DCSP-1: Introduction

• Jianfeng Feng

• Department of Computer Science, Warwick Univ., UK

• Jianfeng.feng@warwick.ac.uk

• http://www.dcs.warwick.ac.uk/~feng/dcsp.html
Time

- Thursday (L) 13.00 -- 14.00 R2.41
- Friday (L) 12.00 -- 13.00 R0.14
- Monday (Workshop/L) 4.00 -- 5.00 MB0.07 (question time on line, team)
- Monday (S) 10.00-11.00 MB3.07

From week 2, seminar starts
My research: 冯建峰

- http://dcs.warwick.ac.uk/~feng

In general, our research is about

- Dealing with big data
- Developing brain-inspired AI algorithms
My research: an example of dealing with big data
My research: 冯建峰

(this is Feng’s Brain)
Using MRI to peer into your brain
My research: 冯建峰

- http://dcs.warwick.ac.uk/~feng

Mind Reading: Find out what is in your dream
My research: an example of dealing with big data

In total: 171,739

Li YZ et al. (2022) Nature Aging
GMA MORNING RUNDOWN

THE NEW "MAGIC NUMBER"
STUDY: MIDDLE-TO-OLDER AGE ADULTS
IBM and Pfeizer: **AI model can predict the onset of dementia 7 years ago, with an accuracy of 71%** (eClinicalMedicine, 2020)

We developed UKB-DRP. We can do it ten years ago with an accuracy of **85%** (eClinicalMedicine, 2022)
Dementia Prediction: ten years before

Risk group stratifications of dementia

The risk to become dementia (> 10 years): **2.39%**
10-year risk: **1.7%**
5-year risk: **0.38%**

Risk group stratifications of Alzheimer's Disease

The risk to become AD (> 10 years): **0.94%**
10-year risk: **0.57%**
5-year risk: **0.1%**

The UK Biobank Dementia Risk Predictive (UKB-DRP) tool was established based on UK Biobank study cohort. The tool was developed on research purpose and cannot be used as clinical evidence.

https://jiayou0907.shinyapps.io/UKB-DRP-Tool/
My research: an example of developing novel AI algorithms
2019 Turing Award for Deep Learning

(Yoshua Bengio)
(Yann LeCun)
(Geoffrey Hinton)
A neuronal network inspired by brain vision systems
Simulation of 86 B spiking neuron network

BB: (Biological Brain)
DTB: (Digital Twin Brain)

Similarity between BB and DTB: 90%

NSR, 2024, in press
How AI could lead to a better understanding of the brain

Viren Jain

Early machine-learning systems were inspired by neural networks—now AI might allow neuroscientists to get to grips with the brain’s unique complexities.

Can a computer be programmed to simulate a brain? It’s a question mathematicians, philosophers and experimentalists have long been mulling—whether spurred by a desire to create artificial intelligence (AI) or by the idea that a complex system such as the brain can be understood only when mathematics or a computer can encompass its full scope. Finding simplified models of brain networks has inspired work in artificial intelligence since the 1940s. In fact, today’s explosion in machine learning can be traced back to early work inspired by biological systems. However, the brains of these efforts are now enabling investigators to ask a slightly different question: could machine learning be used to build computational models that simulate the activity of brains?

At the heart of these developments is a growing body of data on brains. Starting in the 1970s, but more intensively since the mid-2000s, neuroscientists have been producing connectomes—maps of the connectivity and morphology of neurons that capture a static representation of a brain at a particular moment. Alongside such advances have been important new research capabilities to make functional recordings, which measure neural activity over time at the resolution of a single cell. Meanwhile the field of transcriptomics is enabling investigators to measure the gene activity in a tissue sample, and even to map where and when that activity is occurring.

So far, few efforts have been made to connect these different data sources or collect them simultaneously from the whole brain of the same specimen. But as the level of detail that can be achieved...

Simulating the whole brain as an alternative way to achieve AGI

Jianfeng Feng

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China

Correspondence
Jianfeng Feng,
Email: jfeng@fudan.edu.cn

Funding information
Shanghai Municipal Science and Technology Major Project, Grant/Award Number: 2018SHZDZX01; Jia Lab, Shanghai Center for Brain Science and Brain-Inspired Technology, 111 Project, Grant/Award Number: B16010

We have all seen the current attention, and even hype, on big models and artificial general intelligence (AGI). Indeed, many colleagues are arguing that we have achieved AGI with the current version of ChatGPT. Really? Looking back, it is not surprising to have a machine, even a normal calculator, which can outperform us. For example, a calculator can easily beat most of us on the multiplication of two large numbers with its speed, while a basic laptop can solve many books, but humans have far weaker means of recall. So it is something that we have already got used to, that man-made machines can perform certain tasks far better than us.

