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Abstract

A delay-differential system modelling an artificial neural network with two neurons is investigated. At appropriate
parameter values, linear stability and Hopf bifurcation including its direction and stability of the network with four
delays are established in this paper. The main tools to obtain our results are the normal form method and the center
manifold theory introduced by Hassard. Simulations show that the theoretically predicted values are in excellent agree-
ment with the numerically observed behavior. Our results extend and complement some earlier publications.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The investigation of neural networks has been the subject of much recent activity, to more or less represent the nervous
system, or at least to design systems which can perform tasks associated with higher functions of the human central nervous
system [19]. One class of models has come to be as Artificial Neural Networks, since their architecture only metaphorically
resemble that of the animal nervous system: pattern recognition problems in particular have a prime target for these inves-
tigations. What came to be known as Hopfield Networks has been a prominent tool in the elaboration of these systems.

As pointed out in [25], neural networks are complex and large-scale nonlinear dynamics, while the dynamics of the
delayed neural network is even richer and more complicated. To obtain a deep and clear understanding of the dynamics
of neural networks, one of the usual ways is to investigate the delayed neural network models with two neurons, see
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[1–10,19,21,22,24,27]. It is hoped that, through discussing the dynamics of two neuron networks, we can get some light
for our understanding about the large networks.

In this paper, we shall study a two-neuron network modelled by the following nonlinear differential system
_xðtÞ ¼ �xðtÞ þ a11f ðxðt � s1ÞÞ þ a12f ðyðt � s2ÞÞ;
_yðtÞ ¼ �yðtÞ þ a21f ðxðt � s3ÞÞ þ a22f ðyðt � s4ÞÞ;

�
ð1:1Þ
where, _xðtÞ ¼ dxðtÞ=dt; xðtÞ and y(t) denote the activations of two neurons, si, i = 1,2,3,4 denote the synaptic transmis-
sion delays, 1 6 i, j 6 2 are the synaptic weights, f : R! R is the activation function. Such a model describes the com-
putational performance of a Hopfield network, where, each neuron is represented by a linear circuit consisting of a
resistor and a capacitor, and each neuron is connected to another via the nonlinear activation function f multiplied
by the synaptic weights aij(i 5 j). We allow that a neuron has self-feedback and delayed signal transmission which is
due to the finite switching speed of neurons (for more details about delayed neural networks, we refer to [25]).

In general, the stability and bifurcation analysis for such a system is very hard due to the multiple delays. Works on
the analysis of such network would face a transcendental equation with more exponential terms. In [17], Mahaffy et al.
proved that finding all the parameter values for all the roots of a two order transcendental equation with two delays to
have negative real parts is a hopeless task.

As the facts mentioned above, we always assume that a11 = a12 = a21 = a22 = a, s1 + s4 = s2 + s3 = 2s and f : R! R

is a C3-smooth increasing function with f(0) = 0 throughout this paper. Note that bifurcations in neural network models
and other differential equations with one or two delays have been studied by many researchers [4,6,7,9,13–16,18,26–28].
However, there are few papers discussed the bifurcations of the neural network models with multiple delays (four delays).
This fact motivates our work for the paper. We will use the coefficient and the first derivative of the activation function
instead of the delay as the bifurcation parameter to get the Hopf bifurcation including its direction and stability, which is
different from the previous articles and hence this work is a complement to the previous mentioned one. The main tools to
obtain our results are the normal form method and the center manifold theory introduced by Hassard [12].

The outline of this paper is as follows. In Section 2, we shall discuss the associated characteristic equation, the linear
stability and Hopf bifurcations; Section 3 is devoted to the direction and stability analysis of the Hopf bifurcation;
Numerical simulations are given in Section 4, and we conclude this paper in Section 5.
2. Stability analysis and Hopf bifurcation

Without loss of generality, we may assume that s1 P s2 P s3 P s4. Let Cð½�s1; 0�; R2Þ denote the Banach space of
continuous mapping from [�s1,0] into R2 equipped with the supremum norm k/k ¼ sup�s16h60j/ðhÞj for
/ 2 Cð½�s1; 0�; R2Þ. In what follows, if r 2 R; A P 0 and u : ½r� s1; rþ A� ! R2 is a continuous mapping, then
ut 2 Cð½�s1; 0�; R2Þ, t 2 [r,r + A], is defined by ut(h) = u(t + h) for �s1 6 h 6 0.

Linearizing (1.1) at the origin (the trivial solution of (1.1)) leads to
_xðtÞ ¼ �xðtÞ þ bxðt � s1Þ þ byðt � s2Þ;
_yðtÞ ¼ �yðtÞ þ bxðt � s3Þ þ byðt � s4Þ;

�
ð2:1Þ
where b = af
0
(0). We first determine when the infinitesimal generator A(b) of the C0-semigroup generated by the linear

system (2.1) has a pair of purely imaginary eigenvalues. The characteristic equation for this linear DDE is obtained by
considering solutions with the form
yðtÞ ¼ ekt c1

c2

� �
:

Such solutions will be nontrivial if and only if the determinant of the following matrix
Dðs; kÞ ¼ kþ 1� be�ks1 �be�ks2

�be�ks3 kþ 1� be�ks4

� �
ð2:2Þ
is zero, i.e.,
det Dðs; kÞ ¼ ðkþ 1� be�ks1Þðkþ 1� be�ks4Þ � b2e�kðs2þs3Þ ¼ 0; ð2:3Þ
which can be simplified as
det Dðs; kÞ ¼ ðkþ 1Þðkþ 1� be�ks1 � be�ks4Þ ¼ 0: ð2:4Þ



