

x(tt)If�x(tt)+�y(tt)<0g =
a

t

�b

�a + �b

2

y(tt)If�x(tt)+�y(tt)<0g =�
b

t
1�

�a

�a+ �b

2

:

Using these expressions with (9) and simplifying we have

h��(t)i = 1

2t

�2�+ �2�

�� + ��
(10)

where� = a=(a+ b) and� = b=(a+ b), so that�+� = �+� = 1.
Fig. 3 shows the expression in braces, namely2th��(t)i, as a function
of � for � = 0:2 and� = 0:8 (for example,a = 1, b = 4).

We make the following comments, the first three of which follow
directly from inspection of (10).

1) For� = 0 or � = 1 we have the worst learning machine with

h�0(t)i = h�1(t)i = 1

2t
:

As mentioned before, this is a universal result and hence inde-
pendent of the relative scaling of the input distributions.

2) For� = 1=2 we have the conventional SVM with

h�1=2(t)i = 1

4t
:

It is interesting that this result, which was proved in Theorem 1
for the symmetric case, is independent of the scaling of the input
distributions. The same independence applies to the variance. We
prove a general result independent of input distributions in [8].

3) For� = �, where the interval betweeny(tt) andx(tt) is now
divided in the inverse ratio of the two scales, we have the same
value for the expected generalization error as for the symmetric
SVM, namely

h��(t)i = 1

4t

and again this is independent of the scaling of the input distribu-
tions. The variance, however, is increased.2

4) The minimum of (10) in fact occurs at

�� =

p
�p

�+
p
�

(11)

and for� = �� we have

h�� (t)i = 1

4t
1�

p
��p

�p
�+

p
�

2

(12)

which is less than1=4t. For example, in the case of Fig. 3 where
� = 1=5 and� = 4=5, we have�� = 2=3 andh�� (t)i = 2=9t.
In this case the improvement over the symmetric SVM is more
than 10%. The variance is also decreased. At� = �� we have

var(�� (t)) =
1

16t2
1�

p
��p

�p
�+

p
�

4

(13)

which is less than1=16t2. Note that both the mean and variance
tend to zero as� or � tend to 0 or 1.

We call the machine corresponding to� = �� thescaledSVM.

A. Implementation of the Scaled SVM

Implementation of the scaled SVM requires an estimate of the ratio
�=� of the scales of the two input distributions. A simple implemen-
tation is as follows. Assume thatA1 andA2 are the data to be learned
(see Fig. 4).

2For � = � the variance is[1 + (2� � 1) ]=16t which is greater than
1=16t unless� = 1=2.

Fig. 4. The scaled SVMs (thick solid line) can further improve the mean of
the generalization error of the SVMs (thick dashed line).s is based on an
estimator� of the quantity� defined by equation (11).

1) Use the usual SVM algorithm to obtain the separating hyperplane
s1.

2) Calculate the mean of the distances froms1 to the points inA1,
and the mean of the distances froms1 to the points inA2. Denote
these distances byd1 andd2, respectively.

3) In parallel with the hyperplanes1, find a new hyperplanes2 so
that

c1
c2

=
d1
d2

(14)

wherec1 andc2 are the distances froms2 to the nearest points
in A1 andA2, respectively. We calls2 the separating hyperplane
of the scaled SVM.

Under the assumptions described in the previous section,d1=d2 is
an asymptotically unbiased estimator of�=�. The algorithm therefore
implements the machine based on� = �� for large samples.3

The fact that the scaled SVMs2 improves the mean of the general-
ization error ofs1 is easily understood. The SVM only uses information
contained in the support vectors, whereas the scaled SVM uses infor-
mation from the whole data set, since first moments of the two classes
are also taken into account.

V. DISCUSSION

We have presented a novel approach to the calculation of the exact
mean and variance of the generalization error of the SVM and the worst
learning machine. Estimation of upper bounds for the SVM is currently
a very active topic. Our results show, for the first time, how much the
SVM improves the generalization error, compared with other learning
algorithms. Although we have considered a very simple case here, our
results may be used as a criterion to check the tightness of estimated
upper bounds of general cases (see [3], [4], and references there).

