
Comparing data assimilation filters for parameter
estimation in a neuron model

Nicola Politi
Department of Mathematics

Università degli Studi di Torino
and Politecnico di Torino

Torino (TO), Italy
Email: nicola.politi@polito.it

Jianfeng Feng
Centre for Computational Systems Biology
Fudan University, Shanghai 200433, China

and Department of Computer Sciences
The University of Warwick

Coventry, UK
Email: jff@fudan.edu.cn

Wenlian Lu
School of Mathematical Sciences

Centre for Computational Systems Biology
Fudan University, Shanghai, China

Email: w.l.lu@ieee.org

Abstract—Data assimilation (DA) has proved to be an effi-
cient framework for estimation problems in real-world complex
dynamical systems arising in geoscience, and it also initially
showed its power to computational neuroscience. The ensemble
Kalman filter (EnKF) is believed to be a powerful tool of DA in
practice. In comparison to the other filtering methods of DA, such
as the bootstrap filter (BF) and optimal sequential importance
re-sampling (OPT-SIRS), it is more convenient and efficient to
be implemented in a parallel way but with a theoretical flaw
of Gaussian assumption. In this paper, we apply the EnKF to
the estimation and prediction of a single computational neuron
model with 10 parameters and conduct a comparison study of
these three DA filtering methods on this model. It is numerically
shown that the EnKF presents the best performance in both
accuracy and computation load. We argue that the EnKF will
be a promising tool in the large-scale DA problem occurring in
computational neuroscience with experimental data.

I. INTRODUCTION

The last few decades have witnessed the fast increasing
interest in computational neuroscience, which heavily depends
on the biophysical modeling of neurons initiated by the
pioneering work by Hodgkin and Huxley [1]. So far, single
neuron models are coupled into neuronal networks, which have
been widely applied to describing, for instance, realistic hip-
pocampal [2] and neocortical microcircuitry [3]. Nevertheless,
most of these works are qualitative rather than quantitative,
because techniques for experimental parameter assessing are
still extremely invasive. Also, models still cannot be fine-tuned
to given neuronal-population-specific data owing to the larger
number of parameters occurring in these models. This is hardly
treated by ordinary parameter estimation techniques.

Recently, an intuitively-simple and novel technique, named
data assimilation (DA), has been widely employed to embed
experimental data into mathematical models. In particular DA
proved to be successful in a lot of complex realistic systems,
such as weather forecasting [4], oceanography [5] and hydrol-
ogy [6]. This technique is a direct realization of the standard
Bayesian inference procedure, and it works comparing data
simulated by models to real data. A lot of works can be found
in developing and improving parameter estimation techniques
of DA [7]–[9]. For more details, please refer to the textbooks
[10], [11].

Only recently this method has been applied in the field of
computational neuroscience to estimate model parameters. The
bootstrap filter, also named self-organized state-space model
[12], was used in parameter estimation of neuronal model
[13]. Variational calculus, also termed 4DVAR in DA [14],
was employed too [15]–[17]. Still, at our best knowledge the
classic ensemble Kalman filter has not been applied to this
field yet. In this paper, we present a numerical comparison
and evaluation of the performance of three types of DA filters,
the ensemble Kalman filter (EnKF), the bootstrap filter (BF)
and its modified version, the optimal sequential importance
re-sampling (OPT-SIRS), as well as the variational calculus
method. This comparison is carried out in order to find the
best method of DA in the task of estimating parameters in a
neuronal model.

II. BAYESIAN DATA ASSIMILATION

Generally speaking, data assimilation aims at describing a
physical system by a data-tuned mathematical model. Consider
the following discrete-time stochastic dynamical model{

zj+1 = gj(zj) + εj , ∀j ∈ {0, . . . , J − 1},
z0 ∼ p(z0).

(1)

Here, for j ∈ {0, . . . , J}, zj ∈ Rd stands for the state
variable of the model dynamics and gj : Rd −→ Rd is the
forward map at time step j (note that the dynamics is time-
dependent); {εj}J−1

j=0 is a sequence of random variables (r.v.)
mutually independent and identically distributed (i.i.d) with
ε0 ∼ N (0,Σ); z0 is the random initial condition with a given
probability distribution p(z0), independent of the noise. Thus,
one can conclude that {zj}Jj=0 forms a discrete-time Markov
chain with the transition density function (p.d.f.)

p(zj+1 | zj) ∝ exp
(
− 1

2
|zj+1 − gj(zj)|2Σ

)
, (2)

where | · |A := |A−1 · | is the A-induced norm on Rd for a
positive-definite symmetric matrix A ∈ Rd×d. The density of
zj+1, p(z0:j+1) = p(zj+1 | zj)p(zj | zj−1) · · · p(z0), is named
prior distribution.

Let the data set {yj+1}J−1
j=0 = {y1, . . . , yJ} ⊆ Rq be a noisy

observation of the state variable {zj}Jj=0:

yj+1 = H(zj+1) + ηj+1, j ∈ {0, . . . , J − 1}. (3)

Here H(·) is a linear function from the state space Rd to
the data space Rq; the measurement noise process {ηj+1}J−1

j=0

is a i.i.d. sequence with η1 ∼ N (0,Γ) independent of both
the initial condition z0 and the dynamical noise {εj}Jj=0. It is
called likelihood the conditional density function

p(yj+1 | zj+1) ∝ exp
(
− 1

2
|yj+1 −H(zj+1)|2Γ

)
. (4)

In Bayesian DA, the likelihood is used in order to drive an
uncertain stochastic dynamics towards an indirect empirical
measure of such process.