This general issue leads us back to the big original question: how to define Intelligence? People have come up with many different definitions which could serve this purpose. For example, Stephen Hawking said “Intelligence is the ability to adapt to change.” Agreeing to a similar line of my close colleagues, the most cited psychologist, Trevor Robbins, who also won the Brain prize, has defined intelligence as “flexibility.” Others might argue that complex language might be the corner of “Intelligence,” which we, as human beings, own uniquely. I am more in favor of the latter: a chameleon can adapt to its environment, but does it have intelligence that this is an over claim. Another, more mechanical way, to define artificial intelligence is the Turing test, which has its pros and cons and has been both criticized and applied widely (Figure 1A).

Hence, we have no criterion to really assess intelligence, at least, one which I am happy with. We can make a direct comparison between the human brain, the one which we all argue has the intelligence, and ChatGPT. First let us have a look of what ChatGPT has achieved. It can (amazingly) generate comprehensive answers, some of which are completely wrong. It can, sometimes, outperform an individual human. As we all know, the mechanism for ChatGPT, or all current machine learning, is to establish a correlation between different objects, and with ChatGPT the object is the word. With such a large model, with more than 10B parameters, a reasonable argument is that it obeys the Hegel’s law [2]; quantitative changes give rise to qualitative differences. It might be a good idea to carry out a similar analysis in, for example, the Ising model; when the size increases in ChatGPT, the correlation coefficient between nodes in the model diverges: a typical phase transition, which confirms the Hegel’s law.
Algorithms

- Data, computational power and algorithm are three key elements for AI
- This module is all about

algorithm algorithm Algorithm

- This module will enable you to equip with new skills to deal with data
Algorithms

• Very successful with deep learning

• But it deals with only static data such as faces

• We will deal with dynamic data (language, video etc.)

• ‘Most practical module in our two years’ – comments from students of previous years
Announcement for Seminars

• DCSP seminars (to cover DCSP tutorial problems) start in Week 2.
Assignment

- Assignment will be issued in Week 4
- Worth 20% of the module assessment
- Submission deadline is 12 noon on Thursday Week 10 -- 14th March 2024
 (The winner will be awarded 100 Pounds)
References

• Any good book about digital communications and digital signal processing

• Wikipedia, the free encyclopedia or public lectures

• Lecture notes is available at http://www.dcs.warwick.ac.uk/~feng/dcsp.html

• Public lectures

• Update my lecture notes every week
Outline of today’s lecture

- Digital vs. analog
- Module outline
- Data transmission (sampling)
Signal: video, audio, etc. -- Data
Signal: video, audio, etc. -- Data
Two types of signal

information carrying signals are divided into two broad classes

\[x(t) \] vs. \[x[n] \]

Analog/continuous versus discrete/digital
Continuous (Analog) Signals

- Analog signals: continuous (electrical) signals that vary in time
- Most of the time, the variations follow that of the non-electric (original) signal.
- The two are analogous hence the name *analog*.
Example I

Telephone voice signal is analog.

- The intensity of the voice causes electric current variations.
- At the receiving end, the signal is reproduced in the same proportion.
Example I

Telephone voice signal is analog.

- The intensity of the voice causes electric current variations.
- At the receiving end, the signal is reproduced in the same proportion.
Example I

Telephone voice signal is analog.

- The intensity of the voice causes electric current variations.
- At the receiving end, the signal is reproduced in the same proportion.

Digitized, communication and processing
Example II
Digital Signals

Non-continuous, they change in individual steps.

Consist of pulses with discrete levels or values.

Each pulse is constant, but there is an abrupt change from one digit to the next.
Example I

Daily temperature

°C

0 500 1000 1500 2000 2500 3000
days

0 -5 -10 -15 -20 -25 -30
Example II: please meet

- Two-dimensional signal $x[n_1,n_2]$, $n_1,n_2 \in \mathbb{Z}$
- A point on a grid \rightarrow pixel
- Grid is usually regularly spaced
- Values $x[n_1,n_2]$ refer to the pixel’s appearance
Example III: Our brain, Neuronal Activities

- Vertical white bar: spike
- Axon
- Soma
- Synapse
- Dendrite
Advantages I

a. The ability to process a digital signal means that errors caused by random processes can be detected and corrected.

b. Digital signals can also be sampled instead of continuously monitored and multiple signals can be multiplexed together to form one signal.
Advantages II

c. Advances in wideband communication channels and solid-state electronics have allowed scientists to fully realize a and b digital communications has grown quickly.
d. Digital communications is quickly edging out analog communication because of the vast demand to transmit computer data and the ability of digital communications to do so.
Module Summary I

• One sentence: Deal with digital signals
Module Summary II

• *Data transmission*: Channel characteristics, signalling methods, interference and noise, data compression and encryption;

• *Information Sources and Coding*: Information theory, coding of information for efficiency and error protection;
Module Summary III

- **Data transmission**: Channel characteristics, signalling methods, interference and noise, synchronisation, data compression and encryption;

- **Information Sources and Coding**: Information theory, coding of information for efficiency and error protection;

- **Signal Representation**: Representation of discrete time signals in time and frequency; z-transform and Fourier representations; discrete approximation of continuous signals; sampling and quantisation; stochastic signals and noise processes;
Module Summary IV

