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Abstract

A delay-differential system modelling an artificial neural network with two neurons is investigated. At appropriate
parameter values, linear stability and Hopf bifurcation including its direction and stability of the network with four
delays are established in this paper. The main tools to obtain our results are the normal form method and the center
manifold theory introduced by Hassard. Simulations show that the theoretically predicted values are in excellent agree-
ment with the numerically observed behavior. Our results extend and complement some earlier publications.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The investigation of neural networks has been the subject of much recent activity, to more or less represent the nervous
system, or at least to design systems which can perform tasks associated with higher functions of the human central nervous
system [19]. One class of models has come to be as Artificial Neural Networks, since their architecture only metaphorically
resemble that of the animal nervous system: pattern recognition problems in particular have a prime target for these inves-
tigations. What came to be known as Hopfield Networks has been a prominent tool in the elaboration of these systems.

As pointed out in [25], neural networks are complex and large-scale nonlinear dynamics, while the dynamics of the
delayed neural network is even richer and more complicated. To obtain a deep and clear understanding of the dynamics
of neural networks, one of the usual ways is to investigate the delayed neural network models with two neurons, see
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[1-10,19,21,22,24,27]. 1t is hoped that, through discussing the dynamics of two neuron networks, we can get some light
for our understanding about the large networks.
In this paper, we shall study a two-neuron network modelled by the following nonlinear differential system

{x(f) = —x(t) + anf(x(t — 1)) + anf((t — ),
(&) = —y(t) + anf(x(t — 13)) + anf (¥(t — 1)),

where, x(¢) = dx(¢)/d¢, x(¢) and y(r) denote the activations of two neurons, t;,i = 1,2,3,4 denote the synaptic transmis-
sion delays, 1 < i, j < 2 are the synaptic weights, /' : R — R is the activation function. Such a model describes the com-
putational performance of a Hopfield network, where, each neuron is represented by a linear circuit consisting of a
resistor and a capacitor, and each neuron is connected to another via the nonlinear activation function f multiplied
by the synaptic weights a;(i # j). We allow that a neuron has self-feedback and delayed signal transmission which is
due to the finite switching speed of neurons (for more details about delayed neural networks, we refer to [25]).

In general, the stability and bifurcation analysis for such a system is very hard due to the multiple delays. Works on
the analysis of such network would face a transcendental equation with more exponential terms. In [17], Mahaffy et al.
proved that finding all the parameter values for all the roots of a two order transcendental equation with two delays to
have negative real parts is a hopeless task.

As the facts mentioned above, we always assume thata|; =ap =ar =ap=a, 11+t y=1+t13=2rand f :R— R
is a C>-smooth increasing function with f{0) = 0 throughout this paper. Note that bifurcations in neural network models
and other differential equations with one or two delays have been studied by many researchers [4,6,7,9,13-16,18,26-28].
However, there are few papers discussed the bifurcations of the neural network models with multiple delays (four delays).
This fact motivates our work for the paper. We will use the coefficient and the first derivative of the activation function
instead of the delay as the bifurcation parameter to get the Hopf bifurcation including its direction and stability, which is
different from the previous articles and hence this work is a complement to the previous mentioned one. The main tools to
obtain our results are the normal form method and the center manifold theory introduced by Hassard [12].

The outline of this paper is as follows. In Section 2, we shall discuss the associated characteristic equation, the linear
stability and Hopf bifurcations; Section 3 is devoted to the direction and stability analysis of the Hopf bifurcation;
Numerical simulations are given in Section 4, and we conclude this paper in Section 5.

(L1)

2. Stability analysis and Hopf bifurcation

Without loss of generality, we may assume that t; > 1, > 13 > 14. Let C([—1;,0], R*) denote the Banach space of
continuous mapping from [—7,,0] into R? equipped with the supremum norm ||¢| = sup ., <p<ol®(0)| for
¢ € C([-11,0], R*). In what follows, if 6 € R, 4 > 0 and u: [c — 1,06 + 4] — R* is a continuous mapping, then
u, € C([-711,0], R?), t € [0,0 + A], is defined by u,(0) = u(t + 0) for —1; < 0 <0.