C. Huang et al. / Chaos, Solitons and Fractals 34 (2007) 795–812 797
It is well known that the trivial solution of the nonlinear DDE (1.1) is locally asymptotically stable if all roots k of the
characteristic Eq. (2.3) satisfy Re(k) < 0 (please refer to [11]). As k = �1 is a negative root of Eq. (2.4), therefore, we
only consider the following transcendental equation
kþ 1� be�ks1 � be�ks4 ¼ 0: ð2:5Þ
Notice that k = 0 is a real root of Eq. (2.5) when b ¼ 1
2
. Meanwhile, we know that ib(b > 0) is a root of Eq. (2.5) if and

only if b satisfies
ibþ 1 ¼ b½ðcos bs1 þ cos bs4Þ � iðsin bs1 þ sin bs4Þ�: ð2:6Þ
Separating the real and imaginary parts, we have
bðcos bs1 þ cos bs4Þ ¼ 1;

bðsin bs1 þ sin bs4Þ ¼ �b;

�
ð2:7Þ
which is equivalent to
2b cos bs cos s1�s4

2
b ¼ 1;

2b sin bs cos s1�s4

2
b ¼ �b:

�
ð2:8Þ
By (2.8), we have
tan bs ¼ �b: ð2:9Þ
Now, we built up two functions C1:y = tan(bs), C2: y = �b defined on the right hand half-plane. Let (b,y) be a point of
intersection of C1 and C2, then the first component of (b,y) is a solution to (2.9). We know the Eq. (2.9) has a sequence
of roots {bj}jP1, where (see Fig. 1)
bj 2
ð2j� 1Þp

2s
;
ð2jþ 1Þp

2s

� �
; j 2 N: ð2:10Þ
Define
bj ¼
1

cos bs cos s1�s4

2
b
; j 2 N: ð2:11Þ
0 5 10 15

–4

–3

–2

–1

0

1

2

3

4

tan(x)

y 

y=tanβτ

y=–β

π/2τ 3π/2τ 5π/2τ 7π/2τ 9π/2τ

β

Fig. 1. Numerical solution C1 and C2.
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We have the following claim.

Claim. Eq. (2.4) has purely imaginary roots if and only if b = bj, and the purely imaginary roots are ±ibj, where bj is defined

by (2.11) and bj is a root of (2.9). Furthermore, note the fact that when
b 2 2ðj� 1Þp
s

þ p
2s
;
2ðj� 1Þp

s
þ p

s

� �
; j 2 N; ð2:12Þ
we have 1
cos bs < 0, and when
b 2 2ðj� 1Þp
s

þ 3p
2s
;
2ðj� 1Þp

s
þ 2p

s

� �
; j 2 N; ð2:13Þ
we have we have 1
cos bs > 0, we can denote fbj; j 2 Ng ¼ fbþk jbþk > 0; k 2 Ng [ fb�l jb�l < 0; l 2 Ng. The following lemmas

play an important role in analyzing the distribution of zeros of detD(s,k).

Lemma 2.1. Let
EðkÞ ¼ kþ 1� be�ks1 � be�ks4 ; ð2:14Þ
then we have the following results:

(i) if � 1
2
< b < 1

2
, then all zeros of E(k) have negative real parts;

(ii) all zeros of E(k) have negative real parts when b 2 ðb�1 ; bþ1 Þ, where b�1 ¼ maxjP1fb�k g, bþ1 ¼ minjP1fbþk g;
(iii) except for �ib�1 , all others zeros of E(k) have negative real parts when b ¼ b�1 ;

(iv) if jbj > 1
2
, then the following inequality hold
Re
dkðbÞ

db

����
b¼bþj

" #
> 0; Re

dkðbÞ
db

����
b¼b�j

" #
< 0:
Proof

(i) Substituting k = a + ib into the right side of (2.14) and separating the real and imaginary parts, we obtain
RfEða; bÞg ¼ aþ 1� bðe�as1 cosðbs1Þ þ e�as4 cosðbs4ÞÞ;
IfEða; bÞg ¼ bþ bðe�as1 sinðbs1Þ þ e�as4 sinðbs4ÞÞ:

Let RðaÞ ¼ aþ 1� jbjðe�as1 þ e�as4Þ. It is obvious that R{E(a,b)} P R(a) for all a P 0. In addition, for
� 1

2
< b < 1

2
, we have R(0) > 0. This, combined with dRðaÞ

da ¼ 1þ jbjðs1e�as1 þ s4e�as4Þ > 0, implies that R(a) > 0
for a P 0. Therefore,

RfEða; bÞg > 0 for a P 0 and b 2 R: ð2:15Þ

That is to say if � 1
2
< b < 1

2
, then all zeros of E(k) have negative real parts.
(ii) Note the fact that bþ1 is the minimum positive parameter when E(k) has a pair of imaginary roots and b�1 is the
maximum negative parameter when E(k) has a pair of imaginary roots. Using the D-division method of the expo-
nential polynomial introduced by Qin (see p.141, [20]), we can prove that all zeros of E(k) have negative real parts
when b 2 ðb�1 ; bþ1 Þ.

(iii) By way of contradiction, assume that E(k) has a zero with positive real part when b ¼ bþ1 . Denote this root as
k(b0), then Rek(b0) > 0. As the fact that the roots of E(k) are continuous on the exponential polynomial’s para-
meters, we can choose another positive parameter b00 < b0 such that Rekðb00Þ > 0. Which contradicts conclusion
(ii). Similarly, we can prove that all roots except for �ib�1 have negative real parts when b ¼ b�1 .

(iv) Substituting k(b) into (2.14) and taking the derivative with respect to b, we get
dkðlÞ
dl

¼ e�ks

sle�ks þ 1
:

Then

dkðbÞ
db

����
b¼bþj

¼ kþ 1

bþj ½1þ bþj ðs1e�ks1 þ s4e�ks4Þ� ¼
ibþj þ 1

41

;
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where
41 ¼ ½bþj þ bþj
2ðs1 cosðbþj s1Þ þ s4 cosðbþj s4ÞÞ� � ibþj

2½s1 sinðbþj s1Þ þ s4 sinðbþj s4Þ�:
Thus
Re
dkðbÞ

db

����
b¼bþj

" #
¼ 42

43

;

where
42 ¼ bþj ½1þ bþj ðs1 cosðbþj s1Þ þ s4 cosðbþj s4ÞÞ � bþj bþj ðs1 sinðbþj s1Þ þ s4 sinðbþj s4ÞÞ�
and
43 ¼ bþj
2½1þ bþj ðs1 cosðbþj s1Þ þ s4 cosðbþj s4ÞÞ�2 þ bþj

