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Abstract—In this paper we propose an end-to-end (E2E)
verifiable online shareholder voting system. Our system allows
different voters to have different weights associated with their
votes. These weights are dependent upon the number of shares
owned by voters in an organization. In our system, the voters
cast their votes over the Internet using a personal computing
device, say a smart-phone. The voting client interacts with an
online voting server which generates encrypted ballots for the
chosen candidates with a receipt. Every encrypted ballot comes
with a non-interactive zero-knowledge proof to prove the well-
formedness of the ciphertext. In addition, the voting system allows
the voters to verify their votes are cast as intended through voter
initiated auditing. All the encrypted ballots and non-interactive
proofs are made available on a publicly readable bulletin board.
By checking the receipt against the bulletin board, voters are
assured that their votes as recorded as cast. Finally, this e-
voting scheme allows everyone including third-party observers
to verify all votes are tallied as recorded without involving any
tallying authorities. Once the polling concludes, the tallying result
is available immediately on the bulletin board with publicly
verifiable audit data to allow everyone including third-party
observers to verify the tallying integrity of the entire election.

Index Terms—Electronic voting, Shareholder voting, End-
to-end verifiability, Zero knowledge proofs, Decisional Diffie-
Hellman assumption, Security proof.

I. INTRODUCTION

In a publicly traded company, shareholders have certain
rights pertaining to their equity investment. These include
the right to vote on certain corporate matters related to the
functioning of that company. For example, shareholders may
vote to elect the board of directors or approve proposed
motions, such as making tie-ups with external organizations or
making a new acquisition. Thus, shareholders play a crucial
role in the management of a company and execution of certain
policies.

Typically companies grant stockholders one vote per share,
thus giving those shareholders with a greater investment in
the company a greater say in the corporate decision-making.
Alternatively, each shareholder may have one vote, regardless
of how many shares they own. Shareholders can exercise their
voting rights in person at the corporation’s annual general
meeting (AGM) or remotely through postal voting. However,
postal voting can be a tedious process for ordinary voters
especially when they need to voter frequently. According

to the UK Shareholders Association, only 6% of individual
shareholders in the UK actually participate in voting.

An electronic voting system has the potential to make the
voting process more convenient by using a touch-screen Direct
Recording Electronic (DRE) machine for on-site voting or
using a smart phone for remote voting. In spite of the perceived
convenience with e-voting systems, they are often susceptible
to external attacks. An e-voting system is prone to many
forms of malicious attacks, e.g., intrusion, software alteration,
eavesdropping etc. These attacks pose a serious threat to the
security of any e-voting system, in particular the integrity of
the election result. If a hacker can modify the electronic votes
or tallies without being detected, the assurance on the tallying
integrity will be completely lost. The integrity of democracy
will be compromised as well.

To address the security of an e-voting system, researchers
have come up with various privacy and verifiability notions.
Different definitions of verifiability have been proposed in the
literature. These can be be found in [1], [6], [10], [22], [23],
[30], [31], [36], [37]. Similarly, there are many notions of
privacy in the literature as well. These could be found in [8]–
[15], [18], [25], [35].

One of the most essential properties of a secure e-voting
system is end-to-end verifiability, which covers the notions of
both individual and universal verifiabilities. With the individ-
ual verifiability, every voter is able to verify that their vote
is cast as intended and recorded as cast. With the universal
verifiability, every observer from the public is able to verify
that all the votes are tallied as recorded. However, a major dif-
ficulty with deploying many E2E verifiable e-voting systems is
that they require a set of trustworthy tallying authorities, who
are computing and cryptographic experts tasked to perform
complex cryptographic decryption and tallying operations. In
reality, finding and managing such authorities in an e-voting
environment has proved to be rather difficult [2].

In this paper we propose an E2E verifiable e-voting system
that does not require any tallying authorities and supports
weighted tallying. Our system is called “Share-Holder E-
voting” (SHE). The SHE system uses the DRE-ip protocol
proposed in [34] as a basic building block, but adds the support
for weighted tallying which is required for shareholder voting
applications. Our system allows shareholders to vote over the
internet with the facility to verify that their votes are cast,



recorded and tallied correctly (the same system can also be
easily adapted to use for onsite voting, e.g., during the AGM
meetings). Further, we will show that our scheme is secure
according to the privacy model proposed in [10].

The rest of the paper is organized as follows. In Section III
we discuss NIZK proof systems and the DDH assumption. In
Section IV, we present our new shareholder voting scheme. In
Section V we provide a comprehensive analysis of the scheme.
In Section VI we discuss the efficiency of our e-voting scheme.
Finally, we conclude the paper in Section VII.