The estimation, also named posterior distribution, is com-
puted by by the Bayes’ theorem, p(z | y) ∝ p(y | z)p(z).
There are generally two classes of Bayesian DA algorithms
depending on what variable Bayes’ theorem is applied to.
The first one is filtering, which updates the posterior filter-
ing distribution at each time j + 1, p(zj+1|y1, . . . , yj+1),
only using the preceding time step j, p(zj |y1, . . . , yj). We
henceforth use the shorthand notation y1:j = {y1, . . . , yj}
and z0:j = {z0, . . . , zj}. The filtering update is typically per-
formed in the following two-steps procedure. At the first step,
named prediction step, the filtering distribution is pushed-
forward in time only relying on model dynamics, i.e.

p(zj+1 | y1:j) =

∫
p(zj+1 | zj)p(zj | y1:j). (5)

This results in the predicted distribution p(zj+1 | y1:j). At
the second step, named analysis step, the filtering distribution
p(zj+1 | y1:j+1) is computed by multiplying the predicted
distribution times the likelihood, i.e.

p(zj+1 | y1:j+1) ∝ p(yj+1 | zj+1)p(zj+1 | y1:j).

according to the Bayes’ theorem. These two steps run itera-
tively.

On the other hand, smoothing methods aim at approximat-
ing the posterior smoothing distribution p(z0:J | y0:J). The
marginal of the smoothing distribution is

p(zj | y0:J) =

∫
p(z0:J | y0:J)dz0 · · · dzj−1dzj+1 · · · dzJ

and it fully characterizes the posterior distribution at time j.
In what follows we describe in detail three filtering algo-

rithms, namely the EnKF, the BF, and the OPT-SIRS, and
briefly present minAone, a smoothing method.

Ensemble Kalman filter

The EnKF is an approximate Guassian filter, which gen-
eralizes the linear Kalman filter [18] to non-nonlinear and
non-Gaussian problems. In the prediction step, the EnKF
draws N ∈ N independent samples of the dynamical noise
ε(n) and use them to build the predicted ensemble {ẑ(n)

j+1}Nn=1

through model dynamics (1). Then, the ensemble covariance

Ĉj+1 is used to update the filtering ensemble {z(n)}Nn=1 by
implementing a Kalman-filter-type analysis step.

The complete EnKF algorithm is as follows.
Step 0) Initialization: draw the initial ensemble by indepen-

dently sampling N particles from the initial distribution p(z0):
for n = 1, . . . , N , draw N initial values z(n)

0 ∼ p(z0).
Then, for time points j = 0, . . . , J − 1 apply:
Step 1) Prediction step: build the predicted ensemble and

compute its empirical covariance matrix,

For n = 1, . . . , N :
draw ε(n) ∼ N (0,Σ),

set ẑ
(n)
j+1 = gj(z

(n)
j) + ε

(n)
j .

Set m̂j+1 = 1
N

∑N
n=1 ẑ

(n)
j+1,

Ĉj+1 = 1
N−1

∑N
n=1(ẑ

(n)
j+1 − m̂j+1)(ẑ

(n)
j+1 − m̂j+1)T

Step 2) Analysis step: compute the EnKF filtering ensemble,

Set Sj+1 = HĈj+1H
T + Γ,

Kj+1 = Ĉj+1H
TS−1

j+1.

For n = 1, . . . , N :
draw η(n) ∼ N (0,Γ),

set y
(n)
j+1 = yj+1 + η

(n)
j+1,

z
(n)
j+1 = ẑ

(n)
j+1 +Kj+1(y

(n)
j+1 −Hẑ

(n)
j+1).

Bootstrap filter
The BF is a particular version of the particle filter [19],

which introduces a particle ensemble to approximate the filter-
ing distribution p(zj+1|y1:j+1) by the Monte Carlo estimator

p(zj+1|y1:j+1) ≈ µNj+1(zj+1) :=

N∑
n=1

w
(n)
j+1δz(n)

j+1
.

Here, δ
z
(n)
j+1

stands for the Dirac delta function centered

on z
(n)
j+1 and w

(n)
j+1 is the corresponding importance weight

quantifying the probability of particle z
(n)
j+1. In the predic-

tion step, the ensemble particles z
(n)
j are pushed-forward

in time by sampling the importance sampling distribution
π(zj+1 | z(n)

j , y1:j+1) = p(zj+1 | z(n)
j), which yields to the

proposed ensemble {ẑ(n)
j+1}Nn=1. In the analysis step, the im-

portance weights are updated using the likelihood (4). This
generates the following algorithm.

Step 0) Initialization: initialize the BF filtering distribution:
for n = 1, . . . , N , draw z

(n)
0 ∼ p(z0) and set µN0 (z0) =∑N

n=1
1
N δz(n)

0
. Then, for j = 0, . . . , J − 1 apply:

Step 1) Prediction step: update the ensemble particles
according to the prior (2),{

For n = 1, . . . , N :

draw ẑ
(n)
j+1 ∼ p(zj+1 | z(n)

j).