Linearizing (1.1) at the origin (the trivial solution of (1.1)) leads to

{x(t) = —x(t) + bx(t — 1) + by(t — 12),
3t) = =(8) + bt — ©3) + by(t — 1),
where b = af (0). We first determine when the infinitesimal generator A(b) of the C°-semigroup generated by the linear
system (2.1) has a pair of purely imaginary eigenvalues. The characteristic equation for this linear DDE is obtained by
considering solutions with the form

-<(2)

Such solutions will be nontrivial if and only if the determinant of the following matrix

9 1=5 —AT] —b —Aty
Az, ) = (‘ Hhobe °< ) (2.2)
—be " A+1—be

(2.1)

is zero, i.e.,
detA(t,2) = (A4 1 —be™™)(h+ 1 — be™*) — pPe~H2Fm) =, (2.3)
which can be simplified as

detA(t, ) = (i + 1)(i+ 1 — be™ " — he~#5) = 0. (2.4)
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It is well known that the trivial solution of the nonlinear DDE (1.1) is locally asymptotically stable if all roots 1 of the
characteristic Eq. (2.3) satisfy Re(4) <0 (please refer to [11]). As A = —1 is a negative root of Eq. (2.4), therefore, we
only consider the following transcendental equation

A4 1 —be ™ — e~ = 0. (2.5)

Notice that 1 =0 is a real root of Eq. (2.5) when b = % Meanwhile, we know that ifi(f > 0) is a root of Eq. (2.5) if and
only if f satisfies

if + 1 = b[(cos fr; + cos frs) — i(sin fr; + sin fzs)]. (2.6)

Separating the real and imaginary parts, we have

{ b(cos ft; + cos frg) = 1, 27
b(sin fr, + sin fry) = —p, '
which is equivalent to
2bcos frcos 57 f =1, 28)
2bsin frcos U5 f = —f. ’

By (2.8), we have
tan it = —f. (2.9)
Now, we built up two functions I'j:y = tan(ft), I';: y = —f8 defined on the right hand half-plane. Let (f3, ) be a point of

intersection of I'; and I'y, then the first component of (f3, y) is a solution to (2.9). We know the Eq. (2.9) has a sequence
of roots {f;} >, where (see Fig. 1)

B e ((2]'2;1)1:7(21';1)75)’ jEN. (2.10)

Define

1

= jeN. 2.11
cos frcos 15§ J€ ( )

J

tan(x)

y=tanft

~

n/2t 3n/2t 5n/2t 7n/2t on/2t

-1+

Fig. 1. Numerical solution I'; and I',.
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We have the following claim.

Claim. Eq. (2.4) has purely imaginary roots if and only if b = b;, and the purely imaginary roots are %if;, where b; is defined
by (2.11) and B; is a root of (2.9). Furthermore, note the fact that when

2(j—1 2(j—1
fe ( U )n+£7 (U )n+§)’ jen, (2.12)
T 2t T T
we haveﬁ<0, and when
2(j—1 3n 2(j—1 2
§e ( (U )n+_n7 ( )n+_n)’ jen, (2.13)
T 2t T T

we have we have —— > 0, we can denote {b;,j € N} = {b/|b > 0,k € N} U{b, |, <0,] € N}. The following lemmas

cos fit
play an important role in analyzing the distribution of zeros of detA(z, 1).
Lemma 2.1. Let
E(J) =2+ 1—be™ ™ — pe™"4, (2.14)

then we have the following results:

o if —% <b< %, then all zeros of E(7) have negative real parts;

(i) all zeros of E(2) have negative real parts when b € (b, b}), where by = max;s{b; }, b} = min;s{b; };
(iif) except for Lifi], all others zeros of E(2) have negative real parts when b = by,

(iv) if |b| > 1, then the following inequality hold

dA(®) >0, Re|¥® <0.
b:bj+ b:b;

db db
(1) Substituting 4 = a + if into the right side of (2.14) and separating the real and imaginary parts, we obtain
R{E(a, )} = a+1—b(e™" cos(fr1) + e™*™ cos(ft4)),
HE(o, B)} = p+ b(e " sin(fit) + e ™ sin(f1y4)).
Let R(a) =o+1—|b|(e™* +e%). It is obvious that R{E(x,f)} = R(«) for all « > 0. In addition, for
—~1 < b <1 we have R(0)>0. This, combined with &% = 1 + |b|(t;e*" + t4e **) > 0, implies that R(x) >0
for o > 0. Therefore,

R{E(o,f)} >0 for o >0 and feR (2.15)

Re

Proof

That is to say if —% <b< %, then all zeros of E(A) have negative real parts.

Note the fact that o] is the minimum positive parameter when E(Z) has a pair of imaginary roots and b; is the

maximum negative parameter when E(Z) has a pair of imaginary roots. Using the D-division method of the expo-

nential polynomial introduced by Qin (see p.141, [20]), we can prove that all zeros of E(A) have negative real parts
when b € (b7, b7).

