
VERICONDOR: End-to-End Verifiable Condorcet Voting without
Tallying Authorities

Luke Harrison

University of Warwick

United Kingdom

l.harrison.3@warwick.ac.uk

Samiran Bag

University of Warwick

United Kingdom

Samiran.Bag@warwick.ac.uk

Hang Luo

Peking University

China

hang.luo@pku.edu.cn

Feng Hao

University of Warwick

United Kingdom

feng.hao@warwick.ac.uk

ABSTRACT
Condorcet voting, first proposed by Marquis de Condorcet in the

18th century, chooses a winner of an election as one that defeats ev-

ery other candidate by a simple majority. According to Condorcet’s

criterion, a Condorcet winner is the socially optimal choice in a

multi-candidate election. However, despite the crucial importance

of this voting system in social-choice theory, it has not been widely

used in practical applications. This is partly due to the complex

tallying procedure, and also the fact that several candidates may

form a tie. Existing systems that provide online Condorcet voting

services in the real world try to speed up the tallying process by

collecting and tallying Condorcet ballots in a digital form. However,

they require voters to completely trust the server. In this paper, we

propose VERICONDOR, the first end-to-end verifiable Condorcet e-

voting system without any tallying authorities. Our system allows

a voter to fully verify the tallying integrity without involving any

trustworthy tallying authorities and provides strong protection of

the ballot secrecy. One main challenge in our work lies in proving

the well-formedness of an encrypted ballot while being able to tally

the ballots in a publicly verifiable yet privacy-preserving manner.

We overcome this challenge by adopting a pairwise comparison

matrix and applying a novel vector-sum technique to achieve ex-

ceptional efficiency. The overall computational cost per ballot is

O(𝑛2) where 𝑛 is the number of candidates. This is probably the

best that one may hope for given the use of a 𝑛 ×𝑛 matrix to record

a Condorcet ballot. In case of a tie, we show how to apply known

Condorcet methods to break the tie in a publicly verifiable manner.

Finally, we present a prototype implementation and benchmark

performance to show the feasibility of our system.

CCS CONCEPTS
• Security and privacy→ Cryptography.

KEYWORDS
E2E verifiability; Self-enforcing e-voting; Condorcet voting; Con-

dorcet winner.

ACM Reference Format:
Luke Harrison, Samiran Bag, Hang Luo, and Feng Hao. 2022. VERICONDOR:

End-to-End Verifiable Condorcet Voting without Tallying Authorities. In

Proceedings of the 2022 ACM Asia Conference on Computer and Communica-
tions Security (ASIA CCS ’22), May 30–June 3, 2022, Nagasaki, Japan. ACM,

New York, NY, USA, 13 pages.

1 INTRODUCTION
One of the most popular electoral systems used in the real world

is the plurality voting, in which the candidate with the most votes

wins the election. Whilst plurality voting has been widely adopted

in practice, it is known to be prone to vote splitting. For example,

Trump won none of his first 17 victories in the 2016 Republican pri-

maries by a majority, but was still nominated because mainstream

republicans cancelled each other by splitting the votes [1].

Condorcet voting was originally proposed by a French philoso-

pher and mathematician, Marquis de Condorcet (1743 – 1794) as an

improvement over plurality voting [2]. The use of a majority rule

to decide a choice between two options was then well accepted.

Condorcet was the first to extend this majority argument to the

case of more than two options. Condorcet’s criteria states that a

candidate who defeats every other candidate by a simple majority

is the socially optimal choice. Such a candidate is called a Condorcet
winner. Conversely, a candidate who is defeated by every other

candidate in a series of pairwise elections is called a Condorcet loser.
Table 1 shows an example of ranking among Trump, Rubio and

Kasich based on 2016 polls [1]. In this example, 40% of voters prefer

Trump to Kasich, who in turn is preferred to Rubio. However, both

Kasich and Rubio would defeat Trump in a head-to-head contest,

as 60% of voters prefer either Kasich or Rubio to Trump. Hence, by

the Condorcet criterion, Trump is a Condorcet loser, or in other

words, a socially least optimal choice. However, he wins the plu-

rality voting as the other two candidates have split the anti-Trump

vote.

40% 35% 25%
Trump Rubio Kasich

Kasich Kasich Rubio

Rubio Trump Trump

Table 1: An example to illustrate vote splitting.

Condorcet voting is preferred when electing a socially optimal

choice among multiple candidates is considered desirable. This vot-

ing method has been adopted by many groups and organizations,

such as the Wikimedia Foundation, Debiant, Gentoo, Ubuntu, K

Desktop Environment (KDE), the pirate party of Sweden, Open-

Stack, ICANN, ACM, IEEE, USENIX and Google for internal deci-

sions and polls [3]. There is a free online Condorcet voting system,

namely, the Condorcet Internet Voting Service (CIVS)
1
created and

maintained by Andrew Myers of Cornell University. CIVS has been

used for more 30,000 elections with more than 500,000 votes cast.

OpaVote
2
is another online platform, providing Condorcet voting

as a paid commercial service.

Although Condorcet voting is regarded as one of the most im-

portant electoral systems in social choice theory, several difficulties

have prevented it from being used in wider applications. First, as

compared to plurality voting, Condorcet voting is significantlymore

complex in counting. When ballots are cast on paper, manual count-

ing can be a tedious and error-prone process. The use of digital

technologies can speed up counting, but it introduces threats that

digital data can be easily modified to alter the election result. Sec-

ond, in some elections, a Condorcet winner may not exist, e.g., there

may exist a circular relation that Candidate A is preferred over Can-

didate B, Candidate B is preferred over Candidate C and Candidate

C is preferred over Candidate A. This circular relation forms a tie. A

few solutions have been proposed to break the tie in the event that a

Condorcet winner does not exist [3]. However, how these solutions

break the tie in a publicly verifiable and privacy-preserving manner

has not been investigated. This will be addressed in our work.

In this paper, we will investigate a fully verifiable Condorcet e-

voting system, addressing both problems above. Our design builds

on the well-established notion of end-to-end verifiability [4], fulfill-

ing the following requirements.

(1) Cast as intended – any voter is able to verify that their votes

do indeed represent their chosen candidate and not another;

(2) Recorded as cast – any voter is able to verify that their vote

is recorded and included in the tallying process;

(3) Tallied as recorded – anyone (including any third-party ob-

server) is able to verify that all the recorded votes are indeed

tallied correctly.

Many E2E-verifiable voting systems have been proposed in the

literature. Most of the proposed solutions require a set of tallying

authority (TA), who are supposedly trustworthy individuals tasked

to perform complex decryption and tallying operation. Examples

of these solutions include Scantegrity [5], Scantegrity II [6], Prêt à

voter [7], STAR-Vote [8], DEMOS [9], DEMOS-2 [10] andHelios [11].

However, in practice, choosing and managing the TAs has proved

to be particularly difficult [12]. Recent advances in this field show

that this problem can be overcome by building E2E verifiable voting

systems that are free from any TAs. Researchers call this TA-free

E2E voting paradigm “self-enforcing voting” (SEEV) [13]. Examples

of the such systems include DRE-i [14], DRE-ip [15] and DRE-

Borda [16]. Among them, DRE-i and DRE-ip are for plurality voting

while DRE-Borda is for Borda-count voting.

While E2E verifiable systems for plurality voting have been ex-

tensively studied in the past, E2E verifiable solutions for Condorcet

voting have received almost no attention. This is unsatisfactory

given the crucial importance of Condorcet voting in electoral sys-

tems and social-choice theory. Existing online Condorcet voting

systems (e.g., CIVS and OpaVote) that provide voting services to

real-world voters are not E2E verifiable. In these systems, if the

1
https://civs1.civs.us/

2
https://www.opavote.com/

voting server is compromised, the tallying integrity of an election

will be completely lost.

In this paper we propose VERICONDOR, the first E2E-verifiable

Condorcet voting systemwithout any tallying authorities. Ourwork

is inspired by DRE-ip [15], which removes the need for TAs by can-

celling out random factors introduced in the public key encryption

process. We adopt a similar approach in our design. We note that

DRE-ip is designed for plurality voting, but Condorcet voting is

significantly more complex than plurality voting. Amajor challenge

in our work lies in how to encrypt the ballot in a form that allows

homomorphic tallying and meanwhile enables anyone to publicly

verify the well-formedness of the encrypted ballot in a secure and

efficient manner. We will explain how we have overcome this chal-

lenge by employing a novel vector-sum technique. Because of this

technique, we are able to achieve exceptional efficiency. VERICON-

DOR will elect a Condorcet winner when one exists; in the event

that a Condorcet winner does not exist, the system will elect an

alternative winner based on a selection of Condorcet methods in a

public verifiable and privacy-preserving manner.

We summarize our contributions as follows.

(1) We propose the first E2E verifiable Condorcet e-voting sys-

tem without any TAs. Our system is also exceptionally ef-

ficient, incurring only O(𝑛2) computation for each ballot

where 𝑛 is the number of candidates.

(2) We discuss how to elect an alternative winner, in the event

that the Condorcet winner does not exist, based on a selec-

tion of Condorcet methods.

(3) We build an open-source prototype for the VERICONDOR

system and present detailed experimental results to evaluate

system performance.

The rest of the paper is organized as follows. In Section 2, we

explain Condorcet voting in more detail as well as preliminaries

required for our proposed system. Section 3 presents the VERICON-

DOR system, followed by security analysis and proofs in Section 4.

In Section 5, we present a prototype of VERICONDOR and evaluate

its system performance. Section 6 reviews the related work. Finally,

Section 7 concludes the paper.

2 PRELIMINARIES
We now define how votes and tallies are represented in elections

using Condorcet methods and introduce the cryptographic prelimi-

naries required for our proposed VERICONDOR system.

2.1 Condorcet Voting
Elections using Condorcet methods typically require voters to rank

the candidates in order of preference. For an 𝑛-candidate election

with candidates belonging to the set 𝐶 = {0, 1, ..., 𝑛 − 1}, each vote

may be represented as a permutation p = (𝑐0, 𝑐1, ..., 𝑐𝑛−1) of the set
𝐶 , where 𝑐𝑎 ∈ 𝐶 for 𝑎 ∈ [0, 𝑛−1] and 𝑐𝑎 ≠ 𝑐𝑏 for all 𝑎, 𝑏 ∈ [0, 𝑛−1]
and 𝑎 ≠ 𝑏. A candidate 𝑐𝑎 is then preferred to a candidate 𝑐𝑏 if 𝑎 < 𝑏,

i.e., candidate 𝑐𝑎 appears before candidate 𝑐𝑏 in p when p is read

from left-to-right in descending order. We may illustrate this by

considering a 3-candidate election with 𝐶 = {0, 1, 2}. A voter may

choose the permutation (1, 2, 0) as their vote, meaning that they

prefer candidate 1 to all other candidates, candidate 2 to candidate

0 and candidate 0 to no other candidates.

https://civs1.civs.us/
https://www.opavote.com/

With a ranked list of preferences, it is possible to construct an

E2E verifiable voting system using one of the two trivial methods,

but neither is desirable. The first is to simply encrypt the ranked

list, pass the ciphertexts through a mix-net, and finally decrypt

all ciphertexts after mixing, similar to an early version of Helios

(1.0) [4]. Here TAs are required to run themix-net servers, which is a

non-trivial task. Furthermore, the decryption of all votes renders the

system vulnerable to an Italian attack [4], in which a voter is coerced

to choose an uncommon permutation of candidates so the coercer

can verify it in the decrypted votes. (Themix-net approach in Helios

1.0 was replaced by homomorphicc tallying in Helios 2.0 [11].) The

secondmethod is to encode all of the𝑛! possible ranked lists as voter

choices in the DRE-ip protocol [15]. But the O(𝑛!) complexity is

clearly unscalable. Among 𝑛! possible permutations, some of them

will be considered uncommon or obscure. Therefore, concerns on

an Italian attack still exist.