Step 2) Analysis step: update the ensemble weights and set
the predicted filtering distribution at time j + 1,

For n = 1, . . . , N :

set ŵ
(n)
j+1 =

p(yj+1|ẑ(n)
j+1)∑N

n=1 p(yj+1|ẑ(n)
j+1)

.

Set µ̂Nj+1(zj+1) =
∑N
n=1 ŵj+1δẑ(n)

j+1
.

(6)

Step 3) Re-sampling: re-sample and set the BF filtering
distribution at time j + 1

For n = 1, . . . , N :

draw z
(n)
j+1 ∼ µ̂Nj+1(zj+1).

Set µNj+1(zj+1) =
∑N
n=1

1
N δz(n)

j+1
.

It was proved that the Monte Carlo estimator µNj+1(zj+1)
converges to the true posterior distribution under some hypoth-
esis (see [11, Ch. 4] and references therein) and it is well-
posed, i.e. Lipschitz-continuous with respect to the data set
y1:J in some probability metrics ([11, Ch. 2]).

Optimal sequential importance re-sampling

Different particle filters are obtained if a different impor-
tance sampling distribution is chosen. Here we present the
case

π(zj+1 | z(n)
j , y1:j+1) = p(zj+1 | z(n)

j , yj+1), (7)

which results in the optimal sequential importance re-sampling
(OPT-SIRS). Its name is due to the fact that this choice
minimizes the variance of the ensemble weights w(n)

j+1 condi-
tional upon sample z(n)

j and data y1:j+1 (see [20] for further
details). With this optimal definition of importance sampling
distribution, the importance weight updating in (6) becomes

ŵ
(n)
j+1 = w

(n)
j p(yj+1 | z(n)

j). (8)

The complete OPT-SIRS algorithm is
Step 0) Initialization: initialize the OPT-SIRS filtering

distribution: for n = 1, . . . , N , draw z
(n)
0 ∼ p(z0) and set

µN0 (z0) =
∑N
n=1

1
N δz(n)

0
. Then, for j = 0, . . . , J − 1 apply:

Step 1) Prediction step: update the ensemble particles
according to the optimal importance distribution (7)

Set Σ̂ = (Σ−1 +HTΓ−1H)−1.
For n = 1, . . . , N :

set m̂(n) = Σ̂
(
HTΓ−1yj+1 + Σ−1gj(z

(n)
j)

)
,

draw ẑ
(n)
j+1 ∼ N (m̂(n),Σ)

Step 2) Analysis step: update the ensemble weights and set
the proposed filtering distribution at time j + 1

For n = 1, . . . , N :

set ŵ
(n)
j+1 = exp

(
− 1

2 |yj+1 −Hgj(z(n)
j)|2Γ+HΣHT

)
.

Normalize ŵ
(n)
j+1 so that

∑N
n=1 ŵ

(n)
j+1 = 1.

Set µ̂Nj+1(zj+1) =
∑N
n=1 ŵ

(n)
j+1δẑ(n)

j+1
.

Step 3) Re-Sampling: re-sample and set the OPT-SIRS
filtering distribution

For n = 1, . . . , N :

draw z
(n)
j+1 ∼ µ̂j+1(zj+1).

Set µNj+1(zj+1) =
∑N
n=1

1
N δz(n)

j+1
.

MinAone

MinAone [21] is an annealing implementation of the vari-
ational calculus method 4DVAR. This smoothing algorithm
performs data assimilation by minimizing the negative-log-
probability cost function A(z1:J ; y1:J) = − log(p(z1:J | y1:J))
(also called action). Global minima of the action (which
is nonlinear in general) are indeed peaks of the posterior
distribution, i.e. the modes of the smoothing distribution. In
the present paper, we do not delve further into its details but
just mention that it numerically minimize the cost function
running several instances of the publicly available optimization
program IPOPT [22]. We refer to [14] for further details on
4DVAR.

III. PARAMETER ESTIMATION IN NEURON MODEL WITH
TWIN EXPERIMENT

In this paper we consider a two-dimensional neuronal model
[23]

CV̇ = −gKa(V − EK)− gNab∞(V)(V − ENa)
−gL(V − EL) + Iext(t)

ȧ = a∞(V)−a
τa

,

,

(9)

defined for t ∈ [0, Tf], where V is the membrane potential
and the ionic-channel activation variable a represents the
opening probability of the trans-membrane potassium channel.
Parameters of this model include the membrane capacity C
and the time scale constant τa, the maximal conductance of
the potassium, sodium and of the leakage ionic current (gK ,
gNa and gL respectively), and the corresponding equilibrium
potential EK , ENa and EL. Besides,

a∞(V) =
1

1 + exp
(

(V
(a)
1/2 − V)/K(a)

) , (10)

where K(a) is a steepness parameter and V
(a)
1/2 is such that

a∞(V
(a)
1/2) = 0.5; b∞(V) satisfies a functional relation analo-

gous to (10) with corresponding parameters V (b)
1/2 and K(b).