(iii) By way of contradiction, assume that E(Z) has a zero with positive real part when b = b;. Denote this root as
Mbo), then Rel(by) > 0. As the fact that the roots of E(1) are continuous on the exponential polynomial’s para-
meters, we can choose another positive parameter b, < b, such that Rei(b;) > 0. Which contradicts conclusion
(ii). Similarly, we can prove that all roots except for +if; have negative real parts when b = b; .

(i

=

(iv) Substituting A(d) into (2.14) and taking the derivative with respect to b, we get
i) e
du e+ 1°
Then
dAi(b) A+1 _ i,b’j+ +1

db b:b?:bj*[l—i—b/*(rle*“l+‘c4e*"’4)]7 A
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where
Ay = (b7 + b (1 cos(Bl 1) + T4 cos(B 1a))] — ib) [ty sin(B] 11) + 14 sin(B )]

Thus

where
Dy = b7 [1+ b (1 cos(f; 1) + tacos(f; 1)) — B; b (1 sin(f 1) + wasin(f; wa))]
and

Ay = b1+ b (v cos(Bi 1) + tacos(f 1) + b7 [y sin(f 1) + wsin(B 7))
Set
g()) =sin(fj 1) +sin(f ) and g, (f]) = cos(B/ 1) + cos(f; wa).

)
)

From (2.7)—(2.9), we have 2 = tan 5% 7. It is easy to get
21 (B))22(B]) — g5(B)gi(B7) >0 based on  tan'(-) > 0.
In view of (2.7), we have

Dy = b1+ 67 (gL (B)ga(B)) — €5(B)gi (B))] > 0.

Therefore,

Re

Similarly, we can prove that

< 0.
b=b

This completes the proof. [

da(b)
db

Re

Based on the lemma presented in the above, we have the following results:

Theorem 2.1.

799

(2.16)

(i) If =1 < b <4, then all eigenvalues of the generator A(b) have negative real parts for all t; = 0, i=1,2,3,4. Namely,

the equilibrium (0,0) of system (1.1) is delay-independently locally asymptotically stable;
(iiy When b € (b], b)), the equilibrium (0,0) of system (1.1) is locally asymptotically stable;

(iii) When b € (—o00,b;) U (b, +00), the equilibrium (0,0) of system (1.1) is unstable;
(iv) System (1.1) undergoes a Hopf bifurcation at b = b}, for k=1,2...

Proof. (i), (ii) are obvious. From Lemma 2.1 (vi), when b € (—o0,b;) U (b, +00), detA(z, 1) has at least one positive
real part zero, this immediately lead to (iii). Claim and Lemma 2.1 (iv) provide the assumptions of the Hopf-theorem

(see, p-332 in [11]). This completes the proof. O
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Remark 2.1. In this section, we have discussed the associated characteristic equation, the linear stability and Hopf
bifurcations of (1.1) with four delays. In fact, our methods can be applied to a broad of system. For example, when
a1 = a» = a and a;, = ap; = —a, this method is also effective.

3. Direction and stability of the bifurcation

In this section, formulae for determining the direction of Hopf bifurcation and the stability of bifurcating periodic
solution of system (2.1) at b = b; £y shall be presented by employing the normal form method and center manifold
theorem introduced by Hassard et al. [12]. More precisely, we will compute the reduced system on the center manifold
with the pair of conjugate complex, purely imaginary solutions of the characteristic Eq. (2.3). By this reduction we can
determine the Hopf bifurcation direction, i.e., to answer the question of whether the bifurcation branch of periodic
solution exists locally for supercritical bifurcation or subcritical bifurcation.

Letting u(f) = (x(1),y(1))" and u/(0) = u(t + 0) for 6 € [—1,,0], we can rewrite Eq. (1.1) as

u(t) =L, + G(uy, 1), (3.1)
with
Lyp = —1¢(0) + B1op(—11) + B2¢p(—12) + B3¢p(—13) + Bap(—14), (3.2)
and
_/0, Pi(—1) + ¢3(-12) 0, @i(=71) + @3(—12) 4
o= (d(—m v <p§<—u>> e (w%(—u) v <p;<—u>> roten o

where [ is the identity matrix, and

b 0 0 b 0 0 (U
Blz 732: 7B3: 7B4: .
(U 0 0 b 0 0 b

Then L, is a one-parameter family of bounded linear operators in C([—1;,0], R?). By the Riesz representation theorem,
there exists a matrix whose components are bounded variation functions (0, i) in [—7,,0] — R*, such that