II. RELATED WORK

Research on verifiable e-voting started with the seminal
work by Chaum. He proposed a voting system called Votegrity
based on visual cryptography [20]. In this scheme, an e-voting
machine called Direct Recording Electronic (DRE) issues two
sheets of transparencies for every cast vote. Each of the two
sheets does not reveal the choice of the voter on its own. But
if they are superposed by putting one on top of another, the
voter’s choice becomes visible. The voter is free to choose one
of the sheets as a receipt and the other one is returned to the
custom machine which then stores a digital copy of the same
before shredding it. Once the polling has finished, all the saved
voter receipts are published on the bulletin board, so that the
voters can verify that their ballots are not discarded. Chaum’s
solution highlights the important notion of end-to-end (E2E)
verifibility, which encompasses the following requirements:
individual voters are able to verify their votes are cast as
intended, and recorded as cast, and any public observers
(universal verifiers) are able to verify that all votes are tallied
as recorded.

Ryan proposed Prêt à Voter in [33]. This scheme is a variant
of Votegrity. Prêt à Voter uses paper ballots with randomized
candidate ordering. The ballot can be split into two halves
along a perforation in the middle. The left half contains a list
of candidates in random order. The right half has marking
spaces corresponding to each candidate on the left. The voter
simply puts a mark on the right corresponding to her preferred
candidate. Then she can detach the two halves. The right half
that contains a mark is then scanned by the voter and the
left half is destroyed. The voter can take the right half as
her receipt. The right half contains a code that specifies the
candidate order for that ballot. This code is used later by the
tallying authorities (also called trustees) to decrypt the vote
and subsequently compute the tally. The right half does not
reveal any information about the voter’s choice to anyone other
than the trustees. Again, the trustees cannot learn which ballot
was issued to a particular voter. Hence, the privacy of the
vote is preserved except in the event that the content of the
voter’s receipt gets decrypted by an over-the-threshold number
of colluding trustees.

Other E2E verifiable e-voting systems are MarkPledge [32],
Punchscan [26], Scantegrity [19], Scantegrity II [21], scratch
& vote [4], STAR-Vote [7], Adder [29], and Helios [5].
These systems use either mix-net [20] or homomorphic en-
cryption [3], but they all involve a set of trustworthy tallying

authorities (TAs) to perform the decryption and tallying pro-
cess in a publicly verifiable way. The TAs should be selected
from different parties so they are unlikely to collude. They
should also be able to manage the cryptographic keys and
perform cryptographic operations independently and compe-
tently. However, finding and managing such TAs in practice
has proved to be particularly difficult as shown in a campus
election using Helios [2].

In 2014, Hao et al. [28] proposed to address the above
issue by removing the need for TAs while retaining the
E2E verifiability. Their e-voting system is called DRE-i. In
this scheme, encrypted ballots are pre-computed before the
election. During voting, voters are given an encrypted ballot
corresponding to their choices of candidates. This encrypted
ballot does not reveal the actual vote and can safely be posted
on the publicly available bulletin board. Once all receipts
are published, a simple algorithm can extract the final tally
from the public data available on the bulletin board. However,
decryption of individual ballots is not possible given the
information available on the bulletin board. The bulletin board
also contains zero knowledge proofs to prove well-formedness
for each of the encrypted ballots. This scheme also enables a
voter to perform voter-initiated audits before casting the final
ballot, so the voter is ensured that their vote is cast as intended.

In the DRE-i system [28], when a voter demands an audit
against a particular ballot, the DRE machine is required to
reveal the ballot corresponding to the opposite choice of the
candidate. Given the pair of ballots it is trivial to find the one
that corresponds to the particular choice of the voter. Thus,
the voter can check whether or not her ballot corresponded to
her exact choice of the candidate. A voter can cast her final
ballot after performing a number of audits with the confidence
that the system correctly captures her vote cast as intended.

However, the pre-computation approach adopted in DRE-
i requires secure storage of the pre-computed balots, or the
privacy of the votes may be compromised. To address this
issue, in 2016, Shahandashti and Hao proposed an alternative
design of the DRE-i system called “DRE with integrity and
enhanced privacy” (DRE-ip) [34]. The DRE-ip system pro-
vides the same E2E verifiability as DRE-i without requiring
TAs. However, DRE-ip, in contrast to DRE-i, does not employ
pre-computation of encrypted ballots. Instad, it adopts real-
time computation of ballots during the voting process. As
a result, DRE-ip is more suitable for polling station voting
than DRE-i which requires secure storage of the pre-computed
ballots. The system removes the need for TAs by keeping an
aggregated form of the random factors in the memory, which
will only be published at the end of the election to enable
public verification of the tallying integrity without involving
any TAs. The system provides a strong privacy guarantee
that when the DRE is completely compromised, an attacker
will only be able to learn the partial tally at the time of
compromise, which is the minimum information leakage.

End-to-end verifiable voting systems like DRE-i and DRE-
ip are called “self-enforcing e-voting” [28], [34] as they do not
require any tallying authorities. These systems significantly
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ExpREALB (λ) ExpSIMB,S (λ)

σ ← K(1λ) (σ, κ)← S1(1λ)

(x,w, τ)← B1(σ) (x,w, τ)← B1(σ)
π ← P (σ, x, w) π ← S2(x, κ)

Return B2(π, τ) Return B2(π, τ)

simplify the election management by removing the TAs.
However, existing SEEV systems only support simple non-
ranked voting methods. For example, the basic versions of
DRE-i and DRE-ip are designed only for a single candidate
election with “Yes” and “No” choices, which can be extended
to support multiple candidates as explained in [28] and [34].
However, none of these e-voting schemes support assigning of
weights to the votes. In normal elections, every voter has only
one vote. However, in special scenarios such as shareholders
voting, a voter may have multiple votes (or weights). Hence,
the tallying should be computed based on the different weights
assigned to voters.