An alternative way to present a Condorcet vote is by using a

pairwise comparison matrix, which is useful for simplifying the

tallying process [17]. This matrix is also useful to minimize the

information leakage, hence addressing concerns of an Italian attack.

However, when the matrix is encrypted, how can we prove that

an encrypted matrix is well-formed without leaking information

about the plaintext vote? The solution to this problem is crucial

for the E2E verifiability of the system. In this paper we refer to a

matrix V = (𝑣𝑖 𝑗) as a pairwise comparison matrix if it satisfies the

following properties:

∀𝑖 ∈ 𝐶 : 𝑣𝑖𝑖 = 0 (P1)

∀𝑖, 𝑗 ∈ 𝐶 : 𝑣𝑖 𝑗 = 0 ∨ 𝑣𝑖 𝑗 = 1 (P2)

∀𝑖, 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗 : 𝑣𝑖 𝑗 = 0⇔ 𝑣 𝑗𝑖 = 1 (P3)

(P1) simply states that no candidate can be preferred to themselves.

(P2) states that each entry in the matrix V can only be 0 or 1. (P3)

tells us that if a voter prefers candidate 𝑖 to candidate 𝑗 , then they

do not prefer candidate 𝑗 to candidate 𝑖 and hence 𝑣𝑖 𝑗 and 𝑣 𝑗𝑖 cannot

equal the same value.

Given a permutation p of candidates, we can construct a pairwise

comparison matrix V by assigning 𝑣𝑖 𝑗 = 1 and 𝑣 𝑗𝑖 = 0 if candidate 𝑖

is preferred to candidate 𝑗 in p. In the case that 𝑖 and 𝑗 represent

the same candidate, i.e., 𝑖 = 𝑗 , then we assign 𝑣𝑖𝑖 = 0. Figure 1

illustrates this idea by showing the pairwise comparison matrix for

the vote (1, 2, 0).

0 1 2

0 0 0 0 ©«
0 0 0

1 0 1

1 0 0

ª®¬(1, 2, 0) → 1 1 0 1 →
2 1 0 0

Figure 1: Obtaining a comparison matrix from (1, 2, 0).

Assuming that there is a set of 𝐾 voters in an election, we may

represent the pairwise comparison matrix for a voter 𝑘 ∈ 𝐾 by V𝑘 .
Tallying the votes in an election is then straightforward and simply

consists of computing

∑
𝑘∈𝐾 V𝑘 using matrix addition. We refer to

the resulting matrix as the sum matrix. To illustrate, the sum matrix

for the votes (1, 2, 0), (1, 0, 2) and (0, 1, 2) is given in Figure 2.

©«
0 0 0

1 0 1

1 0 0

ª®¬ + ©«
0 0 1

1 0 1

0 0 0

ª®¬ + ©«
0 1 1

0 0 1

0 0 0

ª®¬ =
©«
0 1 2

2 0 3

1 0 0

ª®¬
Figure 2: An illustration of a sum matrix encompassing the
three votes (1, 2, 0), (1, 0, 2), and (0, 1, 2).

2.2 Cycles and Constraints
It may be the case that a Condorcet winner does not exist for an

election at all; if an election determines that candidate 0 is preferred

to candidate 1, candidate 1 is preferred to candidate 2 and candidate

2 is preferred to candidate 0 then there is no candidate who beats all

other candidates. This is called a Condorcet cycle [2]. A Condorcet

cycle essentially indicates a tie between certain candidates. To break

the tie, various solutions have been proposed, including the Mini-

max method, the Schulze method, Copeland’s method and Black’s

method. We will discuss how these methods may be integrated into

our system in a publicly verifiable manner in Section 3.5.

When we represent a Condorcet vote in a comparison matrix,

it is critical to ensure that the matrix, after being encrypted, is

well-formed. Consider the following matrix as an example.

©«
0 0 1

1 0 0

0 1 0

ª®¬ (1)

The above matrix satisfies (P1), (P2) and (P3), but does not repre-

sent a valid ranked list. Here, candidate 0 is preferred to candidate 2,

candidate 2 is preferred to candidate 1 and candidate 1 is preferred

to candidate 0. This forms a cycle. Clearly, the vote is malformed.

We define a pairwise comparison matrix to be valid or well-
formed if it represents one of the 𝑛! fully ranked lists for an 𝑛-

candidate election. An invalid pairwise comparison matrix is one

that contains a cycle or breaks transitivity constraints. Transitivity

constraints refer to the basic property that a voter’s preferences

are transitive, e.g., if V(0, 1) = 1 and V(1, 2) = 1 then we must have

V(0, 2) = 1. Let us first consider the transitivity constraints for

three candidates (out of a total of 𝑛 candidates). We must take every

triple of unique candidates (𝑖, 𝑗, 𝑘), where 𝑖, 𝑗, 𝑘 ∈ 𝐶 ∧ 𝑖 ≠ 𝑗 ≠ 𝑘

and verify whether the following logical statements hold:

V(𝑖, 𝑗) = 1 ∧ V(𝑗, 𝑘) = 1⇒ V(𝑖, 𝑘) = 1

V(𝑖, 𝑗) = 0 ∧ V(𝑗, 𝑘) = 0⇒ V(𝑖, 𝑘) = 0 (2)

We define each of the statements in Equation 2 as a constraint. To
enforce each constraint will require a corresponding zero-knowledge

proof (ZKP). We will also need a conjunctive ZKP to prove that

all constraints are satisfied. To quantify the number of constraints,

first let us consider the transitive relations among three candidates.

It is not difficult to count that the number of constraints required

is

(𝑛
3

)
× 3! × 2 = 2𝑛(𝑛 − 1) (𝑛 − 2). Similarly, for four candidates,

the number of the constraints required to define the transitive re-

lations is

(𝑛
4

)
× 4! × 2. In total, the number of constraints will be∑𝑛

𝑖=3

(𝑛
𝑖

)
× 𝑖! × 2. With more candidates 𝑛, the size of the ZKP will

grow exponentially. This is clearly unscalable.

We propose a muchmore efficient approach for verifying validity

based upon an observation between valid pairwise comparison

matrices and their corresponding row sums. We observe that the

vectors of row sums for the valid matrix in Figure 1 and the invalid

one in Equation 1 are (0, 2, 1) and (1, 1, 2) respectively; the former

is a permutation of the set of candidates 𝐶 , whilst the latter is not.

This observation actually holds for any pairwise comparison matrix,

which we will prove in Theorem 2.1.

Theorem 2.1. A pairwise comparison matrix V is valid if and only

if (∑𝑛−1𝑗=0 𝑣𝑖 𝑗)𝑛−1𝑖=0
, the vector of row sums for V, is a permutation of

the set of candidates 𝐶 .

Proof (⇒). First, we prove that for a valid matrix, the vector of

row sums is a permutation of 𝐶 . Consider an 𝑛-candidate election

with a set of candidates 𝐶 = {0, ..., 𝑛 − 1}. Let V = (𝑣𝑖 𝑗) be a

valid pairwise comparison matrix representing one of the possible

𝑛! votes. We may write the vote (permutation) encoded by V as

p = (𝑐0, 𝑐1, . . . , 𝑐𝑛−1) where 𝑐𝑎 ∈ 𝐶 for 𝑎 ∈ 𝐶 and 𝑐𝑎 ≠ 𝑐𝑏 for

all 𝑎, 𝑏 ∈ 𝐶 and 𝑎 ≠ 𝑏. We consider each element in p one at a

time, starting with 𝑐0. Element 𝑐0 is preferred to 𝑐1, 𝑐2, . . . , 𝑐𝑛−1 by
p. Hence 𝑣𝑐0𝑐1 = 1, 𝑣𝑐1𝑐0 = 0, . . . , 𝑣𝑐0𝑐𝑛−1 = 1, 𝑣𝑐𝑛−1𝑐0 = 0. There

are 𝑛 − 1 entries of 1 in the row of V corresponding to 𝑐0. Now

consider 𝑐1: 𝑐1 is preferred to 𝑐2, . . . , 𝑐𝑛−1. Hence 𝑣𝑐1𝑐2 = 1, 𝑣𝑐2𝑐1 =

0, . . . , 𝑣𝑐1𝑐𝑛−1 = 1, 𝑣𝑐𝑛−1𝑐1 = 0. There are exactly 𝑛 − 2 entries of

1 in the row of V corresponding to 𝑐1. Repeating this process for

each 𝑐 ∈ 𝐶 results in each row of V having a unique number of

entries of 1 and hence

∑𝑛−1
𝑗=0 𝑣𝑖 𝑗 gives unique results for unique

values of 𝑖 , with results belonging to [0, 𝑛 − 1]. This is by definition

a permutation over 𝐶 .

(⇐). Next, we show that if the vector of row sums in a matrix is

a permutation of𝐶 , the matrix is valid. Suppose we have a pairwise

comparison matrix V with the property that its vector of row sums

is a permutation over a set of candidates 𝐶 = {0, ..., 𝑛 − 1}. Denote
the vector of row sums for V𝑘 as VΣ

𝑘
. By definition each element in

VΣ
must belong to 𝐶 and VΣ

must contain no duplicated elements.

Hence there is a unique maximum in VΣ
, being the value 𝑛 − 1.

Now consider each element in VΣ
in turn, starting with 𝑛 − 1: there

must be an 𝑖0 such that

∑𝑛−1
𝑗=0 𝑣𝑖0 𝑗 = 𝑛 − 1. By the definition of a

pairwise comparisonmatrix, row 𝑖0 of V must consist of exactly𝑛−1
entries of 1. Hence for all other rows 𝑖𝑘 , where 0 ≤ 𝑘 < 𝑛 − 1, the
candidate represented by row 𝑖0 is preferred to all other candidates

represented by rows 𝑖𝑘 . Now consider the next largest element of

VΣ
, being the unique value 𝑛 − 2: there must be an 𝑖1 such that∑𝑛−1
𝑗=0 𝑣𝑖1 𝑗 = 𝑛 − 2. Row 𝑖1 must consist of exactly 𝑛 − 2 entries of 1,

again by definition of a pairwise comparison matrix as well as by

our previous deduction that row 𝑖0 consists of 𝑛 − 1 entries of 1, so
entry 𝑣𝑖1𝑖0 must be a 0. Hence the candidate represented by row 𝑖1 is

preferred to all other candidates 𝑖𝑘 where 0 ≤ 𝑘 < 𝑛 − 2. Repeating
this process for each row results in the candidate represented by

row 𝑖0 being preferred to the candidate represented by row 𝑖1, who

is then preferred to the candidate represented by row 𝑖2 and so

on, down to the candidate represented by row 𝑖𝑛−1. We may write

this as the permutation p = (𝑖0, 𝑖1, . . . , 𝑖𝑛−1). This is one of the 𝑛!
possible votes for this election. This completes the proof. □

Theorem 2.1 is a crucial result that provides an exceptionally

efficient way to verify the validity of pairwise comparison matrices

compared to the approaches that quantify transitivity constraints.