-0
Lip = / (0, We(6) for ¢ C(—x1,0], k). (3.4)
a
Next, we define for ¢ € C'([~11,0], R?),
do
— for 0€[-1,0
A9 =14 Ao’ or 0€[.0) (3.5)
S, dn(& we(é) =Lup, for 0=0
and
0, for 0¢€[-1,0),
R,p = 3.6
ne {G(q),u), for 0=0. (3.6)
Since % = %, system (3.1) can be rewritten as
u = Auut +Ruut7 (37)
which is an equation of the form we desired. For 0 € [—1;,0), (3.7) is just the trivial equation % = %; for 0 =0,itis(3.1).
Denote 4, = Ay, R, = Ry, L, = Lo, n(0,0) = y(0). For y € C'([0,7,], R?), the adjoint operator Ay of Ay is defined as
dy (s)
— fi 0
Ay =4~ ds or s€(0ml, (33)

SO dnt (@ (=), for s=0,

where 7 denotes the transpose of i (recall that L, is real). Note that the domains of 4, and A4; are C'([—11,0] and
C'([0,7,], respectively, where for convenience in computation we shall allow functions with range C? instead of R>.
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For ¢ € (([—7,0] and ¢ € ([0, 7], define the bilinear form

0
W2 0) = ¥7(0) - 9(0) - / / U= Odn(O)0(O)dz (3.9)

0=—1) Je=

0

Then 4; and A4, are adjoint operators. Let ¢(0) be an eigenvector for A, corresponding to 1, namely,
Aog(0) = ifyq(0). (3.10)

By discussion in Section 2, we know that +if}, are eigenvalues of A, and other eigenvalues have strictly negative real
parts. Thus, they are also eigenvalues of 4;. Then, we have the following lemma.

Lemma 3.1. ¢(0) = Ve'h! 0 € [y, 0], is the eigenvector of Ay corresponding to ify; q*(s) = DV*e’vs s € [0,11], is the
eigenvector of A™ corresponding to —ify, and

<q*>q> =1, <q*7ZI> =0, (311)

where

V:(lvpl)rz V*:(p271)T7
1 +ipy —be 0 1 —if, — be
= oot » P2 = bhePoes

D=V +ue ™V BV 4 e PV By
+ ‘5384/{0137”33 V+ ‘C4€7iﬁof47*z‘B4 V]_l .

P1

)

Proof. From (3.5), we can rewrite (3.10) as

d%(oo) =1ifyq(0), 0 €[-11,0), (3.12)
Log(0) =1iyq(0), 0=0. (3.13)

From (3.12), we can obtain

q(0) =veh’  0e[-1,0] (3.14)
where V' = (vy, vz)T € C? is a constant vector. Base on (3.13) and (3.14), we have

[(1+ipy) — Bie Homt — Bre™h™ — Bie™ 13 — By ™)1 = 0.

So, we can choose

U1 1 1
V= - 1+iﬁofbe’i/;0Tl = . (315)
3 e 1
It follows from (3.10) that —if}, is an eigenvalue for A;, and
Ayq7 (&) = —1Boq" (E), (3.16)
for some nonzero row-vector function ¢*(£) ¢ € [0,7,]. By some simple computation, we can get

[ " () (—1) = =1 (0) + BYy(11) + By (za) + B3y(ts) + By (ta). (3.17)

Let
q'(0) = Dy=ehs & 0,1, (3.18)
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where D = (dl,dz)T, V= (v}, U;)T € C? are constant vectors. Similarly to the proof of ((3.12)~(3.15)), we obtain

* 1-if —befot1
V= <v') = bz = (pz). (3.19)
v} 1 1

Now, we compute (¢*,q) as follows
0 0
“q) =g" (0)g(0) — g (¢ — 0)[dn(0))g(&)d¢
w0 =a" 090 - [ [ a0l
0
V' [dn(0))0e" v

0 0
plrrv-[ | 7*Te’i”°(5’0)[dn(e)}Veiﬁoidé} :B{va /
—11 JE=0 -7
(3.20)

=DV + 11e T BV 4 16 TV By 4 1ye T By 4 1y Pou T By Y.

So, when
D=[T"V+re PV BV + 1,6 0T By + 130 oo T By 4 e T BT
from (3.20) we can get (¢*,g) = 1. On the other hand, from

—ify(q".9) = (", 40q) = (43", 9) = (=1Bog",q) = 1Bo(q", 7).

therefore, (¢*,g) = 0. This completes the proof. O
In the remainder of this section, we use the same notations as in Hassard et al. (see [12]). We first compute

the coordinates to describe the center manifold Cy at u= ug. Let u, be the solution of Eq. (3.7) when u= uo.