Iext(t) is a preassigned time-dependent externally-applied
current, which is assumed to be a piece-wise constant function,
i.e.

Iext(t) =


I1 t ∈ [0, T (1))

Ii t ∈ [T (i−1), T (i)), i = 2, ..., imax

Iimax t ∈ [T (imax), Tf],

where the jump time point set {T (i)}imax
1 is a Poisson process

with a given rate λ, i.e. E[T (i+1) − T (i)] = 1/λ. The
corresponding step-current values {Ii}imax

1 are modeled as
an i.i.d. random sequence with uniform distribution over the
interval [Ilow, Iupp].

Model dynamics

Our task is to estimate both the parameter vector θ =(
gNa, ENa, gK, EK, gL, EL,K

(a), V
(a)
1/2 ,K

(b), V
(b)
1/2

)T
and the

state variable x = (V, a)T . Parameters C and τa are assumed

TABLE I
TRUE PARAMETER VALUES AND UNIT MEASURE

θ† True Value Unit
gNa 20 mS/cm2

ENa 60 mV
gK 10 mS/cm2

EK -90 mV
gL 8 mS/cm2

EL -78 mV

V
(b)
1/2

-20 mV

K(b) 15 mV

V
(a)
1/2

-45 mV

K(a) 5 mV

τa 1 ms
C 1 µF/cm2

to be fixed and known, and their value is henceforth set to be
as in TABLE I. To apply the DA algorithms, the parameter
vector θ is regarded as a state variable with dynamic equation
θ̇ = 0 [12]. System (9) becomes a discrete-time dynamics
by applying a numerical integration scheme over a time mesh{
tj
}J
j=0

. The parameters and state variables are then turned
into random processes by considering the presence of an
additive random noise in the model dynamics, which describes
the impreciseness of the models. Hence, we have the following
model dynamics for (xj , θj)

T{
xj+1 = fj(xj , θj) + εX,j

θj+1 = θj + εθ,j ,
, (11)

for j ∈ {0, . . . , J − 1}. Note that
• xj and θj are the discrete-time approximate (and noisy)

value corresponding to x(tj) and θ(tj) respectively;
• fj : RdX×Rdθ −→ Rm represents the discrete version of

vector field (9) obtained by applying a given numerical
integration method. Since the neuron model’s vector field
is non-autonomous, fj is a time-dependent map invoking
the correct values of the input current Iext(tj) (depending
on the chosen numerical algorithm).

• the dimension of variables component xj is dX = 2 and
the dimension of parameter component θj is dθ = 10;

• {εX,j}J−1
j=0 and {εθ,j}J−1

j=0 are two mutually indepen-
dent sequences of i.i.d. random variables with εX,0 ∼
N (0,ΣX) and εθ,0 ∼ N (0,Σθ).

Also, we set the initial condition to be a Gaussian r.v.{
x0 ∼ N (mX,0, CX,0)

θ0 ∼ N (mθ,0, Cθ,0),

where mX,0 and mθ,0 are the variables and parameter compo-
nent of the initial mean, respectively, whereas CX,0 and Cθ,0
are the corresponding covariance matrices.

Along with system (11), we are given a set of noisy
observation {yj+1}J−1

j=0 linked to the state variable through
the data model

yj+1 = HXxj+1 +Hθθj+1 + ηj+1.

Here, HX : RdX −→ Rq and Hθ : Rdθ −→ Rq are linear
operators (i.e. a q × dX and q × dθ matrix, respectively) and
{ηj+1}J−1

j=0 is a i.i.d. sequence with η1 ∼ N (0,Γ). Since
parameters cannot be directly observed Hθ is set to be a dθ×dθ
matrix with zero-entries.

Twin experiment design

The objective of this paper was to estimate both membrane
potential V and activation variable a as well as parameter
values of the neural model (9) in a twin experiment setting
as in [15]. In twin experiments, instead of using experimental
recording, noisy data are generated from the same mathemati-
cal model which is then used to perform data assimilation. This
guarantees a controlled environment where only DA method
performance is tested rather than specific model-dynamics
suitability for a given data set.

In order to produce the data set, we firstly fixed the external
current Iext(t) by drawing a single instance of {T (i)} and
{Ii} with λ = 1 ms−1 and Ilow = −5µA/cm2 and Iupp =
40µA/cm2. Then, we also set the true parameter vector θ† to
have the entries listed in TABLE I. We finally used a fourth-
order Runge-Kutta method to solve the system of ordinary
differential equations (9) over the time mesh

{
tj
}J
j=0

, where
tj = j ·∆t, ∆t = 0.01 ms, and Tf = tJ = 500 ms. The
initial condition was set to be

(
V (0), a(0)

)T
=
(
V †0 , a

†
0

)T
,

where V †0 = −64 mV and a†0 = a∞(V †0). In what follows
we call true trajectory the resulting approximate solution and
write {x†j} = {(V †j , a

†
j)
T }Jj=0.

A data set {yj+1}J−1
j=0 was produced by drawing a single

instance of the measurement noise {ηj+1}J−1
j=0 with standard

deviation Γ1/2 = 1 mV, and setting

yj+1 = V †j+1 + ηj+1.