4½s1 sinðbþj s1Þ þ s4 sinðbþj s4Þ�2:
Set
g1ðbþj Þ ¼ sinðbþj s1Þ þ sinðbþj s4Þ and g2ðbþj Þ ¼ cosðbþj s1Þ þ cosðbþj s4Þ:
From (2.7)–(2.9), we have
g1ðbþj Þ
g2ðbþj Þ

¼ tan s1þs4

2
bþj . It is easy to get
g01ðb
þ
j Þg2ðbþj Þ � g02ðb

þ
j Þg1ðbþj Þ > 0 based on tan0ð�Þ > 0:
In view of (2.7), we have
42 ¼ bþj ½1þ bþj
2ðg01ðb

þ
j Þg2ðbþj Þ � g02ðb

þ
j Þg1ðbþj ÞÞ� > 0: ð2:16Þ
Therefore,
Re
dkðbÞ

db

����
b¼bþj

" #
> 0:
Similarly, we can prove that
Re
dkðbÞ

db

����
b¼b�j

" #
< 0:
This completes the proof. h

Based on the lemma presented in the above, we have the following results:

Theorem 2.1.

(i) If � 1
2
< b < 1

2
, then all eigenvalues of the generator A(b) have negative real parts for all si P 0, i = 1,2,3,4. Namely,

the equilibrium (0,0) of system (1.1) is delay-independently locally asymptotically stable;

(ii) When b 2 ðb�1 ; bþ1 Þ, the equilibrium (0,0) of system (1.1) is locally asymptotically stable;

(iii) When b 2 ð�1; b�1 Þ [ ðbþ1 ;þ1Þ, the equilibrium (0,0) of system (1.1) is unstable;

(iv) System (1.1) undergoes a Hopf bifurcation at b ¼ b�k , for k = 1,2 . . .

Proof. (i), (ii) are obvious. From Lemma 2.1 (vi), when b 2 ð�1; b�1 Þ [ ðbþ1 ;þ1Þ, detD(s,k) has at least one positive
real part zero, this immediately lead to (iii). Claim and Lemma 2.1 (iv) provide the assumptions of the Hopf-theorem
(see, p.332 in [11]). This completes the proof. h
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Remark 2.1. In this section, we have discussed the associated characteristic equation, the linear stability and Hopf
bifurcations of (1.1) with four delays. In fact, our methods can be applied to a broad of system. For example, when
a11 = a22 = a and a12 = a21 = �a, this method is also effective.
3. Direction and stability of the bifurcation

In this section, formulae for determining the direction of Hopf bifurcation and the stability of bifurcating periodic
solution of system (2.1) at b ¼ b�1,l shall be presented by employing the normal form method and center manifold
theorem introduced by Hassard et al. [12]. More precisely, we will compute the reduced system on the center manifold
with the pair of conjugate complex, purely imaginary solutions of the characteristic Eq. (2.3). By this reduction we can
determine the Hopf bifurcation direction, i.e., to answer the question of whether the bifurcation branch of periodic
solution exists locally for supercritical bifurcation or subcritical bifurcation.

Letting u(t) = (x(t),y(t))T and ut(h) = u(t + h) for h 2 [�s1,0], we can rewrite Eq. (1.1) as
_uðtÞ ¼ Ll þ Gðut; lÞ; ð3:1Þ
with
Llu ¼ �Iuð0Þ þ B1uð�s1Þ þ B2uð�s2Þ þ B3uð�s3Þ þ B4uð�s4Þ; ð3:2Þ
and
Gðu; lÞ ¼ f 00ð0Þ
2

a
u2

1ð�s1Þ þ u2
2ð�s2Þ

u2
1ð�s3Þ þ u2

2ð�s4Þ

 !
þ f 000ð0Þ

6
a

u3
1ð�s1Þ þ u3

2ð�s2Þ
u3

1ð�s3Þ þ u3
2ð�s4Þ

 !
þ Oðjuj4Þ; ð3:3Þ
where I is the identity matrix, and
B1 ¼
b 0

0 0

� �
;B2 ¼

0 b

0 0

� �
;B3 ¼

0 0

b 0

� �
;B4 ¼

0 0

0 b

� �
:

Then Ll is a one-parameter family of bounded linear operators in Cð½�s1; 0�; R2Þ. By the Riesz representation theorem,
there exists a matrix whose components are bounded variation functions g(h,l) in ½�s1; 0� ! R4, such that
Llu ¼
Z 0

�s1

dgðh; lÞuðhÞ for u 2 Cð½�s1; 0�;R2Þ: ð3:4Þ
Next, we define for u 2 C1ð½�s1; 0�; R2Þ,
Alu ¼
du
dh

; for h 2 ½�s1; 0Þ;R 0

�s1
dgðn; lÞuðnÞ ¼ Llu; for h ¼ 0

8<
: ð3:5Þ
and
Rlu ¼
0; for h 2 ½�s1; 0Þ;
Gðu; lÞ; for h ¼ 0:

�
ð3:6Þ
Since dut
dh ¼

dut
dt , system (3.1) can be rewritten as
_ut ¼ Alut þ Rlut; ð3:7Þ
which is an equation of the form we desired. For h 2 [�s1,0), (3.7) is just the trivial equation dut
dh ¼

dut
dt ; for h = 0, it is (3.1).

Denote Al = A0, Rl = R0, Ll = L0, g(h, 0) = g(h). For w 2 C1ð½0; s1�; R2Þ, the adjoint operator A�0 of A0 is defined as
A�0wðsÞ ¼
� dwðsÞ

ds
; for s 2 ð0; s1�;R 0

�s1
dgTðtÞwð�tÞ; for s ¼ 0;

8<
: ð3:8Þ
where gT denotes the transpose of g (recall that Ll is real). Note that the domains of A0 and A�0 are C1([�s1,0] and
C1([0,s1], respectively, where for convenience in computation we shall allow functions with range C2 instead of R2.
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For u 2 C([�s1,0] and w 2 C([0,s1], define the bilinear form
hw;ui ¼ �wTð0Þ � uð0Þ �
Z 0

h¼�s1

Z h

n¼0

�wTðn� hÞdgðhÞuðnÞdn: ð3:9Þ
Then A�0 and A0 are adjoint operators. Let q(h) be an eigenvector for A0 corresponding to l0, namely,
A0qðhÞ ¼ ib0qðhÞ: ð3:10Þ
By discussion in Section 2, we know that ±ib0 are eigenvalues of A0 and other eigenvalues have strictly negative real
parts. Thus, they are also eigenvalues of A�0. Then, we have the following lemma.