III. PRELIMINARIES

A. NIZK Proofs

An efficient non-interactive zero-knowledge proof [27] for
the relation R ∈ L consists of three PPT algorithms Γ =
(K,P, V ) as described below:
� K generates the common reference string. It takes as

input a λ at returns a common reference string, i.e.
σ ← K(1λ).

� P is the prover algorithm. It takes as input the common
reference string σ a statement x ∈ L and a witness w
such that R(x,w) = True, and returns a proof π. That
is, π ← P (σ, x, w).

� V is the verifier algorithm. It takes as input the common
reference string σ, the statement x, the proof π, and
returns v ∈ {0, 1}. That is, v ← V (σ, x, π).

Any non-interactive zero knowledge proof system (K,P, V )
must satisfy the following properties.
• Completeness: The NIZK proof system (K,P, V ) is com-

plete if Pr[σ ← K(1λ);π ← P (σ, x, w), V (σ, x, π) =
1 ∧R(x,w) = True] = 1

• Soundness: The NIZK proof system (K,P, V ) is sound
if Pr[σ ← K(1λ); (x, π)← D(σ);V (σ, x, π) = 1 ∧ x /∈
L] = 0

• Zero Knowledge: The NIZK proof system is zero knowl-
edge if there exists a simulator S = (S1, S2) such that
for all probabilistic polynomial time adversaries D =

(B1,B2), AdvNIZKB (λ) =

∣∣∣∣Pr [ExptREALB (λ) = 1
]
−

Pr
[
ExpSIMB,S (λ) = 1

] ∣∣∣∣ ≤ negl(λ)

B. Mathematical setup

Let G be a multiplicative group of order q. Also assume that
g, and g̃ are two generators of G, such that the relationship
between them is unknown to anyone. All operations are
modular in G with reference to a prime modulus p. We make

an assumption that the Decisional Diffie Hellman assumption
holds true in G. We write x = logg A, if for any A ∈ G,
gx = A. Again, for any A,B ∈ G, DHg(A,B) = Alogg B =
Blogg A.

C. Decisional Diffie Hellman assumption
ExpDDHA (λ)

A
$←− G

B
$←− G

C0 = DHg(A,B)

C1 = DHg(A,B) ∗ g
b

$←− {0, 1}
b′ ← A(g,A,B,Cb)

Return b = b′

Let, AdvDDHA (λ) =

∣∣∣∣Pr[ExpDDHA (λ) = 1] − 1
2

∣∣∣∣. We say

that the Decisional Diffie-Hellman assumption holds in the
group G, if for any PPT adversaryA, AdvDDHA (λ) ≤ negl(λ).

IV. THE SCHEME

a) Setup: The setup function takes as input the security
parameter λ, the number of candidates c, and the set of weights
W , and returns a group G of prime order p, two mutually
unrelated generators g, and g̃ of G. The DDH assumption
holds in G. It also returns the set V of valid votes. V is the set
of 1× c vectors such than exactly one element of each vector
is 1, and the rest are 0s. The Voting Server (VS) uses the setup
function to generate these parameters. Apart from these, the
VS also holds a 1 × c vector X = (x1, x2, . . . , xc) which is
initialized to 0. The VS also holds the dynamic tally variable
T = (T1, T2, . . . , Tc) which is also initialized to 0. The VS is
connected to an online bulletin board that functions as a public
authenticated channel: the data is readable to everyone but
writable only to authorized entities. The VS uses this channel
to post its datagrams on the bulletin board. Initially, the VS
stores the group G, g, g̃, and p on the bulletin board.

b) Voting Method: In this voting scheme, the voter
votes remotely through her computer or a mobile device as
long as Internet access is available. The election authority is-
sues login credentials to every voter at the time of registration.
The voter Vi uses these credentials to authenticate herself to
the VS. Once she is logged into the voting system, the system
presents the names of all c candidates and allows her to choose
one of them. Let us assume she chooses candidate j. Let,
(vi1, vi2, . . . , vic) be such that