This corresponds to set q = 1 and HX = (1, 0).
Filtering methods illustrated in Bayesian Data Assimilation

section were applied to system (11) with time window length
J = 50000, sample size N = 2000 and components of the
initial condition mean mX,0 = (V †0 , a

†
0)T and mθ,0 = θ†.

The forward map fj was built by applying to system (9)
the same fourth-order Runge-Kutta method we used to gen-
erate the data set. Initial covariance matrices were set to
be CX,0 = diag(25 mV2, 0.1) and Cθ,0 = 25Udθ (units as
in TABLE I), where in general Uα stands for the α × α
unit matrix with ones on the principal diagonal and zeros
elsewhere. Random dynamical noises of the BF and the OPT-
SIRS were designed to have the same covariance matrices
Σ0,X = 10−4 UdX and Σ0,θ = 10−5 Udθ , whereas for the
EnKF ΣX = 10−6 UdX and Σθ = 10−6 Udθ .

The ensemble Kalman filter, the bootstrap filter and the
optimal sequential importance re-sampling were implemented
in MATLAB R© (2015b, The MathWorks Inc., Natick, Mas-
sachusetts). Results described in the following section were
obtained by running one hundred instances of every filtering
algorithm. In each run, all random variables involved in the
method were sampled independently. The hardware used was

0 20 40 60 80 100

V

-80

-40

0

time (ms)
0 20 40 60 80 100

a

-0.5

0

0.5

1

Fig. 1. True trajectory (V †j , a
†
j)
T (black line) and variables component of

filtering mean mX,j for the ensemble Kalman filter (red line) the bootstrap
filter (blue line) and the optimal sequential importance re-sampling (green
line). Membrane potential V is measured in millivolt (mV).

a Dell R© PowerEdge T630 Tower Server with two ten-core
Intel R© Xeon R© E52650 v3 CPUs and 128GB RAM running
Ubuntu Server 14.04.

Finally, one hundred independent runs of minAone were
launched with the constraint that the parameter vector lies
inside the hypercube centered in θ† and side length 10.

IV. RESULTS

Estimation

Fig. 1 illustrates each filter’s performance by plotting the
variables component of the filtering mean in a representative
run. Note that the plot is restricted to the first 100 ms of [0, Tf].

As shown in the top panel, in a typical run the true
membrane potential V † substantially overlaps the mean values
of all DA methods, which implies that the three filters can re-
cover the true membrane potential values with good accuracy.
However, in the lower panel of Fig. 1, the true the unobserved
state variable a† is well estimated by the OPT-SIRS (green
line) from the very beginning of the time window [0, Tf], but
precisely estimated by the EnKF only after the first 60 ms (red
line), and by the BF only after 200 ms in the time window
(not visible here). This suggests that the time window length
J plays an important role affecting the estimation quality of
unobserved variables.

In Fig. 2 the parameter component of the filtering mean
is plotted in [0, Tf]. It shows that the errors of almost all
parameters estimated by the EnKF are relatively large at the
beginning, but they do approach zero by the end of the data
assimilation window. For neural parameters gL, EL, V (b)

1/2,
K(b), and K(a), the OPT-SIRS produces parameter errors
comparable to the EnKF, but the errors for the other parameters
are larger. However, in this run the BF gives the lowest
performance with only few parameter errors tending to zero.

In addition, it can be observed that filtering parameter
errors generally pass through some initial transient states, and

0 200 400

ε g
N
a

0

5

0 200 400

ε E
N
a

0

2

4

0 200 400

ε g
K

0

2

0 200 400

ε E
K

0

5

10

0 200 400

ε g
L

0

5

0 200 400

ε E
L

0

5

0 200 400

ε V
(b
)

1/
2

0

5

0 200 400

ε K
(b
)

0

5

10

time (ms)
0 200 400

ε V
(a
)

1/
2

0

5

10

time (ms)
0 200 400

ε K
(a
)

0

5

Fig. 2. Parameter component of the filtering error εθ,j = |mθ,j − θ†| for
the ensemble Kalman filter (red line) the bootstrap filter (blue line) and the
optimal sequential importance re-sampling (green line)

TABLE II
MEAN AND STANDARD DEVIATION OF ESTIMATED PARAMETERS

θ̃ EnKF BF OPT-SIRS minAone

gNa
mean 18.56 20.74 19.86 20.77

st. dev. 1.41 4.40 3.80

ENa
mean 61.43 60.23 59.99 58.86

st. dev. 2.11 4.76 5.00

gK
mean 9.99 12.97 12.41 9.99

st. dev. 0.06 3.55 3.89

EK
mean −89.90 −90.62 −90.17 −90.00

st. dev. 0.25 4.73 4.72

gL
mean 7.65 7.14 6.50 8.10

st. dev. 0.35 3.72 3.10

EL
mean −77.27 −78.58 −77.31 −78.25

st. dev. 0.63 4.41 4.83

V
(b)
1/2

mean −20.77 −20.89 −19.96 −19.58
st. dev. 0.75 5.02 4.83

K(b) mean 14.61 16.84 16.24 15.14
st. dev. 0.35 2.53 2.72

V
(a)
1/2

mean −45.01 −44.65 −44.34 −45.00
st. dev. 0.05 5.02 4.87

K(a) mean 4.92 5.92 6.77 5.00
st. dev. 0.05 4.20 4.07

eventually stabilize on some asymptotic value. This fact is
exploited in order to get a scalar estimate of every parameter
by an average estimator θ̃ = 1

J−J1+1

∑J
j=J1

mθ,j . We take
J1 = 35000 iterations in practice, i.e. the average is performed
over the last three tenths of [0, Tf].