Lemma 3.1. qðhÞ ¼ V eib0h; h 2 ½�s1; 0�, is the eigenvector of A0 corresponding to ib0; q�ðsÞ ¼ DV �eib0s; s 2 ½0; s1�, is the

eigenvector of A* corresponding to �ib0, and
hq�; qi ¼ 1; hq�; �qi ¼ 0; ð3:11Þ
where
V ¼ ð1; q1Þ
T
; V � ¼ ðq2; 1Þ

T
;

q1 ¼
1þ ib0 � be�ib0s1

be�ib0s2
; q2 ¼

1� ib0 � beib0s1

beib0s2
;

D ¼ ½V �T
V þ s1e�ib0s1 V �

T
B1V þ s2e�ib0s2 V �

T
B2V

þ s3e�ib0s3 V �
T
B3V þ s4e�ib0s4 V �

T
B4V ��1:
Proof. From (3.5), we can rewrite (3.10) as
dqðhÞ
dh
¼ ib0qðhÞ; h 2 ½�s1; 0Þ; ð3:12Þ

L0qð0Þ ¼ ib0qð0Þ; h ¼ 0: ð3:13Þ
From (3.12), we can obtain
qðhÞ ¼ V eib0h; h 2 ½�s1; 0�; ð3:14Þ
where V ¼ ðv1; v2ÞT 2 C2 is a constant vector. Base on (3.13) and (3.14), we have
½ð1þ ib0ÞI � B1e�ib0s1 � B2e�ib0s2 � B3e�ib0s3 � B4e�ib0s4 �V ¼ 0:
So, we can choose
V ¼
v1

v2

� �
¼

1
1þib0�be�ib0s1

be�ib0s2

 !
¼

1

q1

� �
: ð3:15Þ
It follows from (3.10) that �ib0 is an eigenvalue for A�0, and
A�0q�ðnÞ ¼ �ib0q�ðnÞ; ð3:16Þ
for some nonzero row-vector function q*(n)n 2 [0,s1]. By some simple computation, we can get
Z 0

�s1

dgTðtÞwð�tÞ ¼ �Iwð0Þ þ BT
1 wðs1Þ þ BT

2 wðs2Þ þ BT
3 wðs3Þ þ BT

4 wðs4Þ: ð3:17Þ
Let
q�ðhÞ ¼ DV �eib0n; n 2 ½0; s1�; ð3:18Þ
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where D ¼ ðd1; d2ÞT; V � ¼ ðv�1; v�2Þ
T 2 C2 are constant vectors. Similarly to the proof of ((3.12)–(3.15)), we obtain
V � ¼
v�1
v�2

� �
¼

1�ib0�beib0s1

beib0s2

1

 !
¼

q2

1

� �
: ð3:19Þ
Now, we compute hq*,qi as follows
hq�; qi ¼ �q�
Tð0Þqð0Þ �

Z 0

�s1

Z h

n¼0

�q�
Tðn� hÞ½dgðhÞ�qðnÞdn

¼ D V �
T

V �
Z 0

�s1

Z h

n¼0

V �
T

e�ib0ðn�hÞ½dgðhÞ�V eib0ndn

� �
¼ D V �

T

V �
Z 0

�s1

V �
T ½dgðhÞ�heib0hV

� �

¼ D½V �T

V þ s1e�ib0s1 V �
T

B1V þ s2e�ib0s2 V �
T

B2V þ s3e�ib0s3 V �
T

B3V þ s4e�ib0s4 V �
T

B4V �: ð3:20Þ
So, when
D ¼ ½V �T

V þ s1e�ib0s1 V �
T

B1V þ s2e�ib0s2 V �
T

B2V þ s3e�ib0s3 V �
T

B3V þ s4e�ib0s4 V �
T

B4V ��1
;

from (3.20) we can get hq*,qi = 1. On the other hand, from
�ib0hq�; �qi ¼ hq�;A0�qi ¼ hA�0q�; �qi ¼ h�ib0q�; �qi ¼ ib0hq�; �qi;
therefore, hq�; �qi ¼ 0: This completes the proof. h

In the remainder of this section, we use the same notations as in Hassard et al. (see [12]). We first compute
the coordinates to describe the center manifold C0 at l = l0. Let ut be the solution of Eq. (3.7) when l = l0.
Define
zðtÞ ¼ hq�; uti; ð3:21Þ
W ðt; hÞ ¼ utðhÞ � 2RefzðtÞqðhÞg: ð3:22Þ
On the center manifold C0, we have
W ðt; hÞ ¼ W ðzðtÞ;�zðtÞ; hÞ; ð3:23Þ
where
W ðz;�z; hÞ ¼ W 20ðhÞ
z2

2
þ W 11ðhÞz�zþ W 02ðhÞ

z2�z
2
þ W 30ðhÞ

z3

6
þ � � � : ð3:24Þ
In fact, z and �z are local coordinates for center manifold C0 in the direction of q* and �q�. Note that W is real if ut is real.
We consider only real solutions in this paper.

