
End-to-End Verifiable Cumulative Voting
without Tallying Authorities

Samiran Bag1, Muhammad Ajmal Azad2, and Feng Hao1

1 Department of Computer Science
University of Warwick

{samiran.bag,feng.hao}@warwick.ac.uk
2 Department of Computer Science

University of Derby
m.azad@derby.ac.uk

Abstract. In this paper, we propose the first end-to-end (E2E) verifi-
able e-voting system for cumulative voting without requiring any tallying
authorities. Cumulative voting is an electoral system, heavily used in cor-
porate governance as practised in several US states, and in participatory
budgeting as seen in many European cities where local residents decide
how to spend a portion of the local government’s budget through vot-
ing. Traditionally, cumulative voting is done with pen and paper, but
the manual counting process is time consuming and costly, especially
when such voting events occur frequently. Many systems have changed
to use electronic voting, but without considering the security aspects of
this change. To our knowledge, none of the existing e-voting systems
implemented for cumulative voting are end-to-end verifiable; if there is
any bug or tempering at the tallying software, the tally would be inad-
vertently modified without any voter noticing this. Although there are
existing voting systems (e.g., mix-net based) that could be adapted to
support cumulative voting with E2E verifiability, they generally require
a set of tallying authorities, which can lead to substantial complexity of
finding and managing such authorities in practice. We address this issue
by adopting novel cryptographic techniques to achieve E2E verifiability
for cumulative voting, but without involving any tallying authorities. We
formally define a model to prove the security of our system, and present
the efficiency analysis to show that our proposed solution is feasible for
practical use.

Keywords: end-to-end verifiability, verifiable e-voting, cumulative voting, prov-
able security, receipt-freeness.

1 Introduction

Cumulative voting is an electoral system in which a voter is given a number
of votes to vote for a number of chosen candidates. A voter may give all their
votes to one candidate or divide them among candidates. Typically, each voter

is assigned the number of votes equal to the number of seats to be filled in the
election. For example, if the election is to be held for five seats, then each voter
is allocated with five votes. If a voter particularly favors a candidate, they may
give all votes to that candidate. Alternatively, they may spread votes among
candidates according to their preference. The winners are decided based on who
have got the five most votes. Cumulative voting is frequently used in corporate
governance as seen in several US states [34]. It is also commonly used among
European cities such as Barcelona and Gdansk [29] for participatory budgeting,
where local residents decide how to spend a portion of the city council budget
by voting against several selected projects.

Traditionally, cumulative voting is done with pen and paper. Voters fill in
paper ballots and hand over the completed ballots to a returning officer or post
them by mail. When all completed ballots are collected, they are counted by
trustworthy tallying authorities (TAs), and winners are announced in the end.
With paper ballot, voters can verify the election process to some extent – more
specifically they can verify that their votes are cast as intended (since they fill
in the ballot themselves), but not how the cast votes will be recorded and tallied
after they are put into a ballot box or posted out.

Besides the limited extent of voter verifiability, paper ballots have several
practical limitations. First of all, casting paper ballots is not easy to handle by
ordinary voters (particularly those with disabilities). Even when postal voting is
allowed, voters will still need to post out ballots, by physically visiting a letter
box or a postal office. This may be seen as a small step, but it can present a
significant barrier when voters are expected to do this frequently. Furthermore,
the counting process of physical ballots can be time consuming and costly. For
major elections that happen infrequently (say once every four years), public ob-
servation of the counting process can be arranged by inviting representatives
from different parties to be present at the tallying venue as independent ob-
servers. But for more frequent and smaller scale elections, the counting is often
outsourced to external companies (e.g., Electoral Reform Society in the UK3)
who act as a trusted third party.