vik =

{
1 if k = j

0 otherwise

When she chooses candidate j, the VS selects
ri1, ri2, . . . , ric ∈R Zp, and computes a ballot
Bi = (Bi1, Bi2, . . . , Bic), where Bik = 〈bik, b̃ik〉,
bik = grikgwi∗vik , and b̃ik = g̃rik for all k ∈ [1, c].
Here, wi ∈ W is the publicly known weight associated with
the voter Vi. The voting server returns Bi to the voter who
can print it on paper or can save it some other way. The
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voting server also posts the same on the bulletin board. Then
the voter is given two choices either to audit this ballot or
to confirm it. If the voter chooses to audit her ballot, the
voting server returns the the randomnesses (ri1, ri2, . . . , ric)
to the voter, and also posts it on the bulletin board. The
voter can print them on paper or can save them locally. The
voting server marks Bi and the randomnesses posted on the
bulletin board as an audited ballot. The audited ballot is not
taken into account while computing the tally. Every time a
voter audits a ballot, the voting server needs to start afresh
from the beginning, letting the voter make a fresh selection
of candidate. A voter can audit her ballot as many times as
she wishes to, however, in the end, the voter has to confirm
her ballot in order for getting her vote counted in the final
tally. When the voter chooses to confirm her ballot, the
voting server computes non-interactive zero knowledge proof
Πi = (πi1, πi2 . . . , πic, πi) of well-formedness of the ballot
Bi. The voting server appends Πi on the bulletin board and
marks both Bi, and Πi as the confirmed ballot of voter Vi.
For k ∈ [1, c], πik proves that given wi, bik, and b̃ik, vik is
either 0 or 1. πi proves that

∑c
k=1 vik = 1. Thus, as a whole

Πi proves that vik is 1 for exactly one value of k in [1, c].
The VS updates X and T as follows: xk = xk + rik and
Tk = Tk + wi ∗ vik for all k ∈ [1, c]. The construction of
these NIZK proofs can be found in [16], [17], [24], and [34].
While computing the NIZK proofs, the identifier of each
ballot should be included in the construction of the proof
(i.e., the hash function for the Fiat-Shamir transformation)
in order to prevent clash attacks. Once all the n voters have
voted, the VS posts T and X on the bulletin board. The tally
is correct if the following equations hold

n∏
i=1

bik = gxkgTk : ∀k ∈ [1, c]

n∏
i=1

b̃ik = g̃xk : ∀k ∈ [1, c]

V. ANALYSIS

A. Correctness

The following theorem proves that our shareholder voting
scheme is correct.

Lemma 1: The shareholder e-voting system outputs the
correct tally. That is in the scheme of section IV, Tk =∑n
i=1 wi ∗ vik,∀k ∈ [1, c].
Proof 1: Let us for the sake of argument assume that the VS

returns (X ′, T ′) instead of (X,T ) after the voting ends. Let’s
assume X ′ = (x′1, x

′
2, . . . , x

′
c), and T = (T ′1, T

′
2, . . . , T

′
c).

Hence, these parameters should satisfy the verification equa-
tions. Thus,

∏n
i=1 bik = gx

′
kgT

′
k : ∀k ∈ [1, c] and

∏n
i=1 b̃ik =

g̃x
′
k : ∀k ∈ [1, c] Now, we know that

∏n
i=1 bik = gxkgTk :

∀k ∈ [1, c], and
∏n
i=1 b̃ik = g̃xk : ∀k ∈ [1, c]. Hence,

g̃xk = g̃x
′
k : ∀k ∈ [1, c], and gxkgTk = gx

′
kgT

′
k : ∀k ∈ [1, c].

This means that xk = x′k and Tk = T ′k : ∀k ∈ [1, c]. Hence,
the tally is correct.

B. Verifiability

In this section, we show that our SHE e-voting scheme is
verifiable. For this purpose, we use the verifiability notion of
Smyth et al. [36] and prove that our scheme satisfies the two
requirements mentioned in their paper, namely ‘individual ver-
ifiability’ and ‘universal verifiability’. In our e-voting scheme,
the voter verifies her ballot through auditing as mentioned
before. Auditing can ensure verifiability of the ballot only if
the voting system satisfies the Individual Verifiability property
mentioned in [36], that is if a ballot corresponds to a unique
weighted vote.

1) Individual Verifiability: Let us consider the following
experiment ExpIVA (λ).

ExpIVA (λ)

(G, g, g̃, V, nmax, p)← Setup(1λ, c,W)

BB = (G, g, g̃, V, nmax, p, c,W)

(v, v′, w, w′)← ABallotGen(,)(BB)

if v = v′

return 0
B ← BallotGen(v, w)

B′ ← BallotGen(v′, w′)

return (B = B′) ∧ (B 6= ⊥) ∧ (B′ 6= ⊥)

BallotGen(v, w)

if v /∈ V ||w /∈ W return ⊥
Parse v as (v1, v2, . . . , vc)

r1, r2, . . . , rc ∈R Zp
bk = grkgvk , b̃k = g̃rk ,∀k ∈ [1, c]

Bk = 〈bk, b̃k〉
B = (B1, B2, . . . , Bk)

Let us define SuccIVA (λ) = Pr[ExpIVA (λ) = 1]. The
scheme is individually verifiable if SuccIVA (λ) ≤ negl(λ). The
following lemma proves that our SHE scheme is individually
verifiable.