From (3.22), we get
hq�;W i ¼ hq�; utðhÞ � 2RefzðtÞqðhÞgi ¼ hq�; utðhÞ � zðtÞqðhÞ � �zðtÞ�qðhÞi ¼ hq�; uti � zðtÞhq�; qi � �zðtÞhq�; �qi ¼ 0:
For solution ut 2 C0 of Eq. (3.7), from (3.6) and (3.9), we have
_zðtÞ ¼ hq�; _uti ¼ hq�;A0ut þ R0uti ¼ hA�0q�; uti þ �q�
T ð0ÞGðut; 0Þ ¼ ib0zðtÞ þ �q�

Tð0Þf0ðz;�zÞ; ð3:25Þ
which we can write in abbreviated form as
_zðtÞ ¼ ib0zðtÞ þ gðz;�zÞ; ð3:26Þ
where
gðz;�zÞ ¼ �q�
Tð0Þf0ðz;�zÞ ¼ �q�

Tð0ÞGðW ðz;�z; hÞ þ 2RefzqðhÞg; 0Þ ¼ g20

z2

2
þ g11z�zþ g02

�z2

2
þ g21ðhÞ

z2�z
2
þ � � � : ð3:27Þ
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By (3.7) and (3.26), we have
_W ¼ _ut � _zq� _�z � �q ¼ A0ut þ R0ut � ib0zq� �q�
Tð0Þf0ðz;�zÞqþ ib0zq� q�

Tð0Þf0ðz;�zÞ�q

¼ A0ut þ R0ut � A0ðzqÞ � A0ð�z � qÞ � 2Ref�q�Tð0Þf0ðz;�zÞqg ¼ A0W þ R0ut � 2Ref�q�Tð0Þf0ðz;�zÞqg

¼
A0W � 2Refq�T ð0Þf0ðz;�zÞqg; h 2 ½�s1; 0Þ;

A0W � 2Refq�T ð0Þf0ðz;�zÞqg þ f0ðz;�zÞ; h ¼ 0:

(

We rewrite this as
_W ¼ A0W þ Hðz;�z; hÞ; ð3:28Þ
where
Hðz;�z; hÞ ¼ H 20ðhÞ
z2

2
þ H 11ðhÞz�zþ H 02ðhÞ

�z2

2
þ H 30ðhÞ

z3

6
þ � � �
and
_W ¼ W z _zþ W �z _�z:
Expanding the above series and comparing the coefficients, we obtain
ðA0 � 2ib0ÞW 20ðhÞ ¼ �H 20ðhÞ;
A0W 11ðhÞ ¼ �H 11ðhÞ;
ðA0 þ 2ib0ÞW 02ðhÞ ¼ �H 02ðhÞ;
� � � � � �

8>>><
>>>:

ð3:29Þ
Notice that
xðt � s1Þ ¼ W ð1Þðt;�s1Þ þ zðtÞe�ib0s1 þ �zðtÞeib0s1

yðt � s2Þ ¼ W ð2Þðt;�s2Þ þ zðtÞN þ �zðtÞN

xðt � s3Þ ¼ W ð1Þðt;�s3Þ þ zðtÞe�ib0s3 þ �zðtÞeib0s3

yðt � s4Þ ¼ W ð2Þðt;�s4Þ þ zðtÞNe�ib0ðs4�s2Þ þ �zðtÞNeib0ðs4�s2Þ;
where
N ¼ 1

b
ð1þ ib0 � be�ib0s1Þ

W ð1Þðt;�s1Þ ¼ W ð1Þ
20 ð�s1Þ

z2ðtÞ
2
þ W ð1Þ

11 ð�s1ÞzðtÞ�zðtÞ þ W ð1Þ
02 ð�s1Þ

�z2ðtÞ
2
þ � � �

W ð2Þðt;�s2Þ ¼ W ð2Þ
20 ð�s2Þ

z2ðtÞ
2
þ W ð2Þ

11 ð�s2ÞzðtÞ�zðtÞ þ W ð2Þ
02 ð�s2Þ

�z2ðtÞ
2
þ � � �

W ð1Þðt;�s3Þ ¼ W ð1Þ
20 ð�s3Þ

z2ðtÞ
2
þ W ð1Þ

11 ð�s3ÞzðtÞ�zðtÞ þ W ð1Þ
02 ð�s3Þ

�z2ðtÞ
2
þ � � �

W ð2Þðt;�s4Þ ¼ W ðjÞ
20 ð�s4Þ

z2ðtÞ
2
þ W ðjÞ

11 ð�s4ÞzðtÞ�zðtÞ þ W ðjÞ
02 ð�s4Þ

�z2ðtÞ
2
þ � � � :
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It follows that
gðz;�zÞ ¼ �q�
T ð0Þf0ðz;�zÞ