Define
z(1) = (q",u), (3.21)
W(t,0) =u,(0) — 2Re{z(#)q(0)}. (3.22)
On the center manifold C,, we have
W(t,0) = W(z(1),z(1), 0), (3.23)
(3.24)

where

w

27
W(z,z,0) = Wzo(e)% F W (0)2 + Woz(e)%z + W30(9)%+ e

In fact, z and z are local coordinates for center manifold Cj in the direction of ¢* and g*. Note that W is real if u, is real.

2

We consider only real solutions in this paper.

From (3.22), we get
(¢", W) = {q",u(0) — 2Re{z(1)q(0)}) = (¢, u,(0) — 2(1)q(0) — 2(1)q(0)) = {¢", u:) — z(t){q", q) — 2(1){q",q) = 0.

For solution u, € Cy of Eq. (3.7), from (3.6) and (3.9), we have
H1) = (g, i) = (q" Aot + Ro)) = (Agq™u) + 37 (0)G(u,, 0) = iByz(t) + 7" (0)£o(z,2), (3.25)
which we can write in abbreviated form as
z(t) = iyz(t) + g(z,2), (3.26)
5 2
z 2o o

where
2
z
) =4 (0)folz:2) =" ()G(W(z.2,0) + 2Re{z4(0)},0) = g5 + 8122 + 802 5 + 8(0) 5 +-

g(z2) =q
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By (3.7) and (3.26), we have
W =iy, — 2q — %+ G = Aou, + Rou, — iByzq — 3" (0)fo(z.2)q + Bz — 4 (0)/o(z,2)g
= Ao, + Rou, — Ao(zq) — Aoz 7) — 2Re{g" (0)£o(2,2)q} = AoV + Rou, — 2Re{q" (0)fo(z,2)q}
{AOW —2Re{q" (0)/o(z,2)q}, 0 € [~1,0),
AW — 2Re{q (0)fo(z,2)q} + fo(z,2), 0=0.
We rewrite this as

W = AgW + H(z,%,0), (3.28)

where

52

+H11(0)ZE+H02(0)%

N
L

Z2
[‘[(Z,f7 9) :Hz()(e)*

3 + H3(0)

o

and
W=W.z+ Wz
Expanding the above series and comparing the coefficients, we obtain

(Ao — 2iBy) W (0) = —H(0),
AW 11 (0) = —H 11 (0),
(Ao + 2ify) W2 (0) = —Hp(0),

(3.29)

x(t—1y) = W1, —1)) 4 z(t)e o™ 4 2(r)ePom

y(t —12) = WO(t,—13) + z(t)N +Z(t)N

X(t — T3) = VV(1 (l‘, ’Cz) t) —ifos +Z( 1/‘013

Y(t —14) = WO(t, —14) + 2(t) Ne Fos=) 4 z(r)Nelhols)

where

N =%(1 +ify, — be*iﬁofl)

W, —o) = W£!3<—n>@+ W (—n)z(02(0) + Wé?(—mzzz(‘) .

Wt —2) = W%(—fz)@+ W (—12)z(0z(r) + Wg?(_rz)?z(f) ‘.
1 (1) Zz(t) (1) _ ) 22(Z)

WOt ) = Wh) (—2) 52+ W) (—ea)z(02(0) + Wi (—3) 5= +

2(1) 2(1)

WO (b, —14) = W5 (—1a)
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It follows that
2(z,2) = 7" (0)fo(z,2)
— 3" (0)G(W(2.7,0) + 2Re{z4(0)},0)
(=) +y (- )
2 (M71)(x2(t*‘53)+y2(t774))
O B (xs(t —T) (- TZ)) +

6 Ot 15) + 31— )

= %BaM[f"(O)xz(t —1) +f 3(0)x3(t - rl)}
+3DaM |0 - ) + 5 o)
+%Ea|:f”(0)x2(l‘*‘h) fm3(0 3

-
U

+3Dal 10020 +

1
_ EDaMfN(O) [ZZ —2ify7; 4z =2 ZIBUII 4 277

+ Wy (1, —r)Z2e 0 2 (1, —1)ze ]
1 D AT X7 _
+5DaMf" (O)[ZN* + 2N + 222NN + Wi (1, ~0)Z2N + 20 (1, ~02)72N]

1_ .
+ EDQ}‘"/(O)[ZZGJI’}O” + 26205 4 22z 4 W) (1, —13)222e P 4+ 20 (1, —13)Fze o)

+ %Ea 1(0)[22N2e 2ho(u—n) | 2N2e2h(t) 4 2ZNN

+ W (1, —1a)P2NeP @) L 2 ) (2, —14) 222N (w2

+ %EaMf’”(O) [FPze~ o] + %BaMf’”(O) [22ZN*N]