Essentially, this theorem allows us to change a complex problem of

proving the well-formedness of the comparison matrix to a simpler

but equivalent problem of proving the the vector sum is a permu-

tation of 𝐶 . This will greatly simplify the zero-knowledge proofs

(ZKPs) in VERICONDOR as we will explain below.

3 PROPOSED SOLUTION
We now provide an E2E-verifiable voting system for a Condorcet

election without involving any TAs. We will describe the system

in the context of voting at a polling station using a touch-screen

direct recording electronic (DRE)machine. However, the underlying

protocol can also be implemented for online voting.

3.1 Cryptographic Setting
Let 𝑝 and 𝑞 be two large primes such that 𝑞 | 𝑝 − 1, i.e., 𝑞 divides
𝑝 − 1. We define G𝑞 to be the subgroup of prime order 𝑞 of the

group Z∗𝑝 . All the modular operations are performed with reference

to the modulus 𝑝 unless otherwise specified. Let 𝑔0 and 𝑔1 be two

random generators of G𝑞 , whose discrete logarithm is unknown.

We can first fix the first generator 𝑔0 to be any non-identity element

in G𝑞 and compute the second generator 𝑔1 based on a one-way

hash function including 𝑔0 and public contextual information (e.g.,

election title, date and candidates) in the input [18].

We assume the decision Diffie-Hellman (DDH) assumption to be

hard in G𝑞 . We state the DDH assumption [19] as follows:

Assumption 3.1. Given𝑔,𝑔𝑎, 𝑔𝑏 andΩ ∈ {𝑔𝑎𝑏 , 𝑅}, where𝑎, 𝑏 ∈ Z∗𝑞
and 𝑅 ∈ G𝑞 , it is hard to decide whether Ω = 𝑔𝑎𝑏 or Ω = 𝑅.

3.2 Requirements
Much like any other E2E voting system [4], we require a publicly

accessible bulletin board (BB) to facilitate both vote auditing and

E2E-verifiability. The DRE-machines are assumed to only have

append-only access to the BB over a secure channel. We also assume

that each DRE-machine is connected to a printer for printing paper-

based receipts of voting for each voter. A mechanism for voters

to rank candidates in order of preference is also required for each

DRE-machine, such as by using a touch screen to allow voters to

reorganise the order of candidates to their liking. In our current

system, we only support full ranking of all candidates, and will

leave support for partial ranking to future work.

3.3 Condorcet E-Voting
On the election day, a user is first authenticated at the polling

station and then obtains an anonymous credential, such as a one-

time passcode or a random smart card. The voter enters a private

voting booth and logs onto the DRE machine with the obtained

credential to start voting.

In VERICONDOR, casting a vote is done in two steps. In the

first step, a voter ranks 𝑛 candidates in the order of preferences

and clicks the “next” button. The printer will print the first half of

the receipt, containing the encrypted ballot. In the second step, the

voter is prompted to choose “confirm” or “cancel” for the selection.

In case of “confirm”, the printer will print the second half of the

receipt, containing a confirmation message that the vote has been

cast. In case of “cancel”, the printer will print the second half of

the receipt containing the selected order of candidates in plaintext

and random factors used in the ballot encryption to allow voter-

initiated auditing [20]. All receipts are digitally signed to prove

data authenticity and are published on the bulletin board. We will

explain each of the two steps in more detail below.

In the first step, after the voter has ranked all 𝑛 candidates,

the system will represent the ranked list using an 𝑛 × 𝑛 pairwise

comparison matrix. Assuming that there is a set of 𝐾 voters in an

election, we denote the plaintext pairwise comparison matrix for

a voter 𝑘 ∈ 𝐾 as V𝑘 = (𝑣𝑖 𝑗)𝑘 . The DRE-machine holds two 𝑛 × 𝑛
matrices S = (𝑠𝑖 𝑗) and T = (𝑡𝑖 𝑗) which are both initialised to 0𝑛,𝑛 .
Once a voter clicks the “next” button, the DRE-machine generates

an 𝑛×𝑛 matrix X𝑘 = (𝑥𝑖 𝑗)𝑘 containing random numbers as follows:

∀𝑖 ∈ 𝐶 : 𝑥𝑖𝑖 = 0 (X1)

∀𝑖, 𝑗 ∈ 𝐶 : 𝑖 ≠ 𝑗 ⇒ 𝑥𝑖 𝑗 ∈𝑅 Z∗𝑞 (X2)

(X1) states that the main diagonal of V𝑘 always consists of 0s. (X2)

represents a selection of values taken uniformly at random from

Z∗𝑞 . The DRE translates the ranked list into an 𝑛 × 𝑛 matrix and

produces an encrypted ballot 𝐵𝑘 = ⟨𝑏𝑘 (𝑖, 𝑗), 𝑌𝑘 (𝑖, 𝑗)⟩𝑘 where:

∀𝑖 ∈ 𝐶 : 𝑏𝑘 (𝑖, 𝑖) = 1 (BC1)

∀𝑖, 𝑗 ∈ 𝐶 : 𝑖 ≠ 𝑗 ⇒ 𝑏𝑘 (𝑖, 𝑗) = 𝑔
𝑥𝑖 𝑗
0
𝑔
𝑣𝑖 𝑗
0

(BC2)

∀𝑖, 𝑗 ∈ 𝐶 : 𝑌𝑘 (𝑖, 𝑗) = 𝑔
𝑥𝑖 𝑗
1

(BC3)

In these equations, “BC” refers to ballot construction. (BC1) states
that the encryption of a ranking between the same candidate is just

1. This is because for any candidate 𝑖 , both 𝑥𝑖𝑖 and 𝑣𝑖𝑖 are 0 and

hence 𝑏𝑘 (𝑖, 𝑖) must equal 1. (BC2) and (BC3) represent the main

encryption of V𝑘 using X𝑘 , 𝑔0 and 𝑔1, fulfilling the following logical
relation (which can be enforced by a disjunctive ZKP [21]):(
log𝑔0

𝑏𝑘 (𝑖, 𝑗)/𝑔0 = log𝑔1
𝑌𝑘 (𝑖, 𝑗)

)
∨

(
log𝑔0

𝑏𝑘 (𝑖, 𝑗) = log𝑔1
𝑌𝑘 (𝑖, 𝑗)

)
The DRE-machine additionally constructs a set of non-interactive

ZKPs (NIZKPs) confirming the well-formedness of the ballot 𝐵𝑘 ; we

discuss the details in Section 3.4. Each ballot 𝐵𝑘 and its correspond-

ing set of NIZKPs are printed on a paper receipt, along with a digital

signature to prove authenticity. (In a practical implementation, it is

possible to print only a hash rather than the full data on the user

receipt, and publish the hash together with the full cryptographic

data on BB for public verification [18].)

In the second step, the voter can choose to either audit (i.e.,

cancel) or confirm their ballot. In the case of auditing the ballot, the

DRE-machine additionally prints the voter’s ranking of candidates,

and the random matrix X𝑘 on the same receipt along with a digital

signature. The ballot 𝐵𝑘 is included in a set A of audited ballots and

the entire content of the receipt is posted to the BB as an audited

ballot. The voter can check that the printed ranking of candidates

reflects their original selection in Step 1; if not, a dispute should be

raised immediately to the election staff in the polling station. The

voter does not need to understand any cryptographic data printed

on the receipt. They just need to check the same receipt is published

on the bulletin board.

In the case that the voter chooses to confirm the ballot, the

DRE-machine updates the matrices S and T as follows:

∀𝑖, 𝑗 ∈ 𝐶 : 𝑠𝑖 𝑗 = 𝑠𝑖 𝑗 + 𝑥𝑖 𝑗 (T1)

∀𝑖, 𝑗 ∈ 𝐶 : 𝑡𝑖 𝑗 = 𝑡𝑖 𝑗 + 𝑣𝑖 𝑗 (T2)

The DRE-machine then securely deletes X𝑘 and V𝑘 . The machine

will print a message to the voter receipt to confirm that the ballot

has been cast and will publish the receipt on the BB. The voter just

needs to check that the same receipt is published. The ballot 𝐵𝑘
will be included in a set C of confirmed ballots recorded on the BB.

When the election day finishes, the DRE-machine publishes S
and T on the BB. Here T is the aggregated result for the comparison

matrix. To verify the tallying integrity of this result, anyone can

perform the following checks: 1) the NIZKPs of well-formedness

for each ballot hold; 2) the digital signatures are valid; 3) and the

following equations hold:

∀𝑖, 𝑗 ∈ 𝐶 : 𝑔
𝑠𝑖 𝑗
0
𝑔
𝑡𝑖 𝑗
0

=
∏
𝑘∈C

𝑏𝑘 (𝑖, 𝑗) (TV1)

∀𝑖, 𝑗 ∈ 𝐶 : 𝑔
𝑠𝑖 𝑗
1

=
∏
𝑘∈C

𝑌𝑘 (𝑖, 𝑗) (TV2)

We use “TV” to refer to tally verification. (TV1) and (TV2) can

be performed by anyone with read access to the public BB.

3.4 NIZKPs of Well-formedness
NIZKPs are necessary to ensure the well-formedness of ballots. We

define a ballot 𝐵𝑘 = ⟨𝑏𝑘 (𝑖, 𝑗), 𝑌𝑘 (𝑖, 𝑗)⟩ to be well-formed if 𝑏𝑘 (𝑖, 𝑗)
is the encryption of a pairwise comparison matrix and this pairwise

comparison matrix is valid: representing one of the 𝑛! possibilities

for an 𝑛-candidate election. We will apply Theorem 2.1 to verify if

the pairwise comparison matrix V𝑘 is valid by computing its vector

of row sums VΣ
𝑘
and verifying whether this vector is a permutation

over the set of candidates 𝐶 . Based on Bag et al. [16], it is sufficient

to prove the following logical statement:∧
𝑐 ∈𝐶

𝑐 ∈ VΣ
𝑘

These relations prove that each 𝑐 ∈ 𝐶 is an element of the vector VΣ
𝑘
.