A more complete analysis of the estimation results is
available in TABLE II, where the estimated parameters’ means
and the standard deviations are listed. Here, such values
are computed by evaluating the sample mean and standard
deviation from the 100 independent runs we launched for every
method. Also, the last column displays the estimated parameter
values provided by minAone.

For every parameter value, we performed a one-sample t-test
to check whether the difference between the mean estimate and
the corresponding true value is statistically significant. Results
proved that for EnKF this is indeed the case (for all parameters

TABLE III
MEAN OF PARAMETER ESTIMATION RELATIVE ERROR

| θ̃−θ
†

θ†
| EnKF BF OPT-SIRS minAone

gNa 8.28 · 10−2 1.79 · 10−1 1.43 · 10−1 3.83 · 10−2

ENa 3.34 · 10−2 6.10 · 10−2 6.98 · 10−2 1.90 · 10−2

gK 3.90 · 10−3 3.62 · 10−1 3.65 · 10−1 8.51 · 10−4

EK 1.99 · 10−3 4.38 · 10−2 4.29 · 10−2 6.56 · 10−6

gL 5.12 · 10−2 3.82 · 10−1 3.47 · 10−1 1.30 · 10−2

EL 1.04 · 10−2 4.46 · 10−2 5.19 · 10−2 3.26 · 10−3

V
(b)
1/2

4.36 · 10−2 2.05 · 10−1 1.89 · 10−1 2.11 · 10−2

K(b) 2.94 · 10−2 1.72 · 10−1 1.54 · 10−1 9.39 · 10−3

V
(a)
1/2

8.81 · 10−4 8.92 · 10−2 9.09 · 10−2 1.07 · 10−4

K(a) 1.71 · 10−2 6.70 · 10−1 6.94 · 10−1 4.41 · 10−4

Average 2.75 · 10−2 2.21 · 10−1 2.15 · 10−1 1.06 · 10−2

p < 5%). On the other hand, the same tests for both the BF
and the OPT-SIRS showed that this difference is statistically
significant only for four out of ten parameter values (gK, gL,
K(b), K(a)).

As for variability, the standard deviations of EnKF’s esti-
mate are significantly smaller than those of BF or OPT-SIRS.
This is further confirmed observing that the average coefficient
of variation1 of the EnKF (CV EnKF = 0.024) is one order of
magnitude smaller than both BF’s (CV BF = 0.240) and OPT-
SIRS’s coefficient of variation (CV OPT = 0.230). In fact, the
large difference in standard deviations could explain the result
of t-tests.

TABLE III further investigates the matter of parameter
estimation preciseness by presenting each method’s mean
relative error for every parameter value. Overall, the EnKF
performs substantially better than both particle filters. In fact,
the average mean relative error of the EnKF is about 8 times
smaller than both BF’s and OPT-SIRS’s average error. The
Friedman test with the method as column effect, and the ten
parameters as row effect, it was proved that the difference
between EnKF’s relative error and both particle filters is indeed
statistically significant (p-value smaller than 5%), whereas the
difference between the BF and the OPT-SIRS is not.

Prediction

For every filtering method, the parameter estimator θ̃ was
validated by checking whether it could be used to give a good
prediction of the model dynamics beyond the original time
window [0, Tf]. In practice, we firstly partitioned the whole
time window into two equal intervals, set Ti :=

Tf
2 = Ji ∆t,

and named the resulting time interval [Ti, Tf] generalization
time window. System (9) was then solved numerically in this
interval using the estimated parameter values and with initial
data (V (Ti), a(Ti))

T = mJi,X . We write x̃j = (Ṽj , ãj)
T to

denote the estimated trajectory at time j.
Fig. 3 shows that the EnKF overlaps almost perfectly the

true trajectory, whereas both the BF and the OPT-SIRS have

1The coefficient of variation (CV) of a random variable with mean µ and
standard deviation σ is defined as CV = σ

|µ|

250 260 270 280 290 300 310 320 330 340 350

V

-100

-80

-60

-40

-20

0

250 260 270 280 290 300 310 320 330 340 350

a

0

0.2

0.4

0.6

0.8

1

time (ms)
250 260 270 280 290 300 310 320 330 340 350

I
e
x
t

0

20

40

Fig. 3. Forecast skill in the first 100 ms of the generalization time window
[Ti, Tf] of the ensemble Kalman filter (red line) the bootstrap filter (blue
line) and the optimal sequential importance re-sampling (green line) along
with the true trajectory (black line in upper panels) and the time-dependent
input current Iext(t) (black line in lower panel)

TABLE IV
MEAN L1-ERROR IN GENERALIZATION AND PREDICTION TIME WINDOW

(TOP PANEL) AND RELATIVE ESTIMATION ERROR (LOWER PANEL)∑
j |x̃j − x

†
j |∆t EnKF BF OPT-SIRS

Generalization V (mean) 223.3 4783.4 4576.1
window a (mean) 2.2 59.2 54.6

Prediction V (mean) 807.3 19075.2 18133.0
window a (mean) 7.8 236.8 217.7

∑
j |Ṽj−V

†
j |∑

j |Ṽj−V
†
j |+

∑
j |V

†
j −yj |

EnKF BF OPT-SIRS

Generalization mean 52.21% 95.38% 95.13%
window st. dev. 8.62% 1.69% 1.80%

Prediction mean 48.97% 95.35% 95.10%
window st. dev. 8.33% 1.73% 1.82%

a rather similar profile which is close to the true one, but not
as much as the EnKF.