To improve efficiency and accessibility, voting using electronic means has been
actively explored by researchers in the field. Over the last three decades, many
electronic voting schemes have been proposed for the Internet voting and polling
station voting [2,3,5,16,18,22,24,27,33,35–38]. Electronic voting systems can be
classified into three types: 1) systems based on blind signatures and anonymous
channels [17], 2) based on mixing among servers [3,16,33,35], and 3) based on the
homomorphic encryption [2, 5, 27, 38]. These schemes have proposed to achieve
the fundamental properties of an electronic voting process: a) voter privacy, i.e.,
the value of each individual vote is kept secret and unlinkable to any particular
voter, b) individual verifiability, i.e., each voter is able to verify that their vote
is cast as intended and recorded as cast; c) universal verifiability, i.e. anyone is
able to verify that all votes are tallied as recorded; d) receipt-freeness, i.e., voters
would not be able to prove to any third party that they voted for a particular

3 https://www.electoral-reform.org.uk/

2

https://www.electoral-reform.org.uk/

candidate; e) robustness, i.e., the election process is not stopped even in the
presence of malicious voters. These schemes are designed to ensure voter privacy
and tallying integrity for the particular types of an election.

The design of an electronic voting system for cumulative voting should satisfy
the following verifiability requirements.

Cast as intended: Every voter is able to verify that their cast vote captures
their true intention.

Recorded as cast: Every voter is able to verify that their cast vote is recorded
by the system and hence must be included into the tallying process.

Tallied as recorded: Every one is able to verify that all the recorded votes are
tallied correctly in the tallying process.

A voting system that satisfies all the three above-mentioned requirements is
said to be end-to-end (E2E) verifiable. In the meantime, an E2E voting system
should also preserve the voter privacy – a coercer must not be able to learn a
voter’s vote and likewise the voter must not be able to prove to any third party
whom they have voted for. Starting from Chaum’s seminal paper on E2E ver-
ifiable voting [18], many E2E voting systems have been proposed. Most of the
existing systems are dependent on a set of tallying authorities (TAs), who are
supposedly trustworthy individuals with cryptographic and computing expertise
tasked to perform complex cryptographic operations. These TAs should be se-
lected from different parties with conflicting interest, so collusion among them
is unlikely. They should also be subject to a cryptographic threshold control so
that it takes compromising over a threshold of authorities to comprise the sys-
tem. The threshold should be set sufficiently high to make collusion difficult, but
also sufficiently low so that the decryption and tallying process is fault-tolerant.
Although the use of trustworthy tallying authorities in e-voting is motivated by
the similar role of tallying authorities required in the physical ballot counting
process, implementing and managing such authorities in the e-voting context
has proved to be particularly difficult [2]. This is one major obstacle that has
prevented E2E verifiable voting systems from being widely used in practice [28].

Hao et al. [27] proposed the first E2E verifiable e-voting system without any
tallying authorities called “DRE-i” (DRE with integrity). Their protocol is de-
signed for the DRE (Direct Recording Electronic)-based election but the same
protocol can also be implemented for remote internet voting [26]. In DRE-i,
the encrypted ballot is constructed using a variant of the ElGamal encryption
scheme with dynamically constructed public keys, such that after the election
multiplying all ciphertexts will cancel out all the random factors introduced in
the encryption process, hence allowing anyone to verify the tally of an election
without needing any tallying authorities. The authors call such a TA-free system
as “self-enforcing e-voting”. Since DRE-i works by pre-computing the encrypted
ballots before an election, the pre-computed ballots will naturally need to be
stored securely, otherwise the secrecy of the votes will be affected. Shahandashti
and Hao [39] addressed this issue by proposing an alternative real-time computa-
tion strategy, based on which they designed a new E2E verifiable voting system

3

without tallying authorities, called “DRE-ip” (DRE-i with enhanced privacy).
This scheme does not compute the ciphertexts in advance; instead it creates
the encrypted ballot on the fly. DRE-ip achieves E2E verifiability without tal-
lying authorities, but at the same time provides a stronger privacy guarantee
than DRE-i. However, both the DRE-i and DRE-ip systems are designed to sup-
port only plurality or approval voting and they do not support more complex
ranking-based electoral systems such as cumulative voting.