Given that𝐶 consists of only distinct values, and the cardinality of𝐶

is equal to the length of VΣ
𝑘
, it follows that𝐶 must be a permutation

ofVΣ
𝑘
and equivalently thatVΣ

𝑘
is a permutation of𝐶 . These relations

are equivalent to the following logical statement:∨
𝑖 ∈𝐶

𝑏Π
𝑘
(𝑖) = 𝑔XΣ

𝑘
(𝑖) + 𝑗

0

Where 𝑏Π
𝑘
(𝑖) = ∏𝑛−1

𝑗=0 𝑏𝑘 (𝑖, 𝑗) and XΣ
𝑘
(𝑖) = ∑𝑛−1

𝑗=0 X𝑘 (𝑖, 𝑗) for some

𝑖 ∈ 𝐶 . We combine the above logical statement with four other

logical statements to prove that a plaintext pairwise comparison

matrix 𝑏𝑘 also satisfies (P1), (P2) and (P3) when encrypted; this

produces the proof of well-formedness 𝑃𝑊𝐹 {𝐵𝑘 = ⟨𝑏𝑘 , 𝑌𝑘 ⟩}.
𝑃𝑊𝐹 {𝐵𝑘 = ⟨𝑏𝑘 , 𝑌𝑘 ⟩} =

𝑃𝐾

{
X𝑘 : 𝑌𝑘 (𝑖, 𝑗) = 𝑔

𝑥𝑖 𝑗
1

(C1)

∧ 𝑏𝑘 (𝑖, 𝑖) = 𝑔𝑥𝑖𝑖0
(C2)

∧ (𝑏𝑘 (𝑖, 𝑗) = 𝑔
𝑥𝑖 𝑗
0
∨ 𝑏𝑘 (𝑖, 𝑗)/𝑔0 = 𝑔

𝑥𝑖 𝑗
0
) (C3)

∧
(
𝑖 ≠ 𝑗 ⇒ (𝑏𝑘 (𝑖, 𝑗) = 𝑔

𝑥𝑖 𝑗
0
∧ 𝑏𝑘 (𝑗, 𝑖)/𝑔0 = 𝑔

𝑥 𝑗𝑖
0
)

∨ (𝑏𝑘 (𝑖, 𝑗)/𝑔0 = 𝑔
𝑥𝑖 𝑗
0
∧ 𝑏𝑘 (𝑗, 𝑖) = 𝑔

𝑥 𝑗𝑖
0
)
)

(C4)

∧
∨
𝑖 ∈𝐶

𝑏Π
𝑘
(𝑖) = 𝑔XΣ

𝑘
(𝑖)+𝑗

0

}
(C5)

For brevity we refer to this entire proof as just 𝑃𝑊𝐹 {𝐵𝑘 } from now

on. 𝑃𝑊𝐹 {𝐵𝑘 } is realised as a proof of knowledge 𝑃𝐾 {X𝑘 } consist-
ing of five conjunctive statements labelled (C1) through to (C5)

above. We construct the full proof of knowledge by starting with

proofs based upon Schnorr’s signature scheme [22]. These proofs

are then combined using standard techniques to create proofs of

conjunctive knowledge and disjunctive knowledge [21, 23]. We

also adopt the ZKP proposed by Bag et al. [16] for proving that

one set is a permutation of another. Bag et al’s technique is sim-

ple and reasonably efficient with a O(𝑛2) complexity. In future

work, we will investigate potentially improving Bag et al.’s scheme

to O(𝑛 log𝑛) by using BulletProof [24], but this will make no dif-

ference to the overall O(𝑛2) complexity in our system, which is

determined by the encryption of the matrix. These ZKPs are then

made non-interactive by applying the Fiat-Shamir heuristic [25].

3.5 Electing a Winner
In a Condorcet election, several candidates may end up with a tie

(forming a Condorcet circle). To break the tie, several Condorcet

methods have been proposed in the past literature, such as Black’s

method [26], the Minimax method [27, 28], the Schulze method [3],

Copeland’s method [29], Ranked Pairs [30], Dodgson’s method [31]

and the Kemeny-Young method [32, 33]. We now discuss how our

proposed VERICONDOR system could be used in conjunction with

existing Condorcet methods, to elect an alternative winner in a

publicly verifiable manner, in the event that there is no Condorcet

winner for an election. In particular we focus upon Black’s method,

the Minimax method, the Schulze method, Copeland’s method and

Ranked Pairs. We do not consider either Dodgson’s method or the

Kemeny-Young method as these two methods both require solving

an NP-hard problem when determining the Condorcet winner [34]

and hence are much less efficient than the other listed methods.

The methods which we do consider each provide different degrees

of simplicity as well as satisfying different voting system criteria

and hence anyone running an election using VERICONDOR can

choose a suitable and efficient Condorcet method for their election.

Black’s method. Black’s method uses the Borda count system

in the event that there is no Condorcet winner for an election [26].

Adapting VERICONDOR to support Black’s method is straightfor-

ward; we simply run VERICONDOR and DRE-Borda [16] in parallel.

Running these two methods in parallel is necessary as Borda count

requires additional information concerning a number of points

given to each candidate; this information cannot be feasibly ac-

quired from the comparison matrix. Running VERICONDOR in

parallel with DRE-Borda will increase the computational cost since

two different electoral methods need to be run simultaneously.

TheMinimaxmethod. The Minimax method elects the winner

whose greatest pairwise defeat is smaller than the greatest pairwise

defeat of any other candidate [27, 28]. Electing a winner using the

Minimax method in VERICONDOR is straightforward since the

aggregated pairwise comparison matrix contains all information

needed; the winner is the result of argmin𝑖∈𝐶 (max𝑗 ∈𝐶 (T(𝑗, 𝑖))).
The benefits of using the Minimax method are its simplicity as well

as its efficiency; electing a winner using the Minimax method has

a runtime of O(𝑛2).

The Schulze method. The Schulze method may be divided into

two stages [3]; the first stage determines potential winners and

the second stage computes a Tie-Breaking Ranking of Candidates

(TBRC) to elect a winner if there are multiple potential winners.

It is straightforward to apply the first stage of the Schulze method

to VERICONDOR. We first define a path from a candidate 𝑖 to a

candidate 𝑗 as a permutation p where p(0) = 𝑖 and p(𝑛− 1) = 𝑗 . We

then define the strength of a path p as 𝑠 (p) = min𝑙 ∈𝐶 (T(p(𝑙), p(𝑙 +
1)) − T(p(𝑙 + 1), p(𝑙))). Denote by 𝑃𝑖 𝑗 the set of all paths between
two candidates 𝑖 and 𝑗 . The output of the first stage is then a matrix

W = (𝑤𝑖 𝑗) where each 𝑤𝑖 𝑗 is the strength of the strongest path

from candidate 𝑖 to candidate 𝑗 , i.e., 𝑤𝑖 𝑗 = maxp∈𝑃𝑖 𝑗 (𝑠 (p)). We

say that candidate 𝑖 is a potential winner if and only if 𝑤𝑖 𝑗 ≥ 𝑤 𝑗𝑖
for every other candidate 𝑗 . The strongest paths, and hence the

potential winners, may be calculated using the Floyd-Warshall al-

gorithm [3]. The Floyd-Warshall algorithm is an efficient algorithm

with a runtime of O(𝑛3) to compute all strongest paths.

There are a couple of different approaches which may be used to

break ties as part of the second stage of the Schulze method. Two

candidates 𝑖 and 𝑗 may be declared indifferent in a ranking using

the Schulze method if the weakest link in the strongest path from 𝑖

to 𝑗 is the same link as the weakest link in the strongest path from

𝑗 to 𝑖 [3]. In this case we may declare the weakest link as forbidden
and recalculate the strongest paths, avoiding any forbidden links.

This is repeated until no forbidden links are used as part of any

strongest paths. This approach is straightforward to apply to the fi-

nal tally matrix T of VERICONDOR and only requires an extension

to the first stage to account for recomputation of strongest paths

containing forbidden links. This approach however only computes

a partial order of candidates [3]; Schulze proposes an additional

tie-breaking approach that may be used to compute a total order of

candidates. The alternative approach requires selection of votes at

random and their rankings used to create a Tie-Breaking Ranking

of Links (TBRL) before the TBRC is computed [3]. This is not com-

patible with VERICONDOR as the DRE-machine securely deletes

each individuate vote V𝑘 after the vote is confirmed and hence

this information is not available for computing a total order of

candidates. Only a partial order of candidates is possible using the

Schulze method in conjunction with VERICONDOR.

Copeland’s method. Copeland’s method assigns a number of

points to a candidate depending upon their number of pairwise

victories, pairwise ties and pairwise defeats [35].Wemaymodel this

precisely using a results matrix; in a pairwise comparison between

a candidate 𝑖 and a candidate 𝑗 , let Γ = (𝛾𝑖 𝑗) and define 𝛾𝑖 𝑗 as below.

𝛾𝑖 𝑗 =

1 if T(𝑖, 𝑗) > T(𝑗, 𝑖)
1

2
if T(𝑖, 𝑗) = T(𝑗, 𝑖)

0 if T(𝑖, 𝑗) < T(𝑗, 𝑖)

The Copeland score for a candidate 𝑖 is computed as

∑
𝑗 ∈𝐶 𝛾𝑖 𝑗 and

the candidate with the highest Copeland score wins the election.

In the event that the Copeland score for a candidate is 𝑛 − 1, then
this candidate is also the Condorcet winner. Copeland’s method

is simple to utilize as part of VERICONDOR. It is also a flexible

method; the number of points assigned as part of the definition

of 𝛾𝑖 𝑗 may be changed for convenience [36]. For example, tallying

could be simplified to make use of only integer additions by assign-

ing points from {1, 0,−1} or {2, 1, 0} as opposed to assigning points
from {1, 1

2
, 0}. The disadvantage with using Copeland’s method

is that it has no associated tie-breaking procedure and hence one

must be decided upon in the event that Copeland’s method pro-

duces multiple winners. Borda count could be used to break ties

resulting from Copeland’s method, however, like Black’s method,

this requires running VERICONDOR and DRE-Borda in parallel.

Ranked Pairs. The Ranked Pairs method begins by sorting

pairs of candidates; a pair of candidates (𝑖0, 𝑗0) is ranked higher

than a pair of candidates (𝑖1, 𝑗1) if T(𝑖0, 𝑗0) > T(𝑖1, 𝑗1) [30]. In the

event where T(𝑖0, 𝑗0) = T(𝑖1, 𝑗1), a method is needed to break the

tie. This may be done by firstly computing a TBRC and using the

TBRC to create a Tie-Breaking Ranking of Pairs (TBRP) [37]. If

T(𝑖0, 𝑗0) = T(𝑖1, 𝑗1) and 𝑖0 ≠ 𝑖1, then the TBRP ranks (𝑖0, 𝑗0) higher
if 𝑖0 is ranked higher in the TBRC than 𝑖1. If 𝑖0 = 𝑖1, then the

TBRP ranks (𝑖0, 𝑗0) higher if 𝑗0 is ranked higher in the TBRC than

𝑗1. Tideman proposes computing the TBRC by selecting a voter

at random and using their vote to break the tie [30]; this is not

possible to perform within VERICONDOR due to each V𝑘 being

securely deleted by the DRE-machine. The TBRC may be computed

by randomly generating a permutation of candidates, however this

would reward nomination of clones [30]: candidates who are similar

to existing candidates and whose addition to the election may result

in a different winner for the election.