After verifying the parameter estimator θ̃ produced a good
estimate of the system dynamics within the data assimilation
window, prediction was further investigated. Estimates over
the generalization time window proceeded “in the future” over
the prediction time window [Tf , 3Tf] and tested against the
continuation of the true solution. Notice that the prediction
time window is twice as long as [0, Tf].

Quantitative measures of how close estimated trajectories
are to the true one are presented in TABLE IV. These include
the mean L1-error2 for each variable in the generalization
window (upper panel, first row), in the prediction window
(second row), and the mean and standard deviation of the

2The L1([Ti, Tf])-error of the membrane potential component over the
generalization time window is defined as d1(Ṽ , V †) =

∫ Tf
Ti
|V (t) −

V †(t)|dt ≈
∑J
j=Ji

|Ṽj − V †j |∆t. The right hand side is the way this error
is actually computed and it represents the value of the integral approximated
by the Euler integration method. L1([Ti, Tf])-errors for variable a and
L1([Tf , 3Tf])-errors in the prediction time window are defined analogously.

normalized dN -error3 in both generalization and prediction
time windows (lower panel).

The top panel shows that the EnKF presents a cumulative
mean L1([Ti, 3Tf])-error of variable V which is 1/22 of the
OPT-SIRS and 1/23 of the BF. In addition, the OPT-SIRS
presents a mean L1-error of variable a which is smaller than
the BF in both generalization and prediction time window, but
still one order of magnitude larger than the EnKF. Nonetheless,
no statistically significant difference between the BF and the
OPT-SIRS was detected applying the Friedman test.

Remarkably, in the lower panel of TABLE IV, the first
column shows that the EnKF’s mean relative error is approx-
imately 0.5, i.e. in average, the L1-error is as large as the
truth-data error. This means that the EnKF produces such a
good estimate that the mean L1-error is comparable to the
measurement error. This is true in the generalization window,
but also in the prediction time window. Recall that the dummy
data set in the prediction time window were not used in the DA
methods application. The relatively small standard deviations
prove the robustness of this result. Again, the BF and the OPT-
SIRS are hardly distinguishable, with a much larger relative
error than the EnKF and a small standard deviation.

V. DISCUSSION AND CONCLUSIONS

In this paper, we compared three filtering data assimila-
tion methods in a problem of simultaneous parameters and
unmeasured variables estimation of a neuronal model. This
study was performed in a twin experiment setting in which
data were artificially generated by numerical simulation of
the neural model. Our results demonstrate that the ensemble
Kalman filter, the bootstrap filter and the optimal sequential
importance re-sampling are all suitable methods for parameter
estimation and they all possess the capability to predict the
future activity of a single neuron.

As we saw, t-tests showed the mean EnKF’s estimate is
significantly different from the true value. On the contrary,
the known fact that particle filters can recover the true filtering
distribution in the limit for N →∞ is consistent with BF and
OPT-SIRS being unbiased. Nonetheless, there is no guarantee
that a particle filter can provide a better performance in any
single realization.

In fact, the EnKF is by far the best of these methods in
the more telling task of signal estimation prediction. Both
particle filters provide similar results, with the OPT-SIRS
performing slightly better than the BF but with no statistically
significant difference between them. Besides, further analysis
of the parameter estimation performance demonstrated that the

3We define the relative-error metric dN as the L1-error for variable V ,
normalized with the intrinsic truth-data error d1(V †, y), i.e.

dN (Ṽ , V †) =
d1(Ṽ , V †)

d1(Ṽ , V †) + d1(V †, y)
.

This distance is a [0, 1)-valued function which tends to one if d1(Ṽ , V †)�
d1(V †, y), and approaches zero if the estimation error is much smaller
than the model-intrinsic measurement error. Note that in the prediction time
window a new dummy data set is generated from the continuation of the true
solution.

EnKF has a much smaller relative error that the two particle
filters.

In addition, in the Results section we found hints that the
data-assimilation-window length J can be an important factor
for estimation accuracy. However, it should be highlighted that
in all simulations that we ran the performance of the EnKF
was robust with respect to J and other preassigned quantities
such as mX,0, mθ,0, CX,0 and Cθ,0.

The computation loads were also compared. It was shown
that all filtering methods consume similar computing CPU
time for each run (2 min 47 s±12 s for the EnKF, 2 min 14 s±
7 s for the BF, and 2 min 17 s±5 s for the OPT-SIRS). Note that
we took advantage of the automatic parallelization of Matlab
2015b.