In this paper, we proposed an E2E verifiable voting scheme for cumulative
voting without involving any tallying authorities. Our design is inspired by the
real-time computation strategy used in DRE-ip but we significantly modify it
to support a cumulative voting scheme with the inherent properties of privacy,
verifiability and correctness. Our approach only reveals the total score that each
candidate gets without showing any distribution of votes within a ballot, hence
effectively preventing Italian attacks (in which a coercer may force a voter to vote
in an obscure pattern and check if the voter has indeed followed the instruction
by searching for such a pattern in the data published during the tallying process;
see [35]). When the DRE machine is completely compromised, our protocol still
guarantees the tallying integrity, and meanwhile limits the attacker to learn only
the partial tally at the time of compromise, which is minimal information leakage
as one may hope for.

The contributions of this paper can be summarized as below.

– We propose DRE-CV, a new E2E verifiable e-voting system without TA that
implements the cumulative voting scheme.

– We propose a new formal definition of an end-to-end verifiable e-voting sys-
tem without tallying authority, and a model that defines the security prop-
erties of such an e-voting system.

– We show that our proposed cumulative voting system is provable secure
under the proposed formal model.

– Lastly, we analyze the efficiency of our proposed system and show that it is
feasible for practical use.

2 Preliminaries

2.1 Notations

Let G be a finite algebraic group and A,B, g ∈ G. Let a = logg A and b = logg B.

We denote DHg(A,B) = gab.

2.2 Cumulative Voting

In cumulative voting, a voter can vote for more than one candidates. Besides,
the voter gets the freedom to split her vote and distribute it among her chosen
candidates. There are many variants of cumulative voting system. In this paper,
we consider ‘fractional ballot’ voting scheme. Here, the voter receives a set of

4

points which she gives away to the candidates the way she wishes to. She can
transfer all her points to a single candidate or she can distribute in any pre-
meditated manner. Upon the completion of the election, the points assigned to
a candidate by different voters are summed up, and the winners are chosen on
the basis of the total points obtained by the candidates.

2.3 NIZK Proofs

An efficient-prover non-interactive zero-knowledge proof [25] for the relation R ∈
L consists of three probabilistic polynomial time algorithms Γ = (K,P, V) as
described below:

� K is the CRS generating algorithm. It takes as input a λ at returns a common
reference string, i.e. σ ← K(1λ).

� P is the prover algorithm. It takes as input the CRS σ a statement x ∈ L
and a witness w such that R(x,w) = True, and returns a proof π. That is,
π ← P (σ, x, w).

� V is the verifier algorithm. It takes as input the CRS σ, the statement x,
the proof π, and returns v ∈ {0, 1}. That is, v ← V (σ, x, π).

Any non-interactive zero knowledge proof system (K,P, V) must satisfy the
following properties.

• Completeness: The NIZK proof system (K,P, V) is complete if

Pr
[
σ ← K(1λ);π ← P (σ, x, w), V (σ, x, π) = 1 ∧R(x,w) = True

]
≥ 1−negl(λ)

• Soundness: The NIZK proof system (K,P, V) is sound if

Pr
[
σ ← K(1λ); (x, π)← A(σ);V (σ, x, π) = 1 ∧ x /∈ L

]
≤ negl(λ)

• Zero Knowledge: The NIZK proof system is zero knowledge if there exists
a simulator S = (S1, S2) such that for all probabilistic polynomial time
adversaries A = (A1,A2),

AdvΓA,UZK(λ) =

∣∣∣∣Pr [ExptREALA (λ) = 1
]
−Pr

[
ExpSIMA,S (λ) = 1

] ∣∣∣∣ ≤ negl(λ)

ExpREALA (λ) ExpSIMA,S (λ)

σ ← K(1λ) (σ, κ)← S1(1λ)

(x,w, τ)← A1(σ) (x,w, τ)← A1(σ)

π ← P (σ, x, w) π ← S2(x, κ)

Return A2(π, τ) Return A2(π, τ)