Lemma 2: Our SHE scheme is individually verifiable.
Proof 2: If our SHE scheme is not individually verifiable

then SuccIVA (λ) > negl(λ). As such, there exists v, v′, w, w′

with non-negligible probability, such that w ∗ v 6= w′ ∗ v′,
and B = B′, where B = (B1, B2, . . . , Bc), and B′ =
(B′1, B

′
2, . . . , B

′
c). Here, Bk = 〈bk, b̃k〉 and B′k = 〈b′k, b̃′k〉 for

all k ∈ [1, c]. Hence, bk = b′k, and b̃k = b̃′k for all k ∈ [1, c].
Let us assume v = (v1, v2, . . . , vc), and v′ = (v′1, v

′
2, . . . , v

′
c).

Hence, bk = DHg̃(g, b̃k) ∗ gwvk = DHg̃(g, b̃
′
k) ∗ gwvk for all

k ∈ [1, c]. But, bk = b′k = DHg̃(g, b̃
′
k)∗gw′v′k for all k ∈ [1, c].

Hence, gwvk = gw
′v′k for all k ∈ [1, c]. Thus, wvk = w′v′k for

all k ∈ [1, c]. This is a contradiction since, according to our
assumption, wv 6= w′v′. Hence, the lemma is correct.

2) Universal verifiability: Let us consider another experi-
ment ExpUVA (λ). Here, V FY NIZK(B,Π) returns 1 if the
NIZK proof Π proves the well-formedness of the ballot B,
and returns 0 otherwise.

ExpUVA (λ)

(G, g, g̃, V, nmax, p)← Setup(1λ, c,W)

BB = (G, g, g̃, V, nmax, p, c,W)

(tally′, X)← ABallotGen(,)(BB)

tally ← Tally(BB)

return (tally 6= tally′)∧ V erify(BB,X, tally′)

4



Tally(BB,X)

extract all ballots (Bi,Πi) : i ∈ [1, n] in BB
Parse Bi as (Bi1, Bi2, . . . , Bic)

Parse Bij as 〈bij , b̃ij〉 for j ∈ [1, c]

if V FY NIZK(Bi,Πi) is 0 for any i ∈ [1, n]
return ⊥
return (t1, t2, . . . , tn) such that

tj = logg

( ∏n
i=1 bij

DHg̃(g,
∏n

i=1 b̃ij)

)
: j ∈ [1, c]

V erify(BB,X, tally′)

extract all ballots (Bi,Πi) : i ∈ [1, n] in BB
Parse Bi as (Bi1, Bi2, . . . , Bic)

Parse X as (x1, x2, . . . , xc)

Parse Bij as 〈bij , b̃ij〉 for j ∈ [1, c]

if V FY NIZK(Bi, πi) is 0 for any i ∈ [1, n]
return 0
Parse tally′ as (t1, t2, . . . , tn)

if ∃j ∈ [1, c], such that∏n
i=1 bij 6= gtj+xj or

∏n
i=1 b̃ij 6= g̃xj , then

return 0
return 1

BallotGen(v, w)

if v /∈ V ||w /∈ W return ⊥
Parse v as (v1, v2, . . . , vc)

r1, r2, . . . , rc ∈R Zp
bk = grkgvk , b̃k = g̃rk ,∀k ∈ [1, c]

Bk = 〈bk, b̃k〉
B = (B1, B2, . . . , Bk)

R = (r1, r2, . . . , rc)

return 〈B,R〉

Lemma 3: Our SHE e-voting scheme is universally verifi-
able.

Proof 3: Let us first assume that our scheme is not uni-
versally verifiable. Then the adversary can generate a bul-
letin board BB a vector X , and a tally tally′, such that
V erify(BB,X, tally′) is true but tally′ is not the correct
tally. Let us assume that the set of ballots are (Bi,Πi),
where Bi = (Bi1, Bi2, . . . , Bic), and Bij = 〈bij , b̃ij〉. If
all the NIZK proofs Πi verify then the correct tally will be
(T1, T2, . . . , Tc), where

∏n
i=1 bij = gTj ∗ DHg̃(g,

∏n
i=1 b̃ij)

for all j ∈ [1, c]. Let us assume that tally′ = (t1, t2, . . . , tc),
and X = (x1, x2, . . . , xc). Then if the verification holds then
the following equations must hold.

n∏
i=1

bij = gtjgxj ,∀j ∈ [1, c]

n∏
i=1

b̃ij = g̃xj ,∀j ∈ [1, c]

This means that
∏n
i=1 bij = gtj ∗ DHg̃(g,

∏n
i=1 b̃ij),∀j ∈

[1, c]. Hence, Tj = tj for all j ∈ [1, c]. Hence, our scheme is
universally verifiable.