- **Data transmission**: Channel characteristics, signalling methods, interference and noise, synchronisation, data compression and encryption;

- **Information Sources and Coding**: Information theory, coding of information for efficiency and error protection;

- **Signal Representation**: Representation of discrete time signals in time and frequency; z transform and Fourier representations; discrete approximation of continuous signals; sampling and quantisation; stochastic signals and noise processes;

- **Filtering**: Analysis and synthesis of discrete time filters; finite impulse response and infinite impulse response filters; frequency response of digital filters; poles and zeros; filters for correlation and detection; matched filters;
Module Summary V

- **Data transmission:** Channel characteristics, signalling methods, interference and noise, synchronisation, data compression and encryption;

- **Information Sources and Coding:** Information theory, coding of information for efficiency and error protection;

- **Signal Representation:** Representation of discrete time signals in time and frequency; z transform and Fourier representations; discrete approximation of continuous signals; sampling and quantisation; stochastic signals and noise processes;

- **Filtering:** Analysis and synthesis of discrete time filters; finite impulse response and infinite impulse response filters; frequency response of digital filters; poles and zeros; filters for correlation and detection; matched filters;

- **Digital Signal Processing applications:** Processing of images and sound using digital techniques.
Data Transmission I: General Form

source → modulator → transmitter → transmission channel → receiver → sink

(noise), (noise), noise, distortion, attenuation
Data Transmission II:

- A modulator that takes the source signal and transforms it so that it is physically suitable for the transmission channel
Data Transmission II:

- A modulator that takes the source signal and transforms it so that it is physically suitable for the transmission channel
- A transmitter that actually introduces the modulated signal into the channel, usually amplifying the signal as it does so
Data Transmission II:

• A modulator that takes the source signal and transforms it so that it is physically suitable for the transmission channel

• A transmitter that actually introduces the modulated signal into the channel, usually amplifying the signal as it does so

• A transmission channel that is the physical link between the communicating parties
Data Transmission II:

- A modulator that takes the source signal and transforms it so that it is physically suitable for the transmission channel

- A transmitter that actually introduces the modulated signal into the channel, usually amplifying the signal as it does so

- A transmission channel that is the physical link between the communicating parties

- A receiver that detects the transmitted signal on the channel and usually amplifies it (as it will have been attenuated by its journey through the channel)
Data Transmission II:

- A modulator that takes the source signal and transforms it so that it is physically suitable for the transmission channel

- A transmitter that actually introduces the modulated signal into the channel, usually amplifying the signal as it does so

- A transmission channel that is the physical link between the communicating parties

- A receiver that detects the transmitted signal on the channel and usually amplifies it (as it will have been attenuated by its journey through the channel)

- A demodulator that receives the original source signal from the received signal and passes it to the sink
Digital data is universally represented by strings of 1s or 0s. Each one or zero is referred to as a bit.

Often, but not always, these bit strings are interpreted as numbers in a binary number system.

Thus $101001_2 = 41_{10}$.

The information content of a digital signal is equal to the number of bits required to represent it.

Thus a signal that may vary between 0 and 7 has an information content of 3 bits.
Data Transmission IV

Written as an equation this relationship is

$$I = \log_2(n) \quad \text{bits}$$

where n is the number of levels a signal may take.

It is important to appreciate that information is a measure of the number of different outcomes a value may take.

The information rate is a measure of the speed with which information is transferred. It is measured in bits/second or b/s.
Bandwidth

Signal is bandlimited if it contains no energy at frequencies higher than some bandlimit or bandwidth B.
Examples

Audio signals. An audio signal is an example of an analogue signal. It occupies a frequency range from about 200 Hz to about 15KHz. Speech signals occupy a smaller range of frequencies, and telephone speech typically occupies the range 300 Hz to 3300 Hz.

The range of frequencies occupied by the signal is called its bandwidth \(B = f_2 - f_1 \sim f_2 \)
Examples

Television. A television signal is an analogue signal created by linearly scanning a two dimensional image. Typically the signal occupies a bandwidth of about 6 MHz.

Teletext is written (or drawn) communications that are interpreted visually.

Reproducing cells, in which the daughter cell's DNA contains information from the parent cells;

A disk drive

Our brain
ADC and DAC

send analogue signals over a digital communication system, or process them on a digital computer, to convert analogue signals to digital ones.

preformed by an analogue-to-digital converter (ADC).

The analogue signal is sampled (i.e. measured at regularly spaced instant)

The converse operation to the ADC is performed by a digital-to-analogue converter (DAC).
Example

signal

sampled signal

t

t

sampling signal

error in sampling due to low sampling frequency
How can we get the original signal back?
How fast we have to sample to recover the original signal?
Nyquist-Shannon Thm

(will be discussed in Chapter 3)

An analogue signal of bandwidth B can be completely recreated from its sampled from provided its sampled at a rate equal to at least twice its bandwidth $S \geq 2B$.
Boston Dynamics (find out yourself on what they have evolved)