¼ �q�
T ð0ÞGðW ðz;�z; hÞ þ 2RefzqðhÞg; 0Þ

¼ f 00ð0Þ
2

aDðM ; 1Þ x2ðt � s1Þ þ y2ðt � s2Þ
x2ðt � s3Þ þ y2ðt � s4Þ

� �

þ f 000ð0Þ
6

aDðM ; 1Þ
x3ðt � s1Þ þ y3ðt � s2Þ
x3ðt � s3Þ þ y3ðt � s4Þ

� �
þ � � �

¼ 1

2
DaM f 00ð0Þx2ðt � s1Þ þ

f 000ð0Þ
3

x3ðt � s1Þ
� �

þ 1

2
DaM f 00ð0Þy2ðt � s2Þ þ

f 000ð0Þ
3

y3ðt � s2Þ
� �

þ 1

2
Da f 00ð0Þx2ðt � s3Þ þ

f 000ð0Þ
3

x3ðt � s3Þ
� �

þ 1

2
Da f 00ð0Þy2ðt � s4Þ þ

f 000ð0Þ
3

y3ðt � s4Þ
� �

þ � � �

¼ 1

2
DaMf 00ð0Þ½z2e�2ib0s1 þ �z2e2ib0s1 þ 2z�z

þ W ð1Þ
20 ðt;�s1Þz2�zeib0s1 þ 2W ð1Þ

11 ðt;�s1Þz2�ze�ib0s1 �

þ 1

2
DaMf 00ð0Þ½z2N 2 þ �z2N 2 þ 2z�zNN þ W ð2Þ

20 ðt;�s2Þz2�zN þ 2W ð2Þ
11 ðt;�s2Þz2�zN �

þ 1

2
Daf 00ð0Þ½z2e�2ib0s3 þ �z2e2ib0s3 þ 2z�zþ W ð1Þ

20 ðt;�s3Þz2�zeib0s3 þ 2W ð1Þ
11 ðt;�s3Þz2�ze�ib0s3 �

þ 1

2
Daf 00ð0Þ½z2N 2e�2ib0ðs4�s2Þ þ �z2N 2e2ib0ðs4�s2Þ þ 2z�zNN

þ W ð2Þ
20 ðt;�s4Þz2�zNeib0ðs4�s2Þ þ 2W ð2Þ

11 ðt;�s4Þz2�zNe�ib0ðs4�s2Þ�

þ 1

2
DaMf 000ð0Þ½z2�ze�ib0s1 � þ 1

2
DaMf 000ð0Þ½z2�zN 2N �

þ 1

2
Daf 000ð0Þ½z2�ze�ib0s3 � þ 1

2
Daf 000ð0Þ½z2�zN 2Ne�ib0ðs4�s2Þ� þ � � � ;

ð3:30Þ
where
M ¼ 1þ ib0 � be�ib0s1

be�ib0s2
¼ q2:
Comparing the coefficients with (3.27), we have
g20 ¼ Daf 00ð0Þ½Me�2ib0s1 þMN 2 þ e�2ib0s3 þ N 2e�2ib0ðs4�s2Þ�
g11 ¼ Daf 00ð0Þ½M þMNN þ 1þ NN �
g02 ¼ Daf 00ð0Þ½Me2ib0s1 þMN 2 þ e2ib0s3 þ N 2e2ib0ðs4�s2Þ�
g21 ¼ Daf 00ð0Þ½MW ð1Þ

20 ðt;�s1Þeib0s1 þMW ð2Þ
20 ðt;�s2ÞN

þ W ð1Þ
20 ðt;�s3Þeib0s3 þ W ð2Þ

20 ðt;�s4ÞNeib0ðs4�s2Þ�
þ Daf 000ð0Þ½Me�ib0s1 þMN 2N þ e�ib0s3 þ N 2Ne�ib0ðs4�s2Þ�
þ 2Daf 00ð0Þ½MW ð1Þ

11 ðt;�s1Þe�ib0s1 þMW ð2Þ
11 ðt;�s2ÞN

þ W ð1Þ
11 ðt;�s3ÞNe�ib0ðs3Þ þ W ð2Þ

11 ðt;�s4ÞNe�ib0ðs4�s2Þ�:

ð3:31Þ
We still need to compute W11(t,h) and W20(t,h) for h 2 [�s1,0). Indeed, we have
Hðz;�z; hÞ ¼ �2Refq�Tð0Þf0ðz;�zÞqðhÞg ¼ �2Refgðz;�zÞqðhÞg ¼ �gðz;�zÞqðhÞ � �gðz;�zÞ�qðhÞ

¼ � g20

z2

2
þ g11z�zþ g02

�z2

2
þ g21

z2�z
2
þ � � �

� �
qðhÞ � �g20

�z2

2
þ �g11z�zþ �g02

z2

2
þ � � �

� �
�qðhÞ: ð3:32Þ
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Comparing the coefficients with (3.28) gives that
H 20ðhÞ ¼ �g20qðhÞ � �g02�qðhÞ
H 11ðhÞ ¼ �g11qðhÞ � �g11�qðhÞ:

ð3:33Þ
It follows from (3.5) and (3.29) that
_W 20ðhÞ ¼ A0W 20 ¼ 2ib0W 20ðhÞ � H 20ðhÞ ¼ 2ib0W 20ðhÞ þ g20qðhÞ þ �g02�qðhÞ
¼ 2ib0W 20ðhÞ þ g20qð0Þeib0h þ �g02�qð0Þe�ib0h:
Solving for W20(h), we obtain
W 20ðhÞ ¼
ig20

b0

qð0Þeib0h þ i�g02

3b0

�qð0Þe�ib0h þ E1e2ib0h; ð3:34Þ
and similarly, we obtain
W 11ðhÞ ¼ �
ig11

b0

qð0Þeib0h þ i�g11

b0

�qð0Þe�ib0h þ E2;
where E1 and E2 are both 2-dimensional vectors, and can be determined by setting h = 0 in Hðz;�z; hÞ. As W20(h) and
W11(h) are continuous on [�s1, 0], so we have
W 20ð0Þ ¼
ig20

b0

qð0Þ þ i�g02

3b0

�qð0Þ þ E1; ð3:35Þ
and
W 11ð0Þ ¼ �
ig11

b0

qð0Þ þ i�g11

b0

�qð0Þ þ E2: ð3:36Þ
From
Hðz;�z; 0Þ ¼ �2Refq�Tð0Þf0ðz;�zÞqð0Þg þ f0ðz;�zÞ

¼ � g20

z2

2
þ g11z�zþ g02

�z2

2
þ g21

z2�z
2
þ � � �

� �
qðhÞ � �g20

�z2

2
þ �g11z�zþ �g02

z2

2
þ � � �

� �
�qðhÞ þ f0ðz;�zÞ; ð3:37Þ
noting that
f0ðz;�zÞ ¼ GðutðhÞ; 0Þ ¼
f 00ð0Þ

2
a

x2ð�s1Þ þ y2ð�s2Þ
x2ð�s3Þ þ y2ð�s4Þ

� �
þ f 000ð0Þ

6
a

x3ð�s1Þ þ y3ð�s2Þ
x3ð�s3Þ þ y3ð�s4Þ

� �
þ Oðjuj4Þ

¼ f 00ð0Þ
2

a½W ð1Þðt;�s1Þ þ zðtÞe�ib0s1 þ �zðtÞeib0s1 �2

a½W ð1Þðt;�s3Þ þ zðtÞe�ib0s3 þ �zðtÞeib0s3 �2

 !