Once all pairs of candidates are sorted, a final ranking of candi-

dates may then be constructed. The candidate who beats the other

candidate in the first pair ranked highest in the sorted list is added to

the final ranking first. Then the pair ranked next highest is consid-

ered and its winning candidate added to the final ranking provided

that this does not cause a cycle [30]; this may be performed by

representing the final ranking as a directed graph with candidates

as nodes and edges as pairs of candidates and checking for a cycle

using Depth First Search (DFS). The final ranking is complete once

all pairs have been considered and the overall winner of an election

using Ranked Pairs is the candidate at the beginning of the final

ranking; the winner may be determined using a topological sort

on the directed (acyclic) graph representing the final ranking. The

use of DFS and topological sort to compute the final ranking means

that Ranked Pairs is an efficient method to pair with VERICONDOR

as both DFS and topological sort have a runtime of O(𝑛2).
Table 2 summarizes the support for five different Condorcet

methods to elect an alternative winner in VERICONDOR in the

event that a Condorcet winner does not exist. The pros and cons of

each method have been well studied in the past. Here, we mainly

focus on whether these methods can be conducted in a publicly

verifiable yet privacy-preserving manner. Our analysis shows that

the tallying result in the pairwise comparison matrix is sufficient to

break a tie in the general case, although for Black’s and Copeland’s

methods, a DRE-Borda count system needs to be run in parallel,

which increases computation. For Schulze’s method and Ranked

Pairs, under certain conditions, they need the access to the original

individual ballots to decide an alternative winner, but that is not

possible in VERICONDOR since VERICONDOR only stores the

aggregated results in the comparison matrix, not individual votes.

Method Partial Total
Black ✓

Minimax ✓
Schulze ✓
Copeland ✓

Ranked Pairs ✓

Table 2: Summary of support for different Condorcet meth-
ods in DRE-Condorcet.

4 SECURITY ANALYSIS
In this section we prove the correctness and E2E-verifiability of

VERICONDOR. We also prove that our system is secure against an

adversary who attempts to learn the plaintext values of individual

honest voters via collusion with [dishonest voters. In particular we

prove that the adversary with [colluding voters can only learn the

partial tally of the 𝑛−[honest votes based on the DDH assumption.

Since we require a secure hash function for transforming an inter-

active ZKP to a non-interactive ZKP based Fiat-Shamir heuristics,

our proofs are in a random oracle model.

4.1 E2E-Verifiability
We show VERICONDOR satisfies the three requirements in end-to-

end verifiability. It is straightforward to see that our system satisfies

the “cast as intended” requirement based on the well-established

voter-initiated auditing technique [20]. The DRE-machine commits

to the encrypted ballot by printing it on the paper receipt. In the

case of auditing (i.e., when the voter chooses to cancel the section),

the DRE-machine reveals the randomness X𝑘 and the ranked list in

plaintext on the same receipt, enabling the voter to verify that the

ranked list truthfully reflects the intended vote. Since the receipt is

also published on the bulletin board, anyone will be able to verify

that the initially committed ciphertext is a truthful encryption of

the ranked list based on the revealed randomness X𝑘 . Any voter

may choose to audit their vote for any number of times, which

cannot be predicted by the DRE-machine.

In the case of confirming a vote, the voter obtains a receipt for

the confirmed vote and can check that the same receipt is published

on the BB. This fulfills the “recorded as cast” requirement.

Finally, we show VERICONDOR satisfies the “tallied as recorded”

requirement. Theorem 4.1 shows that if the ballots are well-formed,

i.e., 𝑃𝑊𝐹 {𝐵𝑘 } holds, and the tally verification equations (TV1) and

(TV2) hold, then anyone is able to verify that the final tally on

the BB is the correct tally representing the matrix addition of all

confirmed votes, i.e., every V𝑘 for 𝑘 ∈ C.

Theorem 4.1. In VERICONDOR, assuming that all proofs of well-

formedness are valid, if ∀𝑘 ∈ 𝐾 : 𝑃𝑊𝐹 {𝐵𝑘 } holds and additionally

∀𝑖, 𝑗 ∈ 𝐶 :

∏
𝑘∈C 𝑏𝑘 (𝑖, 𝑗) = 𝑔

𝑠𝑖 𝑗
0
𝑔
𝑡𝑖 𝑗
0
∧ ∏

𝑘∈C 𝑌𝑘 (𝑖, 𝑗) = 𝑔
𝑠𝑖 𝑗
1

also

holds, then the reported tally T is the correct tally of all confirmed

ballots in C on the BB.

Proof. Suppose that ∀𝑘 ∈ 𝐾 : 𝑃𝑊𝐹 {𝐵𝑘 } holds and also that

∀𝑖, 𝑗 ∈ 𝐶 :

∏
𝑘∈C 𝑌𝑘 (𝑖, 𝑗) = 𝑔

𝑠𝑖 𝑗
1

holds.We show that

∏
𝑘∈C 𝑏𝑘 (𝑖, 𝑗) =

𝑔
𝑠𝑖 𝑗
0
𝑔
𝑡𝑖 𝑗
0

holds if and only if 𝑡𝑖 𝑗 =
∑
𝑘∈C 𝑣𝑖 𝑗 also holds for all 𝑖, 𝑗 ∈ 𝐶 .

(⇒) Suppose ∏
𝑘∈C 𝑏𝑘 (𝑖, 𝑗) = 𝑔

𝑠𝑖 𝑗
0
𝑔
𝑡𝑖 𝑗
0

for all 𝑖, 𝑗 ∈ 𝐶 . By defini-

tion of𝑏𝑘 (𝑖, 𝑗), we have𝑏𝑘 (𝑖, 𝑗) = 𝑔
𝑥𝑖 𝑗
0
𝑔
𝑣𝑖 𝑗
0

and hence

∏
𝑘∈C 𝑏𝑘 (𝑖, 𝑗) =∏

𝑘∈C 𝑔
𝑥𝑖 𝑗
0
𝑔
𝑣𝑖 𝑗
0

= 𝑔

∑
𝑘∈C 𝑥𝑖 𝑗

0
𝑔

∑
𝑘∈C 𝑣𝑖 𝑗

0
. By applying (TV2), we have

𝑠𝑖 𝑗 =
∑
𝑘∈C 𝑥𝑖 𝑗 . It is then clear that 𝑡𝑖 𝑗 =

∑
𝑘∈C 𝑣𝑖 𝑗 .

(⇐) Suppose 𝑡𝑖 𝑗 =
∑
𝑘∈C 𝑣𝑖 𝑗 for all 𝑖, 𝑗 ∈ 𝐶 . By definition

of 𝑏𝑘 (𝑖, 𝑗), we have 𝑏𝑘 (𝑖, 𝑗) = 𝑔
𝑥𝑖 𝑗
0
𝑔
𝑣𝑖 𝑗
0

and also

∏
𝑘∈C 𝑏𝑘 (𝑖, 𝑗) =

𝑔

∑
𝑘∈C 𝑥𝑖 𝑗

0
𝑔

∑
𝑘∈C 𝑣𝑖 𝑗

0
. By applying (TV1) and our initial assumption

we get the result

∏
𝑘∈C 𝑏𝑘 (𝑖, 𝑗) = 𝑔

𝑠𝑖 𝑗
0
𝑔
𝑡𝑖 𝑗
0
. This completes the

proof. □

4.2 Ballot Secrecy
We now consider the notion of ballot secrecy for VERICONDOR,

which describes the natural requirement of a voting system in

preserving the privacy of votes cast in an election. We make use

of Benaloh’s definition of privacy [38] and define privacy to be

maintained if a set of [colluding voters has a negligible chance to

distinguish between any two elections where both elections have

the same partial tally of votes.

Assumption 4.1. Let us consider the following security experi-

ment 𝐸𝑥𝑝𝑅𝑁𝐷A (_). For any two elements 𝑔𝑎, 𝑔𝑏 ∈ G𝑞 , let us define

𝐷𝐻𝑔 (𝑔𝑎, 𝑔𝑏) = 𝑔𝑎𝑏 .

𝐸𝑥𝑝𝑅𝑁𝐷A (_)

𝑔
$← G𝑞

𝐴
$← G𝑞

𝑑
$← {0, 1}

𝑑 ′ ← AO(·) (𝑔,𝐴)
Return 𝑑 = 𝑑 ′

O()

𝐵
$← G𝑞

Ω0 ← 𝐷𝐻𝑔 (𝐴, 𝐵)
Ω1

$← G𝑞
Return (𝐵,Ω𝑑)

In the experiment, the challenger first randomly selects two

elements 𝑔, and 𝐴. from G𝑞 . It then invokes the adversary A with

these elements. A is given oracle access to O. O may be queried

𝑝𝑜𝑙𝑦 (_) times. On every query to O, it selects a random 𝐵 from G𝑞 ,
and computes 𝐷𝐻𝑔 (𝐴, 𝐵). It then returns 𝐵, and either 𝐷𝐻𝑔 (𝐴, 𝐵)
or a random element from G𝑞 depending upon a secret bit 𝑑 chosen

by the challenger.

The advantage of an adversary A, against the security experi-

ment 𝐸𝑥𝑝𝑅𝑁𝐷A (_) is defined as below.

𝐴𝑑𝑣𝑅𝑁𝐷A (_) =
����𝑃𝑟 [𝐸𝑥𝑝𝑅𝑁𝐷A (_) = 1] − 1

2

����
For any PPT adversary A, 𝐴𝑑𝑣𝑅𝑁𝐷A (_) ≤ 𝑛𝑒𝑔𝑙 (_).

Lemma 4.1. The DDH assumption implies assumption 4.1.

Proof. This Lemma is proved as Lemma 4 in [39]. □

Assumption 4.2. Let us consider the following security experi-

ment 𝐸𝑥𝑝𝑅𝑁𝐷1

A (_). In this experiment, the adversary passes two

inputs to the oracle O, whenever it is called. Each of the two inputs

is a bit. The oracle O randomly selects one of them and computes

Ω𝑑 as shown in the description. Everything else is same as the

experiment 𝐸𝑥𝑝𝑅𝑁𝐷A (_).

𝐸𝑥𝑝𝑅𝑁𝐷1

A (_)

𝑔
$← G𝑞

𝐴
$← G𝑞

𝑑
$← {0, 1}

𝑑 ′ ← AO(·,·) (𝑔,𝐴)
Return 𝑑 = 𝑑 ′

O(𝑣0, 𝑣1)

𝐵
$← G𝑞

Ω0 ← 𝐷𝐻𝑔 (𝐴, 𝐵) ∗ 𝑔𝑣0
Ω1 ← 𝐷𝐻𝑔 (𝐴, 𝐵) ∗ 𝑔𝑣1
Return (𝐵,Ω𝑑)

The advantage of an adversary A, against 𝐸𝑥𝑝𝑅𝑁𝐷1

A (_) is then
given as

𝐴𝑑𝑣𝑅𝑁𝐷1

A (_) =
����𝑃𝑟 [𝐸𝑥𝑝𝑅𝑁𝐷1

A (_) = 1] − 1

2

����
For any PPT adversary A, 𝐴𝑑𝑣𝑅𝑁𝐷1

A (_) ≤ 𝑛𝑒𝑔𝑙 (_).

Lemma 4.2. Assumption 4.1 implies 4.2.