5

2.4 Assumption

We will describe our system in the context of polling station voting in a super-
vised environment using touch-screen Direct Record Electronic (DRE) machines.
We assume that the DRE machines used in our scheme are securely connected
to an append-only database called the Bulletin Board [27,28,38]. Only the legit-
imate DRE machines can make posts on the Bulletin Board, whereas everyone
else can only read from it. Every datum posted on the Bulletin Board by the
DRE machine is digitally signed to prove authenticity of the published data. An
adversary who does not have access to the signature-key cannot add entries on
the Bulletin Board. Deletion of entries by the adversary can be detected if the
entries on the Bulletin Board are hash-linked. Bulletin Boards have been widely
used in the context of e-voting. There are many ways to implement a Bulletin
Board: one way is to use mirror websites. If the adversary wants to change the
content, she will have to ensure that the change is reflected on all sites, which
is difficult. Another way of realizing a Bulletin Board is to use blockchain. The
blockchain is secured by the miners and it is computationally infeasible for at-
tackers to alter the established content stored on the blockchain. However, in
this paper, we do not discuss security against malicious Bulletin Board. The
reader may find discussion on this topic in [21].

3 Formal Definition

In this section, we formally define a DRE based E2E verifiable e-voting scheme.
There are a few formal definitions on verifiable e-voting system. They will be
discussed in section 9.

A DRE based E2E verifiable e-voting scheme consists of the following proba-
bilistic algorithms. Let us assume f be the function that computes the tally of an
election given the votes v1, v2, . . . , vn. The tally is denoted as T = f(v1, v2, . . . , vn).
Note that the tally does not depend upon the order in which the voters come.
Hence, if (v′1, v

′
2, . . . , v

′
n) be a permutation of (v1, v2, . . . , vn), then f(v′1, v

′
2, . . . , v

′
n) =

f(v1, v2, . . . , vn).

Setup It is a probabilistic polynomial time algorithm that takes as input, the
security parameter λ, and an election specific parameter α, and outputs the
public parameters prm, the maximum number of votes nmax, the number of
candidates c, the set of all acceptable votes V, the tally space T , the trapdoor
space T, the state space S, the ballot space B, and the initial state stinit. In
other words;

(prm, nmax, c,V, T ,T,S,B, stinit)← Setup(λ, α)

BallotGen It is a probabilistic polynomial time algorithm that takes as input
the public parameter prm, an initial state stin, a vote v ∈ V, and outputs a
randomized ballot b ∈ B, a NIZK proof π, a trapdoor τ , and an updated state

6

stout. (Details about the NIZK proof construction can be found in Appendix.)
We may write this procedure as following

(b, π, τ, stout)← BallotGen(prm, v, stin)

VerifyAudit It is a deterministic polynomial time algorithm that takes as input
the public parameter prm, a randomized ballot b ∈ B, a unique trapdoor τ , and
returns a vote v ∈ V.

(V ∪ {⊥})← V erifyAudit(prm, b, τ)

For any b ∈ B, τ, τ ′ ∈ T, V erifyAudit(prm, b, τ) 6= ⊥ and V erifyAudit(prm, b, τ ′) 6=
⊥, then τ = τ ′. This property is called the uniqueness property of trapdoors and
is formally defined later.

VerifyBallot It is a deterministic polynomial time algorithm that takes as
input the public parameter prm, a ballot b ∈ B, and the associated NIZK proof
π, and the vote space V and returns either True or False. That is:

{True, False} ← V erifyBallot(prm, b, π,V)

The V erifyBallot(prm, b, π,V) algorithm returns True with overwhelming prob-
ability, if ∃τ ∈ T, such that V erifyAudit(b, τ) ∈ V.

Tally It is a deterministic polynomial time algorithm that takes as input the
public parameter prm a set of ballots B = (b1, b2, . . . , br), where r ∈ [1, nmax],
an initial state st1 a final state stf , and returns either a tally T ∈ T or ⊥. In
mathematical notation:

(T ∪ {⊥})← Tally(prm,B, stf , st1)

3.1 Correctness

The above DRE based E2E verifiable e-voting scheme is correct if the following
probability is overwhelmingly high.