þ f 00ð0Þ
2

a½W ð2Þðt;�s2Þ þ zðtÞN þ �zðtÞN �2

a½W ð2Þðt;�s4Þ þ zðtÞNe�ib0ðs4�s2Þ þ �zðtÞNeib0ðs4�s2Þ�2

 !
þ � � � ; ð3:38Þ
and comparing with (3.28), we have
H 20ð0Þ ¼ �g20qð0Þ � �g02�qð0Þ þ f 00ð0Þ ae�2ib0s1 þ aN 2

ae�2ib0s3 þ aN 2e�2ib0ðs2�s4Þ

 !
; ð3:39Þ
and
H 11ð0Þ ¼ �g11qð0Þ � �g11�qð0Þ þ f 00ð0Þ aþ aNN

aþ aNN

 !
: ð3:40Þ
From (3.5) and (3.29), we have
�W 20ð0Þ þ B1W 20ð�s1Þ þ B2W 20ð�s2Þ þ B3W 20ð�s3Þ þ B4W 20ð�s4Þ ¼ 2ib0W 20ð0Þ � H 20ð0Þ; ð3:41Þ
and
�W 11ð0Þ þ B1W 11ð�s1Þ þ B2W 11ð�s2Þ þ B3W 11ð�s3Þ þ B4W 11ð�s4Þ ¼ �H 11ð0Þ: ð3:42Þ
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Substituting (3.34), (3.35) into (3.41), we have
ig20

b0

½ð1þ ib0ÞI � B1e�ib0s1 � B2e�ib0s2 � B3e�ib0s3 � B4e�ib0s4 �

þ ig02

3b0

½ð1� ib0ÞI � B1eib0s1 � B2eib0s2 � B3eib0s3 � B4eib0s4 �

þ ½ð1þ 2ib0ÞI � B1e�2ib0s1 � B2e�2ib0s2 � B3e�2ib0s3 � B4e�2ib0s4 �E1 ¼ f 00ð0Þ ae�2ib0s1 þ aN 2

ae�2ib0s3 þ aN 2e�2ib0ðs4�s2Þ

 !
:

ð3:43Þ

Noting that
½ð1þ ib0ÞI � B1e�ib0s1 � B2e�ib0s2 � B3e�ib0s3 � B4e�ib0s4 �qð0Þ
¼ Dðs; ib0Þqð0Þ ¼ 0;

½ð1� ib0ÞI � B1eib0s1 � B2eib0s2 � B3eib0s3 � B4eib0s4 �qð0Þ
¼ Dðs;�ib0Þqð0Þ ¼ 0;

½ð1þ 2ib0ÞI � B1e�2ib0s1 � B2e�2ib0s2 � B3e�2ib0s3 � B4e�2ib0s4 �
¼ Dðs; 2ib0Þ;
we get
Dðs; 2ib0Þ ¼ f 00ð0Þ ae�2ib0s1 þ aN 2

ae�2ib0s3 þ aN 2e�2ib0ðs4�s2Þ

 !
:

Solving the above set of equations for ðEð1Þ1 ;Eð2Þ1 Þ
T ¼ E1, we obtain
E1 ¼ f 00ð0ÞD�1ðs; 2ib0Þ
ae�2ib0s1 þ aN 2

ae�2ib0s3 þ aN 2e�2ib0ðs4�s2Þ

 !
:

Similarly, we have
E2 ¼ f 00ð0ÞD�1ðs; 0Þ aþ aNN

aþ aNN

 !
:

Based on the above analysis, we can see that each gij in (3.31) is determined by the parameters in system (1.1). Thus, we
can compute the following values
C1ð0Þ ¼
i

2b0

g20g11 � 2jg11j
2 � 1

3
jg02j

2

� �
þ g21

2
;

U 2 ¼ �
RefC1ð0Þg
Rek0ðl0Þ

;

T 2 ¼ �
ImfC1ð0Þg þ l2Imfk0ðl0Þg

b0

;

B2 ¼ 2RefC1ð0Þg:

ð3:44Þ
which determine the quantities of bifurcating periodic solutions in the center manifold at the critical value l0, i.e., U2

determines the directions of the Hopf bifurcation: if U2 > 0 (U2 < 0), then the Hopf bifurcation is supercritical (subcrit-
ical) and the bifurcating periodic solutions exists for l = l0; B2 determines the stability of the bifurcating periodic solu-
tions: the bifurcating periodic solutions are stable (unstable) if B2 < 0 (B2 > 0); and T2 determines the period of the
bifurcating periodic solutions: the period increase (decrease) if T2 > 0 (T2 < 0). Since Rek

0
(l0) < 0, we thus have the fol-

lowing result.

Theorem 3.1. Let C1(0) be given in (3.44). Then

(i) the bifurcating periodic solutions exists for l = l0 and if
RefC1ð0Þg > 0ðRefC1ð0Þg < 0Þ;

then the Hopf bifurcation is supercritical (subcritical);
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(ii) the bifurcating periodic solutions are stable (unstable) if
RefC1ð0Þg < 0ðRefC1ð0Þg > 0Þ;
(iii) T2 determines the period of the bifurcating periodic solutions: the period increases (decreases) if T2 > 0(T2 < 0).

Base on the fact that many network adopt the form of activation function as f(x) = tanhx, we give more precise

conclusion as following.
Corollary 3.1. Suppose that f
0
(0) 5 0, f

00
(0) = 0, f

000
(0) 5 0. Let
m ¼ 2þ s1 þ s3 þ ðs1 þ s3Þb2
0 þ b0ðs2 þ s4 � s1 � s3Þðcos b0s4 � b0 sin b0s4Þ;
then at b = b0, system (1.1) undergoes a Hopf bifurcation. The direction of Hopf bifurcation and stability of bifurcation

periodic solutions are determined by sign m f 000ð0Þ
f 0ð0Þ

n o
. More precisely, if sign m f 000ð0Þ

f 0ð0Þ

n o
< 0ð> 0Þ, then the Hopf bifurcation

is subcritical (supercritical) and the bifurcating periodic solutions are orbitally asymptotically stable (unstable).