It was not surprising that the smoothing method minAone
can estimate parameters with very good accuracy, since all
historic data are used in variational calculus. However, the
computational time consumption of minAone is much higher
than the filtering methods. As we found, a single run took more
than 2 h. Therefore, with a balance of accuracy of estimation
and economy of the computing time, we conclude that the
EnKF is the best choice in this example.

In our future work, we plan to further develop the applica-
tion of Bayesian DA methods in computational neuroscience,
investigating some more biologically accurate neuron models
and a neuronal network model of a large number of neurons
with experimental data.

REFERENCES

[1] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve”,
J. of Physiology, vol. 117, pp. 500–44, 1952.

[2] V. Cutsuridis, S. Cobb and B. P. Graham, “Encoding and Retrieval in a
Model of the Hippocampal CA1 Microcircuit”, Hippocampus, vol. 20,
pp. 423–446, 2010.

[3] H. Markram et al., “Reconstruction and Simulation of Neocortical
Microcircuitry”, Cell, vol. 163, pp 456–492, 2015.

[4] C. L. Keppenne, M. M. Rienecker, N. P. Kurkowski and D. A. Adamec,
“Ensemble Kalman filter assimilation of temperature and altimeter data
with bias correction and application to seasonal prediction”, Nonlinear
Processes in Geophysics, vol. 12, pp. 491–503, 2005.

[5] R. H. Reichle, “Data assimilation methods in the Earth sciences”,
Advances in water resources, vol. 31, pp. 1411–1418, 2008.

[6] M. G. Shirangi. History matching production data and uncertainty
assessment with an efficient TSVD parameterization algorithm. J.
Petroleum Sci. & Eng., vol.113, pp. 54–71, 2014.

[7] J. A. Hansen and C. Penland, “On stochastic parameter estima-
tion using data assimilation”, Physica D, vol. 230, pp. 888, 2007.
doi:10.1016/j.physd.2006.11.006

[8] J. O. Ramsay, G. Hooker, D. Campbell and J. Cao, “Parameter estimation
for differential equations: a generalized smoothing approach”, J. of Roy.
Statistical. Soc. ser. B, vol. 69, no. 5 , pp. 741–796, 2007.

[9] P. J. Smith, S. L. Dance and N. K. Nichols, “A hybrid data assimilation
scheme for model parameter estimation: Application to morphodynamic
modelling”, Comput. and Fluids, vol. 46, pp. 436–441, 2011.

[10] G. Evensen. Sequential data assimilation. Springer, Berlin Heidelberg,
2009.

[11] K. J. H. Law, A. M. Stuart and K. C. Zygalakis, Data Assimilation:
A Mathematical Introduction (Texts in Applied Mathematics, vol. 62).
New York: Springer, 2015.

[12] G. Kitagawa, “A Self-Organizing State-Space Mode”, J. of the Amer.
Statist. Assoc., vol. 93, pp. 1203–1215, 1998.

[13] D. V. Vavoulis, V. A. Straub, J. A. D. Aston and J. Feng, “A Self-
Organizing State-Space-Model Approach for Parameter Estimation in
Hodgkin-Huxley-Type Models of Single Neurons”, PLoS Computational
Biology, vol. 8, no. 3, pp. e1002401, 2012.

[14] A. C. Lorenc and T. Payne “4D-Var and the butterfly effect: Statistical
four-dimensional data assimilation for a wide range of scales”, Quart.
J. of the Roy. Meteorological Soc., vol. 133, pp. 607–614, 2007.

[15] H. D. I. Abarbanel, Predicting the Future: Completing Models of
Observed Complex Systems. New York: Springer, 2013.

[16] B. A. Toth, M. Kostuk, C. D. Meliza, D. Margoliash and H. D. I.
Abarbanel, “Dynamical estimation of neuron and network properties
I: variational methods”, Biological Cybernetics, vol. 105, pp. 217–237,
2011. doi:10.1007/s00422-011-0459-1

[17] M. Kostuk, B. A. Toth, C. D. Meliza, D. Margoliash and H. D. I.
Abarbanel, “Dynamical estimation of neuron and network properties II:
path integral Monte Carlo methods”, Biological Cybernetics, vol. 106,
pp. 155–167, 2012. doi:10.1007/s00422-012-0487-5

[18] R. E. Kalman, “A new approach to linear filtering and prediction
problems”, J. Basic. Eng., ser. D, vol. 82, pp. 35–45, 1960.

[19] A. Doucet, N. de Freitas and N. Gordon, Sequential Monte Carlo
Methods in Practice, New York: Springer-Verlag, 2001.

[20] A. Docuet, S. Godsill and C. Andriey, “On sequential Monte Carlo
sampling methods for Bayesian filtering”, Stat. and Computing, vol. 10,
pp. 197–208, 2000.

[21] J. Ye, N. Kadakia, P. J. Rozdeba, H. D. I. Abarbanel and J. C.
Quinn, “Improved variational methods in statistical data assimilation”,
Nonlinear Processes in Geophysics, vol. 22, pp. 205–213, 2015.

[22] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming”, Math. Programming, vol. 106, pp. 25–57, 2006.

[23] E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry
of Excitability and Bursting (Computational Neuroscience). Cambridge
MA: MIT Press, 2007, ch. 4, pp. 89–158.