+ %Eaf”'(O)[ZZZe’iﬁ‘)”] + %Baf’”(O) [Z2ZN*Ne o] 4 ...
where
1 +ip, — be hn

be-ifor2

Comparing the coefficients with (3.27), we have

M= =75

8w = Eaf (0)[Me—21[301 +MN2 + e—21/30n +N2 —2ify (14— ‘E?)}
g1 = Daf"(0)[M + MNN + 1 + NN]
on _Daf//(o)[Mehﬁoﬂ +MN2 +e21[§0r3 +N2 2iBo (14— rz)]
& = Daf//(o)[MWzo (t,—t1)e el +1\/[W20 (t,—1)N

1

+ W) (1, —13)ePn 4 W (1, 1) Neifo—2)]
+ Daf" (0)[Me o + MN?N + e~ | N2Ne o))
+ 2Daf" (0) (MW} (1, —t))e o7 4 MWD (1, —1,)N
+ W (1, —5)Ne o) 4 D) (1, —g4)Ne ol
We still need to compute W (¢,0) and Wh(t,0) for 0 € [—711,0). Indeed, we have

H(z,2,0) = =2Re{q" (0)/0(z,2)g(0)} = —2Re{g(2,2)4(0)} = —g(z.2)q(0) — 8(2,2)a(0)

2 _ 7 7z 2z 2 _
= (805 TENZ T8y T &5+ q(0) — 8075 TENZ+8nm T+ q(0).

(3.30)

(3.31)

(3.32)
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Comparing the coefficients with (3.28) gives that
H(0) = —£204(0) — 8024(0)

Hiy(0) = ~£14(0) ~ 20 (0). 63
It follows from (3.5) and (3.29) that
Wao(0) = AgWa = 2B W0 (0) — Hao(0) = 2ifs W2 (0) + £209(0) + 802(0)
= 2iW20(0) + £209(0)e"" + goog(0)e "
Solving for W5o(0), we obtain
Wan(0) = 52 g(0)e0 + 82 g (0)e 0 4 it (3.34)

Bo 3By

and similarly, we obtain

Wi(0) =— %q(O)eiﬁoo + %Q(O)e’iﬂ‘)o + £,
0 0

where E| and E, are both 2-dimensional vectors, and can be determined by setting 0 =0 in H(z,z,0). As W5(0) and
W11(0) are continuous on [—1;, 0], so we have

_lgn 8o
W(0) = i q(0)+3ﬁ0 7(0) + £\, (3.35)
and
Wu(0) = ’i: q(0) +’§—:q(0) +E». (3.36)
From

H(z,2,0) = =2Re{q" (0)/0(z,2)g(0)} + fi(2,2)
22 _ 2 2%z 2 _ . _ 2 _ _
- g205+81122+8025+g217+”' q(0) — g205+g1122+g025+~- q(0) + folz,2),  (3.37)

noting that

folz,2 (0

B O R A L G e

H(—1) +7 (1) 6 \x(-w) +r(~1)
f” a[W W (t,—11) + z(t)e Fom 4 2(r)efor1)?
aW (1, —13) + z(t)e o= 4 2(¢)efos]
a[w(t, 1) + z()N + 2(t)N]’ L (3.38)
Al (e, ) + 2(ONe i) 2(NehC) ) '

)+ 0l

and comparing with (3.28), we have

_ o ” ae~Bhomt 4 gN?
H(0) = —g54(0) — £02g(0) + 1"(0) <aezi/}m + aN?e k(=) (3.39)
and
a+aNN
Hy1(0) = — 0) — 211g(0) + 7"(0 I 3.40
10) = —£11g(0) — £na(0) + 1'( ><a+aNN) (3.40)
From (3.5) and (3.29), we have
—Wx(0) + By Wa(—11) + BaWa(—12) + BsWag(—13) + BsWao(—14) = 21, W2 (0) — Hy(0), (3.41)

and
W1 (0) + By Wy (—71) + BaW i (—72) + BsW i (—13) + BaW 1 (—14) = —H 11 (0). (3.42)
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Substituting (3.34), (3.35) into (3.41), we have

%[(1 i)l — Bie 1 — By ih _ Bieihns B4e’i"°”]
0
+ ’35% [(1—iBy)l — Byeo™ — Byeo — Byetfos — Befom]
0
_ _ _ _ —2ifyry N2
. o 2ifen  poa2iforr _ poa-2ifots _ P a-2fotalp. _ £ ae ta
+ [(1 + ZIBO)I Bie Be Bse Bye }El - f (0) <ae—2i/fo‘r3 + aNZe—Zi/fo(m—‘tz) ’