Proof. The lemma can be easily proven by application of the

triangle inequality for computational indistinguishability [40], that

is to say for any three distributions 𝐷0, 𝐷1, 𝐷2, the inequality

|𝐷0−𝐷2 | ≤ |𝐷0−𝐷1 |+ |𝐷1−𝐷2 | holds. Using the triangle inequality,
one can show that 𝐴𝑑𝑣𝑅𝑁𝐷1

A (_) ≤ 2 ∗𝐴𝑑𝑣𝑅𝑁𝐷A (_). □

Definition 4.1. Consider the security experiment𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_).
In this experiment, the challenger first chooses two random gen-

erators 𝑔, and 𝑔. It then creates two bulletin boards 𝐵𝐵0, and 𝐵𝐵1,

both are initialized to empty. It also stores three variables𝑋,𝑉0, and

𝑉1 that are initialized to 0. The challenger then invokes A0. A0 is

given access to the oracle O. A passes two inputs 𝑣0 ∈ {0, 1}, and
𝑣1 ∈ {0, 1} to the oracle O, every time it is called. O selects random

𝑥 ∈ Z𝑝 , and generates 𝑐0, and 𝑐1 as shown in the experiment. It

stores 𝑐0, and 𝑐1 in 𝐵𝐵0, and 𝐵𝐵1. It stores the cumulative values of

the selected randomnesses in 𝑋 . Similarly it stores the cumulative

values of 𝑣0, and 𝑣1 in 𝑉0, and 𝑉1 respectively. When A0 returns,

the challenger invokes A1 with 𝑋 , and one of 𝐵𝐵0, and 𝐵𝐵1. The

goal of A1 is to identify the correct bulletin board. A wins the

game if A1 can identify the bulletin board, and if 𝑉0 = 𝑉1.

𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_)

𝑔,𝑔
$← G𝑞

𝐵𝐵0 = 𝐵𝐵1 = ∅
𝑉0 = 𝑉1 = 0

𝑋 = 0

𝑠𝑡 ← AO(·,·)
0

(𝑔,𝑔)
𝑑

$← {0, 1}
𝑑 ′ ← A1 (𝑠𝑡, 𝐵𝐵𝑑 , 𝑋)
Return (𝑉0 = 𝑉1) ∧ (𝑑 = 𝑑 ′)

O(𝑣0, 𝑣1)

𝑥
$← Z𝑝

𝑐0 ← (𝑔𝑥𝑔𝑣0 , 𝑔𝑥)
𝑐1 ← (𝑔𝑥𝑔𝑣1 , 𝑔𝑥)
𝑋 ← 𝑋 + 𝑥
𝐵𝐵𝑖 ← 𝐵𝐵𝑖

⋃{𝑐𝑖 } : 𝑖 = 0, 1

𝑉𝑖 ← 𝑉𝑖 + 𝑣𝑖 : 𝑖 = 0, 1

The advantage of an adversary A, against the security experi-

ment 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) is defined as below.

𝐴𝑑𝑣𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) =
����𝑃𝑟 [𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) = 1] − 1

2

����
Lemma 4.3. For any PPT adversary A = (A0,A1), we have

𝐴𝑑𝑣𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) ≤ 𝑛𝑒𝑔𝑙 (_).

Proof. We show that if there exists an adversaryA = (A0,A1),
against the security experiment 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_), it could be used

in the construction of another adversary B, against the security
experiment 𝐸𝑥𝑝𝑅𝑁𝐷1

A (_) of Assumption 4.2. B works as follows; it

receives as input 𝑔, and 𝐴. It invokes A with (𝑔,𝐴). Whenever A0

makes a query to the oracle O with input 𝑣0, and 𝑣1, B also makes

a similar query in the experiment 𝐸𝑥𝑝𝑅𝑁𝐷1

B (_). B receives (𝐵,Ω𝑑)
as the value returned by the oracle in 𝐸𝑥𝑝𝑅𝑁𝐷1

B (_). We denote by

(𝐵𝑖 ,Ω𝑑𝑖), the returned value against the 𝑖th oracle query. Let us sup-
pose that A0 makes a maximum of 𝑛 queries in 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_).
Then 𝑛 ∈ 𝑝𝑜𝑙𝑦 (_) must hold. B randomly selects an [∈ [2, 𝑛].
When A0 makes the [th query, B computes 𝐵[= 𝐴𝑋 /∏[−1

𝑖=1
𝐵𝑖 ,

and Ω𝑑[= 𝑔𝑋+𝑉 /∏[−1
𝑖=1

Ω𝑑𝑖 . Here, 𝑉 =
∑[
𝑖=1

𝑣0𝑖 =
∑[
𝑖=1

𝑣1𝑖 , and

𝑋
$← Z𝑝 . If [is the last oracle query of A0, then B generates

𝐵𝐵𝑑 = {(Ω𝑑𝑖 , 𝐵𝑖) : 𝑖 ∈ [1, []}. If [is not the last oracle query of

A0, then B aborts and returns a random bit. Else B invokes A1

with 𝐵𝐵𝑑 . If A1 can identify 𝑑 , B can win the game.

We now calculate the winning probability of B. B can win the

game if A1 makes a total of [oracle queries, and A1 can identify

𝑑 . If [is not the total number of oracle queries of A0, then the

probability that B wins the game is
1

2
. Again, the probability that

[will be the last oracle query of A0 will be 1/𝑝𝑜𝑙𝑦 (_), since [is

chosen randomly from [2, 𝑛]. Thus, we may write,

𝑃𝑟 [𝐸𝑥𝑝𝑅𝑁𝐷1

B (_) = 1] ≥ (1/𝑝𝑜𝑙𝑦 (_)) × 𝑃𝑟 [𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A = 1]

+ (1 − 1/𝑝𝑜𝑙𝑦 (_)) × 1

2

That is to say,

𝐴𝑑𝑣𝑅𝑁𝐷1

B (_) ≥ (1/𝑝𝑜𝑙𝑦 (_)) ×𝐴𝑑𝑣𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_).

From this, we get,𝐴𝑑𝑣𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) ≤ 𝑝𝑜𝑙𝑦 (_) ×𝐴𝑑𝑣𝑅𝑁𝐷1

B (_). This
completes the proof. □

Lemma 4.4. Given 𝑔0, 𝑔1 ∈ G𝑞 and X′
𝑘
= (𝑥 ′

𝑖 𝑗
) where 𝑥 ′

𝑖 𝑗
= 𝑔

𝑥𝑖 𝑗
1

for all 𝑖, 𝑗 ∈ 𝐶 , the two BBs 𝐵𝐵0 and 𝐵𝐵1, given in Tables 3 and 4

respectively, are indistinguishable where:

(1) ∀^ ∈ [0, [−1]∧∀𝑖, 𝑗 ∈ 𝐶 : V^ (𝑖, 𝑗) ∈ {0, 1}∧V′^ (𝑖, 𝑗) ∈ {0, 1},
(2) ∀^ ∈ [0, [− 1] : each of V^ and V′^ are valid pairwise

comparison matrices,

(3)

∑[−1
^=0

V^ =
∑[−1
^=0

V′^ ,
(4) ∀𝑖, 𝑗 ∈ 𝐶 : 𝑠𝑖 𝑗 =

∑[−1
^=0

X^ (𝑖, 𝑗).

Proof. It follows by application of Lemma 4.3 between votes in

both bulletin boards 𝐵𝐵0 and 𝐵𝐵1, illustrated in Tables 3 and 4. □

Suppose an adversary colludes with [dishonest voters and at-

tempts to learn the plaintext values of the votes cast by the non-

colluding, honest voters. We make use of the indistinguishability

relation between bulletin boards to prove in the Lemma 4.5 that the

adversary may only learn the partial tally of the 𝑛 − [uncompro-

mised votes within an election using VERICONDOR.

Lemma 4.5. An adversary who colludes with [< 𝑛 voters learns

no information other than the partial tally of the 𝑛 − [uncompro-

mised votes.

Proof. We refer to the honest voters asH = {0, 1, . . . , 𝑛−1−[}
and the set of dishonest voters asD = {𝑛−[, 𝑛−[+1, . . . , 𝑛−1}. The
adversary will know the votes of the dishonest voters and hence

can determine 𝑔
X^ (𝑖, 𝑗)
0

for all ^ ∈ H and 𝑖, 𝑗 ∈ 𝐶 . Applying Lemma

4.4 by setting [= 𝑛 − [gives the adversary a view of the 𝑛 − [
encrypted votes of the honest voters. By Lemma 4.4 this view is

indistinguishable to another view of encrypted votes with the same

partial tally of honest votes. As the adversary cannot distinguish

between votes in the two views they cannot possibly learn the

plaintext values of individual votes and hence may only learn the

partial tally of the 𝑛 − [honest votes. □

5 PERFORMANCE ANALYSIS
Webuild a prototype implementation of VERICONDOR in Java.

3
We

evaluate the system performance both theoretically and empirically

using the JavaMicrobenchmarkHarness (JMH) [41]. The theoretical

analysis is found matching the empirical results.

5.1 Runtime Analysis
For our theoretical estimate of the runtime of VERICONDOR, we

mainly consider the number of exponentiations that must be per-

formed as exponentiation is the most expensive operation in our

system. To analyse the generation of individual ballots 𝐵𝑘 , we must

determine the number of exponentiations required for generating

𝑏𝑘 , 𝑌𝑘 and 𝑃𝑊𝐹 {𝐵𝑘 }. For generating 𝑏𝑘 and 𝑌𝑘 , each requires 𝑛2

exponentiations. For generating 𝑃𝑊𝐹 {𝐵𝑘 }, recall that 𝑃𝑊𝐹 {𝐵𝑘 }
consists of five conjunctive statements (C1) through to (C5); we im-

plement the generation 𝑃𝑊𝐹 {𝐵𝑘 } by generating subproofs for each
of the five conjunctive statements in our prototype implementa-

tion. Hence we analyse the number of exponentiations required by

𝑃𝑊𝐹 {𝐵𝑘 } by summing the estimated cost of generating each of the

five subproofs corresponding to each of the five conjunctive state-

ments. Among them, (C1) requires 𝑛2 exponentiations to generate.

(C2) only requires 𝑛 exponentiations to generate as it is defined

only over each 𝑖 ∈ 𝐶 . (C3) requires generation of a disjunctive

NIZKP and requires 3𝑛2 exponentiations to generate. (C4) requires

the conjunction of two disjunctive NIZKPs over 𝑛2 − 𝑛 elements in

𝑏𝑘 (note that elements in the diagonal of 𝑏𝑘 are excluded since they

are equal to 1). (C4) requires 6(𝑛2 − 𝑛) exponentiations. (C5) re-
quires 4𝑛2 exponentiations; it should also be noted that the runtime

of computing XΣ
𝑘
and 𝑏Π

𝑘
is O(𝑛2) and hence these computations

provide a negligible overhead when generating 𝑃𝑊𝐹 {𝐵𝑘 }. The total
number of exponentiations required to generate 𝑃𝑊𝐹 {𝐵𝑘 } is hence
14𝑛2−5𝑛. The total number of exponentiations required to generate

each individual ballot 𝐵𝑘 is then 16𝑛2 − 5𝑛.
The same reasoning can be applied to verifying individual ballots;

each individual ballot 𝐵𝑘 requires 19𝑛2 − 5𝑛 exponentiations to

verify 𝑃𝑊𝐹 {𝐵𝑘 }. Our analysis shows that VERICONDOR requires

a quadratic number of exponentiations in terms of the number

of candidates 𝑛 for generating and verifying ballots. This O(𝑛2)
complexity is close to optimal as the size of each V𝑘 is also quadratic
in terms of the number of candidates 𝑛.