Proof. Since f
00
(0) = 0, it follows from (3.31) that g20 = g11 = g02 = 0 and
g21 ¼ Df 000ð0Þa½Me�ib0s1 þMN 2N þ e�ib0s3 þ N 2Ne�ib0ðs4�s2Þ�: ð3:45Þ
From Lemma 3.1, direct computing, we get D ¼ 1
H, where H ¼ 2Neib0s2 þ s1b0Ne�ib0ðs1�s2Þ þ s2b0N 2eib0s2þ

s3b0e�ib0s3 þ s4b0Ne�ib0ðs4�s2Þ. Base on the fact that ib0 is a root of Eq. (2.5), we have
b0eib0ðs4�s1Þ ¼ ð1þ ib0Þeib0s4 � b0: ð3:46Þ
From (2.4) and the definition of N,M, it is easy to find that
M ¼ Neib0s2 ; N ¼ e�ib0s4 : ð3:47Þ
Substituting (3.46) and (3.47) into (3.45), we obtain
C1ð0Þ ¼
g21

2
¼ Df 000ð0Þb0½Me�ib0s1 þMN 2N þ e�ib0s3 þ N 2Ne�ib0ðs4�s2Þ�

2f 0ð0Þ

¼ f 000ð0Þb0½Neib0ðs2�s1Þ þ N 3Neib0s2 þ e�ib0s3 þ N 2Ne�ib0ðs4�s2Þ�
2Hf 0ð0Þ

¼ f 000ð0Þb0½e�ib0s3 þ e�ib0ð2s4�s2Þ�
f 0ð0Þ½2e�ib0ðs4�s2Þ þ s1b0e�ib0s3 þ s2b0e�ib0ð2s4�s2Þ þ s3b0e�ib0s3 þ s4b0e�ib0ð2s4�s2Þ�

¼ f 000ð0Þb0½eib0ðs4�s1Þ þ 1�
f 0ð0Þ½2eib0s4 þ s1eib0ðs4�s1Þ þ s2b0 þ s3b0eib0ðs4�s1Þ þ s4b0�

¼ f 000ð0Þð1þ ib0Þeib0s4

f 0ð0Þ½2eib0s4 þ ðs1 þ s3Þð1þ ib0Þeib0s4 þ b0ðs2 þ s4 � s1 � s3Þ�
¼ f 000ð0Þ

f 0ð0Þ �
ð1þ ib0ÞðH 1 � H 2iÞ

H 2
1 þ H 2

2

; ð3:48Þ
where, H1 = 2 + s1 + s3 + b0(s2 + s4 � s1 � s3) cos b0s4 and H2 = (s1 + s3)b0 � b0(s2 + s4 � s1 � s3) sin b0s4.
Therefore,
signfRefC1ð0Þgg ¼ sign Re
mf 000ð0Þ

ðH 2
1 þ H 2

2Þf 0ð0Þ

� �� �
¼ sign Re m

f 000ð0Þ
f 0ð0Þ

� �� �
: ð3:49Þ
By Theorem 3.1, we can see the Corollary 3.1 is true. This completes the proof. h
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Remark 3.1. To the best of our knowledge, few authors considered the bifurcation for model (1.1) with four delays. We
can find [6,8,19], in the existing work. Especially, the authors of [6] suppose that only one delay appears in the system,
which is a special case of our results. And the authors of [8] also consider system (1.1) under special conditions: a11 = a22

and s1 = s4 = s,s2 + s3 = 2s. In addition, we also notice that two conditions in [19] are presented as a11 = a22 = 0,
s1 = s3,s2 = s4 and s1 = s2 = s3 = s4. Obviously, our model is more complex for the transcendental equation with more
exponential terms. Furthermore, the methods applied in mentioned papers cannot be applied to our model. Therefore,
our conclusions extend and implement these publications.

4. Numerical simulation example

In this section, some numerical results of simulating system (1.1) are presented at different data of b. Using the
method of numerical simulation in [23], we will find that the theoretically predicted values are in excellent agreement
with the numerically observed behavior.

Example. Consider the system as follows
_xðtÞ ¼ �xðtÞ þ b tanh x t � 13
12

p
	 
	 


þ b tanh y t � 11
12

p
	 
	 


;

_yðtÞ ¼ �yðtÞ þ b tanh x t � 7
12

p
	 
	 


þ b tanh y t � 5
12

p
	 
	 


:

(
ð4:1Þ
If b = �0.455, then b 2 � 1
2 ;

1
2

	 

. It follows from Theorem 2.1(i), the equilibrium (0,0) of system (4.1) is delay-

independently locally asymptotically stable. Again, a quick computation revealed that b ¼ �
ffiffiffi
2
p

is the critical value for
Hopf bifurcation. Using Corollary 3.1 and direct computation, we obtain m ¼ 2þ 10

3 p�
ffiffi
2
p

3 p cos 5
12 p� sin 5

12 p
	 


> 0.
Therefore, Re{C1(0)} < 0. That is to say the Hopf bifurcation of system (4.1) is subcritical and the bifurcating periodic
solutions are orbitally asymptotically stable when b ¼ �

ffiffiffi
2
p

. If we let b ¼ 0:07�
ffiffiffi
2
p

, then b 2 ðb�1 ; b1þÞ, using Theorem
2.1(ii), the origin is asymptotically stable. These conclusions are verified by the numerical simulations in Figs. 2–7,
where (x(l); y(l)) = (0:001; 0:004) for l 2 [�13p/12;0].
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Fig. 2. (0,0) is delay-independently locally asymptotically stable.
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Fig. 6. The equilibrium (0,0) is asymptotically stable.
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5. Conclusions

Due to its complexity, the local and Hopf bifurcation analysis for two neuron-network with four delays is far from
complete. Just as pointed out by Olien and Bélair [19], it is difficult to find all parameters for all the characteristic roots
to have negative real parts. We have derived some sufficient conditions to ensure all the characteristic roots have
negative real parts. Using the coefficient number and the first derivative of the activation function as the bifurcation
parameter, we also show that a Hopf Bifurcation will occur once this parameter passes through a critical value; i.e.,
a family of periodic orbits bifurcates from the origin. At last, the direction of Hopf bifurcation and the stability of
the bifurcating periodic orbits are discussed by applying the normal form theory and the center manifold theorem.
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