(3.43)

Noting that

(14 iBo)I — Bie ort — Bye o2 — Bre=homs — pue g (0)
= A(1,1,)q(0) = 0,
[(1 _ iﬁo)l _ Bleiﬁofl 7Bzeiﬂntz 7B3eiﬁofs _ 346%“](]( )

- A(T7 _lﬁo)q(o) = 07
[(1 4 21[))0)] _ Blefziﬁu‘f] _ Bzefﬁ/forg _ B3e72i/3013 _ B4efli/}Ut4]
= A(T72iﬁ0)7

we get

A(t,2if,) f"(o)( ae~Bhu 4 gN? )

ae " thn o gN2e2ibo(r—72)

Solving the above set of equations for (E\" E")" = E,, we obtain

—2ifyt; N2
E —f”(O)A_l(r,2iﬁ0)< g T v a )

ae thn o gN2e2ibo(r—72)

Similarly, we have

B> = f"(0)A(z,0) ( “t "W)‘

a+aNN

Based on the above analysis, we can see that each g;; in (3.31) is determined by the parameters in system (1.1). Thus, we
can compute the following values

Ci(0) = 2%5,0 (gzogn —2lgy [ _%‘goz‘z) +%’
S Re(C/(0)

. A (3.44)
o Im{CI(0)} + mIm{Z (o)}

i Bo 7

Bz = 2RC{C1 (0)}

which determine the quantities of bifurcating periodic solutions in the center manifold at the critical value py, i.e., U,
determines the directions of the Hopf bifurcation: if U, > 0 (U, < 0), then the Hopf bifurcation is supercritical (subcrit-
ical) and the bifurcating periodic solutions exists for u = uo; B, determines the stability of the bifurcating periodic solu-
tions: the bifurcating periodic solutions are stable (unstable) if B, <0 (B, > 0); and 75, determines the period of the
bifurcating periodic solutions: the period increase (decrease) if T > 0 (T < 0). Since ReA (yo) < 0, we thus have the fol-
lowing result.

Theorem 3.1. Let C(0) be given in (3.44). Then

(i) the bifurcating periodic solutions exists for p= pg and if

Re{C1(0)} > 0(Re{C,(0)} <0),

then the Hopf bifurcation is supercritical (subcritical);
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(ii) the bifurcating periodic solutions are stable (unstable) if
Re{C(0)} < O(Re{C,(0)} > 0);

(iify T, determines the period of the bifurcating periodic solutions: the period increases (decreases) if T, > 0(T, < 0).

Base on the fact that many network adopt the form of activation function as f(x)= tanhx, we give more precise
conclusion as following.

Corollary 3.1. Suppose that 1(0) # 0,1 (0)= 0,1(0) # 0. Let
m=2+71 +71+ (1t +13)5 + bo(t2 + 14 — 11 — 13)(cos Byts — Py sin Byts),

then at b = by, system (1.1) undergoes a Hopf bifurcation. The direction of Hopf bifurcation and stability of bifurcation

periodic solutions are determined by sign{m %} More precisely, ifsign{m";:l((oo))} < 0(>0), then the Hopf bifurcation

is subcritical (supercritical) and the bifurcating periodic solutions are orbitally asymptotically stable (unstable).

Proof. Since /'(0) = 0, it follows from (3.31) that goo = gi1 = go» = 0 and
25 = Df"(0)a[Me P 4 MN?N + e7om - N2Ne ()], (3.45)

From Lemma 3.1, direct computing, we get D=L where H =2Ne/™ 4 ¢;byNe (=) 4 1,p N e+
13bge "% 4 7,hyNe o(=—72) Base on the fact that ifi is a root of Eq. (2.5), we have

boefo@=) = (1 4 iB,)eo™ — by, (3.46)
From (2.4) and the definition of N, M, it is easy to find that
M = Neh N =, (3.47)

Substituting (3.46) and (3.47) into (3.45), we obtain

gy Df"(0)by[Mehn 4 MN?N + ¢ ifors 4 N2Ne (i)

C(0 =
(0=5 27/0)
- f”’(())bo [Neiﬁn(frfl) 4+ N3Neiborz 1 g=ifots +N2]Ve*iﬁo(frfz)]
B 2Hf'(0)