3
The source code of our implementation can be found at: https://osf.io/g2hfm/?view_

only=48fc2c9412e14d1c84b7ae7171b048dd.

https://osf.io/g2hfm/?view_only=48fc2c9412e14d1c84b7ae7171b048dd
https://osf.io/g2hfm/?view_only=48fc2c9412e14d1c84b7ae7171b048dd

𝑔
X0 (0,0)
0

𝑔
V0 (0,0)
0

𝑔
X0 (0,1)
0

𝑔
V0 (0,1)
0

. . . 𝑔
X0 (0,𝑛−1)
0

𝑔
V0 (0,𝑛−1)
0

.

.

.

.

.

.
. . .

.

.

.

𝑔
X0 (𝑛−1,0)
0

𝑔
V0 (𝑛−1,0)
0

𝑔
X0 (𝑛−1,1)
0

𝑔
V0 (𝑛−1,1)
0

. . . 𝑔
X0 (𝑛−1,𝑛−1)
0

𝑔
V0 (𝑛−1,𝑛−1)
0

.

.

.

𝑔
X[−1 (0,0)
0

𝑔
V[−1 (0,0)
0

𝑔
X[−1 (0,1)
0

𝑔
V[−1 (0,1)
0

. . . 𝑔
X[−1 (0,𝑛−1)
0

𝑔
V[−1 (0,𝑛−1)
0

.

.

.

.

.

.
. . .

.

.

.

𝑔
X[−1 (𝑛−1,0)
0

𝑔
V[−1 (𝑛−1,0)
0

𝑔
X[−1 (𝑛−1,1)
0

𝑔
V[−1 (𝑛−1,1)
0

. . . 𝑔
X[−1 (𝑛−1,𝑛−1)
0

𝑔
V[−1 (𝑛−1,𝑛−1)
0

Table 3: Bulletin Board 𝐵𝐵0.

𝑔
X0 (0,0)
0

𝑔
V′0 (0,0)
0

𝑔
X0 (0,1)
0

𝑔
V′0 (0,1)
0

. . . 𝑔
X0 (0,𝑛−1)
0

𝑔
V′0 (0,𝑛−1)
0

.

.

.

.

.

.
. . .

.

.

.

𝑔
X0 (𝑛−1,0)
0

𝑔
V′0 (𝑛−1,0)
0

𝑔
X0 (𝑛−1,1)
0

𝑔
V′0 (𝑛−1,1)
0

. . . 𝑔
X0 (𝑛−1,𝑛−1)
0

𝑔
V′0 (𝑛−1,𝑛−1)
0

.

.

.

𝑔
X[−1 (0,0)
0

𝑔
V′
[−1 (0,0)

0
𝑔

X[−1 (0,1)
0

𝑔
V′
[−1 (0,1)

0
. . . 𝑔

X[−1 (0,𝑛−1)
0

𝑔
V′
[−1 (0,𝑛−1)

0

.

.

.

.

.

.
. . .

.

.

.

𝑔
X[−1 (𝑛−1,0)
0

𝑔
V′
[−1 (𝑛−1,0)

0
𝑔

X[−1 (𝑛−1,1)
0

𝑔
V′
[−1 (𝑛−1,1)

0
. . . 𝑔

X[−1 (𝑛−1,𝑛−1)
0

𝑔
V′
[−1 (𝑛−1,𝑛−1)

0

Table 4: Bulletin Board 𝐵𝐵1.

We now consider the performance of computing the tally ver-

ification equations (TV1) and (TV2). The total number of expo-

nentiations required to verify (TV1) and (TV2) is 3𝑛2. These two

equations are however defined over the set of confirmed ballots

C, hence it is also necessary to consider the number of multipli-

cations required. Computing and

∏
𝑘∈C 𝑏𝑘 (𝑖, 𝑗) and

∏
𝑘∈C 𝑌𝑘 (𝑖, 𝑗)

both require |C|𝑛2 multiplications each. A final 𝑛2 multiplications

is required to compute the LHS of (TV1). Hence the total num-

ber of multiplications required to verify both (TV1) and (TV2) is

2|C|𝑛2 + 𝑛2 = 𝑛2 (2|C| + 1). This result shows that the number of

multiplications required is a product of 𝑛2 and |C|. This is insignifi-
cant as most of the runtime of VERICONDORwill be dominated by

the more expensive exponentiation operations.

5.2 Microbenchmarks
We recorded the average time to run the ballot creation, verification

of T and S and verification of 𝑃𝑊𝐹 {𝐵𝑘 } within our proof-of-concept
implementation using JMH [41]. Figure 3 shows the results when

using a 2048-bit 𝑝 , 𝑔0 and 𝑔1 and a 224-bit 𝑞 for 112-bit security.

Figure 4 shows the results when using a 3072-bit 𝑝 , 𝑔0 and 𝑔1 and a

256-bit 𝑞 for 128-bit security.

Our microbenchmark results are consistent with our theoreti-

cal runtime analysis. The most theoretically demanding compu-

tation in terms of the number of exponentiations required is the

verification of 𝑃𝑊𝐹 {𝐵𝑘 }; this computation is the one which takes

the longest average time across all candidates in Figures 3 and 4.

Generation of individual ballots is the next most demanding com-

putation, however not by a large margin. The difference between

ballot verification and ballot generation in terms of the number

of exponentiations required is 3𝑛2. This is reflected in Figures 3

and 4 by the curves for ballot creation appearing slightly below

those for the verification of 𝑃𝑊𝐹 {𝐵𝑘 }. Our microbenchmark results

for tally verification are performed using a fixed number of votes

greater than the number of candidates; in each case the number

of votes used is 50. Although a large number of multiplications is

required for tally verification, it is clear from Figures 3 and 4 that

exponentiation is much more demanding than multiplication and

hence exponentiation has the biggest impact on the average time

of the computations performed by VERICONDOR.

Comparing Figures 3 and 4 directly, it is clear that each of the

three benchmarked operations run almost twice as fast when using

parameters for 112-bit security compared to using parameters for

128-bit security. The average times of generating individual bal-

lots for 128-bit security, as shown in Figure 4, can be improved

by making use of Elliptic Curve Cryptography (ECC) instead. The

specification of our protocol remains unchanged. Additionally, our

proof-of-concept implementation can be improved by applying

parallelism. Each entry in 𝑏𝑘 and 𝑌𝑘 may be generated in paral-

lel. Each of the five conjunctions in 𝑃𝑊𝐹 {𝐵𝑘 } may also be gener-

ated and verified in parallel. Applying these improvements to our

proof-of-concept implementation would result in a more efficient

implementation of VERICONDOR. We plan to address this in future

work.

6 RELATEDWORK
A number of E2E-verifiable voting schemes have been proposed in

the literature. The vast majority of these schemes focus on plurality

voting, with few schemes designed for ranked-choice voting. The

generalmix-net technique [7]may be used to build an E2E-verifiable

Condorcet voting system, but this requires a set of TAs to run

the mix-net servers. Furthermore, the system can be subject to an

Italian attack. Another approach is to make use of DRE-ip [15]

Figure 3: Benchmark results for 112-bit security. Figure 4: Benchmark results for 128-bit security.

to create a trivial Condorcet voting system whereby each of the

𝑛! possible ranked lists will be treated as a candidate in DRE-ip.

Whilst straightforward, this alternative approach has exponential

complexity and is also potentially subject to an Italian attack.

In the literature, the only prior work that we are aware of on

verifiable Condorcet voting is due to Lee and Doi in 2005 [42]. The

authors proposed a TA-based partially verifiable voting scheme

designed specifically to elect a Condorcet winner for an election.

Their scheme assumes a trusted voting client, which encrypts the

voter’s choice honestly. It is possible to use a similar voter-initiated

auditing technique [20] to allow the voter to check whether a vote is

“cast as intended” without having to trust the voting client, but this

depends on how this technique is integrated into the overall voting

system, which is not described in their paper. Their scheme involves

the encryption and permutation of comparison matrices under an

ElGamal cryptosystem, and requires trusted authorities to perform

and mixing and decryption operations. Lee and Doi specify the

requirement of two different authorities: a tallying authority (TA)

for performing the encryption and permutation procedures and a

judging authority (JA) for performing decryption and determining

the Condorcet winner. The computational cost for generating a

ballot in their scheme is O(𝑛3), which is more expensive than the

O(𝑛2) computation cost in our scheme.We note that based on using

a comparison matrix to tally votes in a Condorcet voting system,

the O(𝑛2) complexity is probably the best one can hope for.

7 CONCLUSION
In this paper we proposed VERICONDOR: the first E2E-verifiable

Condorcet voting system without any tallying authorities. Our

system is based on tallying votes in a pairwise comparison matrix

and applies a novel method to prove the well-formedness of the

matrix with exceptional efficiency. Our system has a computation

complexity of O(𝑛2) per vote where 𝑛 is the number of candidates.

The O(𝑛2) complexity is close to the best that one may hope for

given the use of a 𝑛 ×𝑛 comparison matrix to record the Condorcet

vote. The system elects a Condorcet winner when they exist, and

has the flexibility to support several Condorcet methods to break

a tie and elect an alternative winner in the even that a Condorcet

winner does not exist; it is E2E verifiable and guarantees tallying

integrity even when the system is completely compromised by a

powerful adversary; it protects the secrecy of individual ballots

and limits any colluding set of voters to learn nothing more than

the total tally and the partial tally of the colluding set. Finally,

we presented a prototype implementation and demonstrated the

efficiency of the system for practical use. In future work, we plan

to extend the system by allowing indifference between candidates

in the voting choice (i.e., partial ranking of candidates).

ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers for their

very helpful comments. The first author is funded by an EPSRC stu-

dentship (No. 2436418). The second and the last authors are funded

by Royal Society (ICA\R1\180226) and EPSRC (EP/T014784/1).

REFERENCES
[1] Partha Dasgupta and Eric Maskin. Elections and strategic voting: Condorcet

and borda. In Unpublished slides, UC Irvine Conference on Adaptive Systems and
Mechanism Design, 2010.

[2] H Peyton Young. Condorcet’s theory of voting. The American Political Science
Review, pages 1231–1244, 1988.

[3] Markus Schulze. The schulze method of voting. arXiv preprint arXiv:1804.02973,
2018.

[4] Feng Hao and Peter YA Ryan. Real-World Electronic Voting: Design, Analysis and
Deployment. CRC Press, 2016.

[5] David Chaum, Aleks Essex, Richard Carback, Jeremy Clark, Stefan Popoveniuc,

Alan Sherman, and Poorvi Vora. Scantegrity: End-to-end voter-verifiable optical-

scan voting. IEEE Security & Privacy, 6(3):40–46, 2008.
[6] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popove-

niuc, Ronald L Rivest, Peter YA Ryan, Emily Shen, and Alan T Sherman. Scant-

egrity ii: End-to-end verifiability for optical scan election systems using invisible

ink confirmation codes. EVT, 8:1–13, 2008.
[7] Peter YA Ryan, David Bismark, James Heather, Steve Schneider, and Zhe Xia.

Prêt à voter: a voter-verifiable voting system. IEEE transactions on information
forensics and security, 4(4):662–673, 2009.