C. Security Property

a) The Formal Model: Here, we show that our share-
holder e-voting system protects the privacy of the voters. In
a voting protocol, the adversary should only learn the public
tally and whatever she can infer from the tally. Any proba-
bilistic polynomial time adversary who has colluded with an
arbitrary number of voters cannot learn any extra information

ExpPOBA (λ)

(G, g, g̃, V, nmax, p)← Setup(1λ, c,W)

Tally = Tally′ = 0

X = (0, 0, . . . , 0)

BB = (G, g, g̃, V, nmax, p, c,W)

b
$←− {0, 1}

st← ABallotGen(,,)(BB)

if Tally 6= Tally′ abort
b← A(st, BB,X, T )

return b = b′

BallotGen(v0, v1, w)

if v0 /∈ V ||v1 /∈ V ||w /∈ W abort
V0 = V0

⋃
{v0}, V1 = V1

⋃
{v1}

Parse vb as (vb1, vb2, . . . , vbc)

r1, r2, . . . , rc ∈R Zp
bk = grkgvbk , b̃k = g̃rk ,∀k ∈ [1, c]

Bk = 〈bk, b̃k〉
B = (B1, B2, . . . , Bk)

R = (r1, r2, . . . , rc)

Π = NIZK(B,R)

X = X +R

BB = BB ∪ {B, π}
Tally = Tally + w ∗ vb

Tally′ = Tally′ + w ∗ v1−b

Fig. 1. The security experiment of vote privacy

which she cannot compute from the tally itself. We define
vote privacy with the help of the privacy model proposed by
Benaloh et al. in [9]. However, since our e-voting scheme
does not require any tallying authority, we have modified the
definition of Benaloh et al. to suite our needs. For this purpose,
we introduce the following security experiment ExpPOBA (λ)
as described in Figure 1. In this experiment, the challenger
first uses the setup function to generate the public parameters
of the protocol. The challenger initializes two 1 × c vectors
Tally and Tally′ to 0. The public parameters are posted on
the bulletin board. The adversary is given access to the bulletin
board. The adversary can use the BallotGen() oracle to caste
votes. The BallotGen oracle has 3 inputs namely v0, v1 and
w. They come from the adversary. v0 and v1 are votes and w
is the value of weight corresponding to them. The challenger
chooses a random bit b ∈ {0, 1}. Depending on the value of the
challenge bit b, the oracle chooses either v0 or v1 and generates
a ballot. The oracle BallotGen posts on the bulletin board, the
ballot and the NIZK proofs of well-formedness of the ballot.
Then the oracle updates the two variables Tally and Tally′

as follows: Tally = Tally + v0 and Tally′ = Tally′ + v1.
Once, the adversary has cast enough ballots, the challenger
checks whether Tally = Tally′ or not. If they are different,
the challenger aborts and the adversary loses. If they are same,
the adversary is given access to the two variables X and
T . Now, the adversary returns a bit. If this bit is same as
b, the adversary wins the game and she loses otherwise. In
the description of the oracle BallotGen(·) in Figure 1, the
function NIZK(B,R) generates the NIZK proof Π of well-
formedness of the ballot B, given the randomness R.
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We define the advantage of the adversary A against the
security experiment ExpPOBA (λ) as follows

AdvPOBA (λ) =

∣∣∣∣Pr[ExpPOBA (λ) = 1]− 1

2

∣∣∣∣
Definition 1: Let us consider the following security experi-

ment ExpDDHD (λ).

ExpDDHD (λ)

g
$←− G

A
$←− G, B $←− G

C0 = DHg(A,B)

C1
$←− G

b
$←− {0, 1}

b′ = D(g,A,B,Cb)
return (b = b′)

We denote the advantage of any adversary D against the
security experiment as AdvDDHD (λ). We define it as follows

AdvDDHD (λ) =

∣∣∣∣Pr[ExpDDHD (λ) = 1]− 1

2

∣∣∣∣
We say that the Decisional Diffie-Hellman assumption holds

in a group G, if for all PPT adversary D, AdvDDHA (λ) ≤
negl(λ).

Definition 2:
Let us consider the following security experiment

ExpDDH2
F (λ). The advantage of an adversary F against

the security experiment ExpDDH2
F (λ) is denoted as

AdvDDH2
F (λ). AdvDDH2

F (λ) =

∣∣∣∣Pr[ExpDDH2
F (λ) = 1]− 1

2

∣∣∣∣
ExpDDH2

F (λ)

g
$←− G

g̃
$←− G

x
$←− Zp

R
$←− G

C0 = (gx, g̃x)

C1 = (R, g̃x)

b
$←− {0, 1}

b′ ← F(g, g̃, Cb)

return b = b′

ExpDDH4
H (λ)

g
$←− G

g̃
$←− G

x
$←− Zp

R
$←− G

C0 = (gx ∗ g, g̃x)

C1 = (R, g̃x)

b
$←− {0, 1}

b′ ← G(g, g̃, Cb)

return b = b′

ExpDDH5
G (λ)

g
$←− G

g̃
$←− G

x
$←− Zp

R
$←− G

C0 = (gx, g̃x)

C1 = (gx ∗ g, g̃x)

b
$←− {0, 1}

b′ ← G(g, g̃, Cb)

return b = b′

Lemma 4: AdvDDH2
F (λ) ≤ AdvDDHD (λ).