S"(0)bo[e s 4 e Holum)]
F1(0)[2e ol + 1,bge o + tybge o) + t3bge o + t4bge Fou-m)]
_ S"(0)bo[etom ) 1]
S1(0)[2efors + 7eifolma—n1) + 15b) 4 T3hgeifo(ma—11) + 74by)
_ S (0)(1 +ipy)eors _S"0) (L+ifo)(Hy — Hai)
S(0)[2eh0% + (11 + 13) (1 +1fy)eho™s +bo(12 + 14 — 11 —13)]  f7(0) Hi+H3

, (3.48)

where, H] =2+ T] + T3 + bo(‘[z + T4 —T1 — ‘L'3) Ccos ﬁof4 and Hz = (‘L'] + T3)ﬁ0 — bo(‘L'2 + T4 —T1 — ‘L'3) sin ﬂ()'l'4.
Therefore,

sign{Re{C;(0)}} = sign{Re{%}} = sign{Re{m?jl((g))} } (3.49)

By Theorem 3.1, we can see the Corollary 3.1 is true. This completes the proof. [
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Remark 3.1. To the best of our knowledge, few authors considered the bifurcation for model (1.1) with four delays. We
can find [6,8,19], in the existing work. Especially, the authors of [6] suppose that only one delay appears in the system,
which is a special case of our results. And the authors of [8] also consider system (1.1) under special conditions: a;; = ay»
and t; =14 =1,7, + 73 = 27. In addition, we also notice that two conditions in [19] are presented as a;; = ax; =0,
Ty = 13,7y = 74 and 1; = 1, = 73 = 74. Obviously, our model is more complex for the transcendental equation with more
exponential terms. Furthermore, the methods applied in mentioned papers cannot be applied to our model. Therefore,
our conclusions extend and implement these publications.

4. Numerical simulation example

In this section, some numerical results of simulating system (1.1) are presented at different data of ». Using the
method of numerical simulation in [23], we will find that the theoretically predicted values are in excellent agreement
with the numerically observed behavior.

Example. Consider the system as follows

{x(t) = —x(t) + btanh (x(r — ?n)) + btanh (y(r — :jn)), @)

y(t) = —y(t) + btanh (x(t — L)) + btanh (y(r — 3m))

If b =—0.455, then b € (—1,1). It follows from Theorem 2.1(i), the equilibrium (0,0) of system (4.1) is delay-

independently locally asymptotically stable. Again, a quick computation revealed that b = —/2 is the critical value for
Hopf bifurcation. Using Corollary 3.1 and direct computation, we obtain m =2 +2n — 4n(cos%n —sinm) > 0.
Therefore, Re{C;(0)} <0. That is to say the Hopf bifurcation of system (4.1) is subcritical and the bifurcating periodic
solutions are orbitally asymptotically stable when b = —v/2. If we let b = 0.07 — v/2, then b € (b7, b1+), using Theorem
2.1(i1), the origin is asymptotically stable. These conclusions are verified by the numerical simulations in Figs. 2-7,

where (x(u); y(u)) = (0:001; 0:004) for u € [—137/12;0].

solution x, y.
-
T
1

—1 -

) 1 1 1 1 1 1 1 1 1

50 100 150 200 250 300 350 400 450 500
time t
Fig. 2. (0,0) is delay-independently locally asymptotically stable.



solution x, y.

Fig. 4. Periodic solution bifurcates from equilibrium (0,0), where (x(6), y(6)) = (0.001,0.004) for 6 € (

|
N
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-8

x 10

—3
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x10~

0.5 1

Fig. 3. (0,0) is delay-independently locally asymptotically stable.

1 1 1 1 1 1 1 1 1

50 100 150 200 250 300 350 400 450 500

time t

_ B
12

].
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Fig. 5. Periodic solution bifurcates from equilibrium (0,0), where (x(0), y(0)) = (0.001,0.004) for 0 € (7%,0}.

x 10

solution x, y.
o

1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
time t

Fig. 6. The equilibrium (0,0) is asymptotically stable.
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x107°

Fig. 7. The equilibrium (0,0) is asymptotically stable.

5. Conclusions

Due to its complexity, the local and Hopf bifurcation analysis for two neuron-network with four delays is far from
complete. Just as pointed out by Olien and Bélair [19], it is difficult to find all parameters for all the characteristic roots
to have negative real parts. We have derived some sufficient conditions to ensure all the characteristic roots have
negative real parts. Using the coefficient number and the first derivative of the activation function as the bifurcation
parameter, we also show that a Hopf Bifurcation will occur once this parameter passes through a critical value; i.e.,
a family of periodic orbits bifurcates from the origin. At last, the direction of Hopf bifurcation and the stability of
the bifurcating periodic orbits are discussed by applying the normal form theory and the center manifold theorem.
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