Extreme value theory is somewhat similar to the central limit the-
orem; it is a powerful and universal theory almost independent of the
sample distributions (compare [5]–[7]). We hope the techniques intro-
duced here may help to clarify some issues related to the SVM. Some
issues we intend to pursue are the following. 1) We have only consid-
ered here the case of one dimension. It will be interesting to consider
the models of higher dimension. We shall report results elsewhere [8].
2) Extreme values are more sensitive to perturbations than other sta-
tistical quantities such as the mean or median of samples. It will be
interesting to study how the SVM depends on perturbations.
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Relaxation of the Stability Condition of the Complex-Valued
Neural Networks

Donq Liang Lee

Abstract—Jankowski et al.have proposed a complex-valued neural net-
work (CVNN) that is capable of storing and recalling gray-scale images.
However, the weight matrix of the CVNN must be Hermitian with nonneg-
ative diagonal entries in order to preserve the stability of the network. The
Hermitian assumption poses difficulties in both physical realizations and
practical applications of the networks. In this letter, a new stability condi-
tion is derived. The obtained result not only permits a little relaxation on
the Hermitian assumption of the connection matrix, but also generalizes
some existing results.

Index Terms—Asynchronous update mode, complex-valued neural net-
works, energy function.

I. INTRODUCTION

Conventional neural networks are usually based on two-state neu-
rons, i.e., the states of the networks are usually bipolar (1 and�1) or
binary (1 and 0). Although such representations are widely used in en-
gineering applications for their simplicity, multivalued representation
[4] is a much relevant and direct approximation to real-world data. In
[1] the authors proposed a complex-valued neural network (CVNN)
which is capable of storing and recalling gray-scale images. The CVNN
is composed of fully connected multistate complex-valued neurons and
the information representation is based on amplitude and phase coding.
It can be referred to as a modified Hopfield network [2], [3] having
complex-signum activation functions and complex weighting connec-
tions. Since the weight (connection) matrix is constructed by the gen-
eralized Hebb rule, the capacity of original CVNNs [1] is low. By using
the gradient descent technique, an improved learning rule has been pro-
posed for CVNNs [5]. However, all previous studies on CVNNs as-
sumed that the weight matrix is Hermitian with nonnegative diagonal
entries. The Hermitian assumption poses difficulties in both physical
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realizations and practical applications of the networks [7], [8]. First, it
is almost impossible to implement the hardware network precisely con-
serving symmetry or antisymmetric connections because this requires
that two physical quantites (such as resistances or the gains of ampli-
fiers) beexactlyequal [9]. Second, asymmetric weight matrices will
allow a wider variety of dynamics behaviors in neural networks, such
as trajectory attractors and cycles of finite lengths [10]. These raise the
importances of relaxing the Hermitian assumption of the CVNNs.

In this letter, the concept of CVNNs is briefly reviewed. Then, a new
condition ensuring convergence of the CVNN in asynchronous mode
is derived. The validity of the obtained result is demonstrated by an
example.

II. BACKGROUND

CVNN is an autoassociative memory that stores com-
plex-valued prototype vectorsXk, k = 1; . . . ; m, where
Xk = (xk1 ; x

k
2 ; . . . ; x

k
N )T and m is the number of the proto-

type vectors. The componentsxki s are all quantization values defined
by

xki 2 exp[i2�v=K]K�1v=0 i = 1; . . . ; N: (1)

The resolution factorK divides the complex unit circle intoK quan-
tization levels so thatjxki j = 1 8 i; k. Them prototype vectors are
stored in the weight matrix according to the generalized Hebb rule [1]

sij =
1

N

m

k=1

xki x
k
j i; j = 1; . . . ; N (2)

wherexkj denotes the complex conjugate ofxkj . Let X 2 N de-
notes the state of the CVNN. The asynchronous recalling process of
the CVNN is determined by the following equation:

x0i =

N

j=1

sijxj (3)

in whichxi is theith component ofX; x0i denotes the next state ofxi.
Moreover,�(�) is a complex-signum function

�(Z)

=

exp(i0) 0 � arg Zei(� =2) < �0

exp i
2�

K
�0 � arg Zei(� =2) < 2�0

...

exp i
2�(K � 1)

K
(K � 1)�0 � arg Zei(� =2)

< K�0
(4)

where arg(�) is the phase angle of�, �0 is a phase quantum delimited
by K: �0 = 2�=K. Equation (4) means that�(Z) is the quantiza-
tion value on the complex unit circle closest toZ. The process (3) is a
stochastic process that starts with an initial vectorX0 presented to the
network. Then neuron states are updated one at a time by following (3)
with equal probabilities. In [1] the authors proved that the process (3)
converges to one of the fixed pointsXf in a finite number of iterations
if the matrixS = [sij ] is Hermitian with nonnegative diagonal entries

sii � 0; 8 i: (5)

Obviously, a stored vector can be recalled only if it is a fixed point. If
this is true the CVNN can be referred to as a multivalued associative
memory. Since the connection matrix is constructed by the generalized
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