Proof 4: We show that if there exists an adversary F
against the security experiment ExpDDH2

F (λ), then it could
be used in the construction of another adversary D against
the security experiment ExpDDHD (λ). D works as follows:
it receives as inputs: g,A,B and a challenge Cb. D assigns
g̃ = A, C ′b = (B,Cb). Note that if Cb = DHg(A,B),
then C ′b = (glogg B , g̃logg B). Else, C ′b = (R, g̃y), where
R = B ∈R G, and y = logA Cb ∈R Zp. If F can distinguish

between these two cases, D will be able to find b. Hence, the
lemma holds.

Definition 3: Let us consider another security experiment
ExpDDH4

H (λ). The advantage of an adversary G against this
security experiment is defined as

AdvDDH4
H (λ) =

∣∣∣∣Pr[ExpDDH4
H (λ) = 1]− 1

2

∣∣∣∣
Lemma 5: AdvDDH4

H (λ) ≤ AdvDDHD (λ).
Proof 5: We show that if there exists an adversary H

against the security experiment ExpDDH2
H (λ), then it could

be used in the construction of another adversary D against
the security experiment ExpDDHD (λ). D works as follows:
it receives as inputs: g,A,B and a challenge Cb. D assigns
g̃ = A, C ′b = (B ∗ g, Cb). Note that if Cb = DHg(A,B),
then C ′b = (glogg B ∗ g, g̃logg B). Else, C ′b = (R, g̃y), where
R = B ∗ g ∈R G, and y = logA Cb ∈R Zp. If H can
distinguish between these two cases, D will be able to find
b. Hence, the lemma holds.

From Lemma 4 and 5, we can state the following corollary.
Corollary 1: AdvDDH5

G (λ) ≤ AdvDDHD (λ).
Let us define yet another security experiment.
Definition 4: Let us consider the following security experi-

ment ExpDDH1
E (λ).

ExpDDH1
E (λ)

g
$←− G

g̃
$←− G

BB = BB
⋃
{(g, g̃)}

b
$←− {0, 1}

b′ ← EO(,)(BB)

return b = b′

O(w0, w1)

w = wb

x
$←− Zp

B = (gxgw, g̃x)

BB = BB
⋃
{B,w0, w1}

The advantage of E against the security experiment
ExpDDH1

E (λ) is given by

AdvDDH1
E (λ) =

∣∣∣∣Pr[ExpDDH1
E (λ) = 1]− 1

2

∣∣∣∣
Lemma 6: AdvDDH1

E (λ) ≤ AdvDDH5
G (λ).

Proof 6: We show that if there exists an adversary E
against the security experiment ExpDDH1

E (λ), then it could
be used to construct another adversary G against the security
experiment ExpDDH5

G (λ). G receives as inputs the follow-
ing items: g, g̃, and the challenge Cb ∈R {C0, C1}, where
C0 = (gx, g̃x), and C1 = (gx ∗ g, g̃x). G initializes BB as
(g, g̃). G answers all oracle queries of E . When G makes
a call O(w1, w2), for some w1, w2 ∈ Zp, then G selects
random y ∈R Zp, and computes D′ = gyDw1−w0 ∗ gw0 , and
E′ = g̃y ∗ Ew1−w0 . Here, (D,E) = Cb. E updates BB as
BB = BB

⋃
{(D,E), w0, w1}. Note that if b = 0, then D =

gy+(w1−w0)∗xgw0 , and if b = 1, then D = gy+(w1−w0)∗xgw1 .
Here E = g̃y+(w1−w0)∗x. Now, let us denote y+(w1−w0)∗x
by x′. Since y is uniformly random in Zp, so is x′. Hence,
(D,E) = (gx

′
gwb , g̃x

′
). Now, G returns what E returns. It is

easy to see that the result holds.
Lemma 7: AdvPOBA (λ) ≤ poly(λ) ∗(
AdvDDHD (λ) +AdvNIZKB (λ)

)
.
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Proof 7: We show that if there exists an adversary E
against the security experiment ExpPOBA (λ), it could be used
to construct an adversary E against the security experiment
ExpDDH1

E (λ). E works as follows: It creates a bulletin board
BB′ and stores g and g̃ on it. When E is invoked with the
input BB, E uses the Setup() function to generate the set of
votes V , the maximum number of vote nmax. The adversary
E initializes the tally variables Tally and Tally′ to 0. E
posts (G, g, g̃,V, p, c,W) on the bulletin board BB′. Note
that nmax ∈ poly(λ). E selects random nmax ∈ poly(λ). E
answers all queries to BallotGen(·) oracle made by A. Let
the i’th query to BallotGen(·) be of the form (v0i, v1i, wi).
E first checks whether or not vji ∈ V : j ∈ [0, 1] and
wi ∈ W . If any of the inputs is incorrect, then E aborts and
return a random bit. Else, E parses v0i and v1i as follows:
v0i = (v0i1, v0i2, . . . , v0ic), and v1i = (v1i1, v1i2, . . . , v1ic). E
makes oracle query to O(wi∗v0iα, wi∗v1iα) for all α ∈ [1, c].
The oracle returns 〈B,B′〉. E assigns biα = B, b̃iα = B′.
E assigns Bik = 〈bik, b̃ik〉, and Bi = (B1, B2, . . . , Bc). E
also computes simulated NIZK proofs of well-formedness of
Bi. Let this proof be denoted by Πi. E posts Bi,Π on the
bulletin board BB′. If A makes n queries to BallotGen(·),
then E makes nc queries. Since, c = O(1), the total number
of queries made by E will be in poly(λ). If A stops before
making nmax queries to BallotGen(·), then E returns a
random bit. If A makes nmax’th query to BallotGen(·),
then E checks whether or not