[8] Susan Bell, Josh Benaloh, Michael D Byrne, Dana DeBeauvoir, Bryce Eakin,

Philip Kortum, Neal McBurnett, Olivier Pereira, Philip B Stark, Dan S Wallach,

et al. Star-vote: A secure, transparent, auditable, and reliable voting system. In

2013 Electronic Voting Technology Workshop/Workshop on Trustworthy Elections
(EVT/WOTE 13), 2013.

[9] Nikos Chondros, Bingsheng Zhang, Thomas Zacharias, Panos Diamantopoulos,

Stathis Maneas, Christos Patsonakis, Alex Delis, Aggelos Kiayias, and Mema

Roussopoulos. D-demos: A distributed, end-to-end verifiable, internet voting

system. In 2016 IEEE 36th International Conference on Distributed Computing
Systems (ICDCS), pages 711–720. IEEE, 2016.

[10] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. Demos-2: scalable

e2e verifiable elections without random oracles. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 352–363,
2015.

[11] Ben Adida. Helios: Web-based open-audit voting. In USENIX security symposium,

volume 17, pages 335–348, 2008.

[12] Ben Adida, Olivier De Marneffe, Olivier Pereira, Jean-Jacques Quisquater, et al.

Electing a university president using open-audit voting: Analysis of real-world

use of helios. EVT/WOTE, 9(10), 2009.
[13] Feng Hao, Matthew N Kreeger, Brian Randell, Dylan Clarke, Siamak F Shahan-

dashti, and Peter Hyun-Jeen Lee. Every vote counts: Ensuring integrity in large-

scale electronic voting. In 2014 Electronic Voting Technology Workshop/Workshop
on Trustworthy Elections (EVT/WOTE 14), 2014.

[14] Feng Hao. Dre-i and self-enforcing e-voting. Real-World Electronic Voting: Design,
Analysis and Deployment, page 343, 2016.

[15] Siamak F Shahandashti and Feng Hao. Dre-ip: A verifiable e-voting scheme

without tallying authorities. In European Symposium on Research in Computer
Security, pages 223–240. Springer, 2016.

[16] Samiran Bag, Muhammad Ajmal Azad, and Feng Hao. E2e verifiable borda count

voting system without tallying authorities. In Proceedings of the 14th International
Conference on Availability, Reliability and Security, pages 1–9, 2019.

[17] Gerry Mackie. Democracy defended. Cambridge University Press, 2003.

[18] FengHao, ShenWang, Samiran Bag, Rob Procter, Siamak F Shahandashti, Maryam

Mehrnezhad, Ehsan Toreini, Roberto Metere, and Lana YJ Liu. End-to-end verifi-

able e-voting trial for polling station voting. IEEE Security & Privacy, 18(6):6–13,
2020.

[19] Douglas Robert Stinson and Maura Paterson. Cryptography: theory and practice.
CRC press, 2018.

[20] Josh Benaloh. Ballot casting assurance via voter-initiated poll station auditing.

EVT, 7:14–14, 2007.
[21] Jan Camenisch and Markus Stadler. Proof systems for general statements about

discrete logarithms. Technical Report/ETH Zurich, Department of Computer Science,
260, 1997.

[22] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
cryptology, 4(3):161–174, 1991.

[23] Andrew Clausen. Logical composition of zero-knowledge proofs. Electronic
version found in www. cis. upenn. edu/˜ mkearns/teaching/Crypto/zkp-disj. pdf,
2011.

[24] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more.

In 2018 IEEE Symposium on Security and Privacy (SP), pages 315–334. IEEE, 2018.
[25] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi-

fication and signature problems. In Conference on the theory and application of
cryptographic techniques, pages 186–194. Springer, 1986.

[26] Duncan Black et al. The theory of committees and elections. 1958.

[27] Paul B Simpson. On defining areas of voter choice: Professor tullock on stable

voting. The Quarterly Journal of Economics, 83(3):478–490, 1969.
[28] Gerald H Kramer. A dynamical model of political equilibrium. Journal of Economic

Theory, 16(2):310–334, 1977.
[29] Arthur H Copeland. A reasonable social welfare function. Technical report,

mimeo, 1951. University of Michigan, 1951.

[30] T Nicolaus Tideman. Independence of clones as a criterion for voting rules. Social
Choice and Welfare, 4(3):185–206, 1987.

[31] Charles Dodgson. A method of taking votes on more than two issues. The theory
of committees and elections, 1876.

[32] John G Kemeny. Mathematics without numbers. Daedalus, 88(4):577–591, 1959.
[33] H Peyton Young and Arthur Levenglick. A consistent extension of condorcet’s

election principle. SIAM Journal on applied Mathematics, 35(2):285–300, 1978.
[34] John Bartholdi, Craig A Tovey, and Michael A Trick. Voting schemes for which

it can be difficult to tell who won the election. Social Choice and welfare, 6(2):
157–165, 1989.

[35] Donald G. Saari and Vincent R. Merlin. The copeland method: I.: Relationships

and the dictionary. Economic Theory, 8(1):51–76, 1996. ISSN 09382259, 14320479.

URL http://www.jstor.org/stable/25054952.

[36] Dat-Dao Nguyen. Using social choice function vs. social welfare function to

aggregate individual preferences in group decision support systems. International
Journal of Management & Information Systems (IJMIS), 18(3):167–172, 2014.

[37] Thomas M Zavist and T Nicolaus Tideman. Complete independence of clones in

the ranked pairs rule. Social Choice and Welfare, 6(2):167–173, 1989.
[38] Josh Daniel Cohen Benaloh. Verifiable secret-ballot elections. 1989.

[39] Kaoru Kurosawa and Ryo Nojima. Simple adaptive oblivious transfer without

random oracle. In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT
2009, pages 334–346, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN

978-3-642-10366-7.

[40] Boaz Barak. Lecture 4-computational indistinguishability, pseudorandom gener-

ators, 2007.

[41] Java microbenchmark harness (jmh). https://openjdk.java.net/projects/code-

tools/jmh/. Accessed: 2021-05-14.

[42] Yoon Cheol Lee and Hiroshi Doi. On the security of condorcet electronic voting

scheme. In International Conference on Computational and Information Science,
pages 33–42. Springer, 2005.

APPENDIX
A NIZKP FOR FINAL CONJUNCTION
From Theorem 2.1, we know that a pairwise comparison matrix

V represents one of the 𝑛! votes for an 𝑛-candidate election iff

VΣ
, the vector of row sums of V, is a permutation of the set of

candidates𝐶 . We make use of this to ensure that 𝐵𝑘 encodes a valid

pairwise comparison matrix. First consider computing the value of∏𝑛−1
𝑗=0 𝑏𝑘 (𝑖, 𝑗) for a fixed 𝑖 . We reduce this as follows:

𝑛−1∏
𝑗=0

𝑏𝑘 (𝑖, 𝑗) = 𝑔
𝑋𝑘 (𝑖,0)
0

𝑔
𝑉𝑘 (𝑖,0)
0

× . . . × 𝑔𝑋𝑘 (𝑖,𝑛−1)
0

𝑔
𝑉𝑘 (𝑖,𝑛−1)
0

= 𝑔
𝑋𝑘 (𝑖,0) + ... +𝑋𝑘 (𝑖,𝑛−1) +𝑉𝑘 (𝑖,0) + ... +𝑉𝑘 (𝑖,𝑛−1)
0

= 𝑔
𝑋 Σ
𝑘
(𝑖) +𝑉 Σ

𝑘
(𝑖)

0

Hence we have

∏𝑛−1
𝑗=0 𝑏𝑘 (𝑖, 𝑗) = 𝑔

𝑋 Σ
𝑘
(𝑖) +𝑉 Σ

𝑘
(𝑖)

0
. For brevity we refer

to the result of

∏𝑛−1
𝑗=0 𝑏𝑘 (𝑖, 𝑗) or 𝑔

𝑋 Σ
𝑘
(𝑖) +𝑉 Σ

𝑘
(𝑖)

0
as 𝑏Π

𝑘
(𝑖). To prove

that VΣ
𝑘
is a permutation of𝐶 , it is sufficient to prove the following:∧

𝑐 ∈𝐶
𝑐 ∈ VΣ

𝑘

These relations prove that each 𝑐 ∈ 𝐶 is an element of the vector VΣ
𝑘
.

Given that𝐶 consists of only distinct values, and the cardinality of𝐶

is equal to the length of VΣ
𝑘
, it follows that𝐶 must be a permutation

of VΣ
𝑘
[16] and equivalently that VΣ

𝑘
is a permutation of 𝐶 . These

relations are equivalent to the following logical statement adapted

from Bag et al. [16]:∨
𝑖 ∈𝐶

𝑏Π
𝑘
(𝑖) = 𝑔𝑋

Σ
𝑘
(𝑖) + 𝑗

0

For all 𝑗 ∈ [0, 𝑛 − 1], exactly one of the above disjunctions should

hold [16]. Suppose that, for a fixed 𝑗 , the𝑚𝑡ℎ disjunction is true,

i.e. we have 𝑏Π
𝑘
(𝑚) = 𝑔

𝑋 Σ
𝑘
(𝑚)

0
𝑔
𝑗

0
. The prover (the DRE-machine)

chooses a random 𝑢𝑚 ∈𝑅 Z∗𝑞 and computes 𝑡 ′𝑚 = 𝑔
𝑢𝑚
0

. The prover

then chooses 𝑟0, 𝑟1, . . . , 𝑟𝑚−1, 𝑟𝑚+1, 𝑟𝑚+2, . . . , 𝑟𝑛−1 ∈𝑅 Z∗𝑞 and also

𝑐0, 𝑐1, . . . , 𝑐𝑚−1, 𝑐𝑚+1, 𝑐𝑚+2, . . . , 𝑐𝑛−1 ∈𝑅 Z∗𝑞 and computes:

∀𝑖 ∈ [0, 𝑛 − 1] − {𝑚} : 𝑡 ′𝑖 = 𝑔
𝑟𝑖
0

(
𝑏Π
𝑘
(𝑖)

𝑔
𝑗

0

)𝑐𝑖
(mod 𝑝)

Let the grand challenge be 𝑐 , where:

𝑐 = 𝐻 (𝑘, 𝑗, 𝑏Π
𝑘
, 𝑡 ′
0
, 𝑡 ′
1
, . . . , 𝑡 ′𝑛−1)

http://www.jstor.org/stable/25054952

Here we assume that 𝐻 (·) is a cryptographically-secure hash func-

tion. The prover then computes:

𝑐𝑚 = 𝑐 −
∑︁

𝑖 ∈ [0,𝑛−1]−{𝑚}
𝑐𝑖 (mod 𝑞)

𝑟𝑚 = 𝑢𝑚 − 𝑐𝑚𝑋 Σ
𝑘
(𝑚) (mod 𝑞)

The subproof is then successful if the following 𝑛 verification equa-

tions are satisfied:

∀𝑖 ∈ [0, 𝑛 − 1] : 𝑔𝑟𝑖
0
=

𝑡 ′
𝑖(

𝑏Π
𝑘
(𝑖)
𝑔
𝑗

0

)𝑐𝑖 (mod 𝑝)