∑nmax

i=1 v0i =
∑nmax

i=1 v1i. If
they are unequal E aborts and returns a random bit. Else, it
selects R = (r1, r2, . . . , rc) ∈R Zcp, and computes bnmaxj =

grjgt
′
j/(
∏nmax−1
k=1 bkj), and b̃nmaxj = g̃rj/(

∏nmax−1
k=1 b̃kj) for

all j ∈ [1, c]. Here,
∑nmax

i=1 v0i = (t1, t2, . . . , tc). Now A
returns a bit. E returns the same bit.

Now, we calculate the success probability of
E . Pr[ExpDDH1

E (λ) = 1] = Pr[E Aborts ] ∗
Pr[ExpDDH1

E (λ) = 1
∣∣E Aborts ] + Pr[E Does not Abort ] ∗

Pr[ExpDDH1
E (λ) = 1

∣∣E Does not Abort ]. If E aborts,
then E returns a random bit. Hence, Pr[ExpDDH1

E (λ) =
1
∣∣E Aborts ] = 1

2 . E aborts when the total number of
queries made by A to BallotGen(·) does not equal nmax.
Since, the total number of queries made by A is poly(λ),
nmax ∈R poly(λ), Pr[E Does not Abort ] = 1

poly(λ) .

Thus, Pr[ExpDDH1
E (λ) = 1] =

(
1− 1

poly(λ)

)
∗

1
2 + 1

poly(λ) ∗ Pr[ExpPOBA (λ) = 1] We know that
AdvPOBA (λ) = Pr[ExpPOBA (λ) = 1] − 1

2 + AdvNIZKB (λ).
Hence, Pr[ExpDDH1

E (λ) = 1]− 1
2 ≥

AdvPOB
A (λ)−AdvNIZK

B (λ)
poly(λ) .

Thus,

AdvPOBA (λ) ≤ poly(λ) ∗
(
AdvDDH1

E (λ) +AdvNIZKB (λ)
)

Using Lemma 1 and 6, we can write,

AdvPOBA (λ) ≤ poly(λ) ∗
(
AdvDDHD (λ) +AdvNIZKB (λ)

)
Thus, our shareholder voting system is secure under Be-

naloh’s model if the Decisional Diffie-Hellman assumption
holds in G, and if the NIZK proof systems employed in the
scheme are indeed zero knowledge.

VI. EFFICIENCY

In this section, we discuss the efficiency of our scheme.
Since exponentiation is the costliest operation in our scheme,
we measure the efficiency in terms of the number of expo-
nentiations performed by the VS and the verifier. In SHE, the
VS needs to perform 2c exponentiations in order to generate
the ballot for any user. If on average a voter audits β ballots
before confirming her ballot (β+1 ballots totally), the VS will
need to perform 2c(β + 1) exponentiations. Each confirmed
ballot corresponds to a NIZK proof. The VS needs to perform
6c+ 2 exponentiations for generating the NIZK proof Πi per
voter. Again, each ballot is of size 2c. The audited ballots
contain additional randomness vectors, each of size c, making
the total size of audited ballots equal to 3c. The NIZK proof
associated with a confirmed ballot is of size 8c+ 4. Thus the
total communication cost per voter is c(3β + 8) + 4.

Let us now analyze the verification cost. Each of the audited
ballots can be verified by performing c exponentiations. The
NIZK proof Πi that correspond to each confirmed ballot, can
be verified by performing 8c + 4 exponentiations. Thus, on
an average the verifier needs to perform c(8 + β) + 4 expo-
nentiations. Table I shows a breakdown of the computation
and communication overhead on the VS per voter in our SHE
e-voting scheme.

Computation Cost Communication Cost

Type Ballot NIZKP Total Ballot Secret Key NIZKP Total

Audited 2c – 2c 2c c – 3c

Confirmed 2c 6c+ 2 8c+ 2 2c - 8c+ 4 10c+ 4

TABLE I
THE COMPUTATION AND COMMUNICATION COST FOR THE PROPOSED SHE

E-VOTING SCHEME.

VII. CONCLUSION

In this paper, we proposed SHE, an e-voting scheme that
allows shareholders of a company to vote remotely (or onsite)
on certain corporate matters. Our SHE scheme is end-to-end
verifiable according to the notion provided in the literature. In
addition, our scheme provides strong guarantees of the voter
privacy. When the voting server is completely compromised,
what the attacker can learn is limited to the partial tally at
the time of the compromise, which is minimum information
leakage. We have also shown that our scheme incurs reason-
able computational and communication load on the election
management system which makes it suitable for real-world
deployment.
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