Pr



(prm, nmax, c,V, T ,T,S,B, stinit)← Setup(λ, α)
∀n ≤ nmax,∀v1, v2, . . . , vn ∈ V
st1 ← stinit, i← 1,K ← 0

WHILE (i ≤ n)
(bi, πi, τi, sti+1)← BallotGen(prm, vi, sti)

IF (V erifyBallot(prm, bi, πi,V) = False ∨ vi 6= V erifyAudit(prm, bi, τi))
Then K ← K + 1

i← i+ 1
END WHILE

B ← (b1, b2, . . . , bn)
T ← Tally(prm,B, stn+1, st1)

(K = 0) ∧ (T = f(v1, v2, . . . , vn))


(1)

7

The correctness property implies that given any number n (polynomial in λ)
of voters,

– IfBallotGen(prm, v, st) algorithm returns (b, π, τ, st′), then V erifyBallot(prm, b, π,V)
must return True

– IfBallotGen(prm, v, st) algorithm returns (b, π, τ, st′), then V erifyAudit(prm, b, τ)
must return v

– If (bi, πi, τi, sti+1)← BallotGen(prm, vi, sti), for i ∈ [1, n], then the Tally(prm,B, stn+1, st1)
function must return the tally of all votes, i.e. f(v1, v2, . . . , vn), where B is
the set of all ballots.

Uniqueness of the Trapdoor The trapdoor associated with a DRE based
e-voting scheme (Setup,BallotGen, V erifyBallot, V erifyAudit, Tally) is said
to be bound to a ballot if for all probabilistic polynomial time algorithm A,

Pr [ExpA,TBND(λ) = 1] = 0

ExpA,TBND(λ)

(prm, nmax, c,V, T ,T,S,B, stinit)← Setup(λ, α)

Aux = (nmax, c,V, T ,T,S,B, stinit)

(b, τ, τ ′)← ABallotGen,V erifyBallot,V erifyAudit,Tally(prm,Aux)

v = V erifyAudit(b, τ)

v′ = V erifyAudit(b, τ ′)

Return (v 6= ⊥) ∧ (v′ 6= ⊥) ∧ (v 6= v′)

3.2 Verifiability

In this section, we provide the definitions of verifiability of a DRE based e-voting
scheme. There exist a few definitions on verifiability. These will be discussed in
section 9. While the general requirements for end-to-end verifiability are the
same, our formalization of verifiability differs from previous works in that we do
not require any trustees holding a secret key. In our setting, the DRE machine
changes its state every time it generates a ballot. This state parameter serves
as an input to the ballot generation algorithm which updates the state. On the
contrary, in other existing definitions, the ballot generation function does not
take as input any state function; rather the ballot generation algorithm takes
the public key of the tallying authority and the vote as inputs. In our DRE based
voting system, there is no public key of any tallying authority, and the verifia-
bility of the election depends upon the final state of the DRE machine which is
posted on the bulletin board. Due to this reason, we introduce a notion called
‘auditability’. This notion underpins the “individual verifiability” proposed in
the literature and at the same time allows protection against adversarial manip-
ulation of the state parameter in order to deceive voters. Thus, the auditability
notion attempts to assess the robustness of the voting systems in terms of indi-
vidual verifiability when the adversary controls the DRE system.

8

Universal Verifiability A DRE based e-voting scheme (Setup,BallotGen,
V erifyBallot, V erifyAudit, Tally) is said to be universally verifiable if for all
PPT adversary A, AdvA,SNDN (λ) is negligible, where

AdvA,SNDN (λ) = Pr[ExpA,SNDN (λ) = 1]

ExpA,SNDN (λ)

(prm, nmax, c,V, T ,T,S,B, stinit)← Setup(λ, α)

Aux = (nmax, c,V, T ,T,S,B, stinit)

(b, π)← ABallotGen,V erifyBallot,V erifyAudit,Tally(prm,Aux)

(V erifyBallot(b, π) = True) ∧ (∀τ ∈ T : V erifyAudit(b, τ) = ⊥)

Auditability A DRE based e-voting scheme (Setup,BallotGen, V erifyBallot, V erifyAudit, Tally)
is said to be auditable by voter if for all PPT adversary B, AdvB,SNDT (λ) is neg-
ligible, where

AdvB,SNDT (λ) = Pr[ExpB,SNDT (λ) = 1]

ExpB,SNDT (λ)

(prm, nmax, c,V, T ,T,S,B, stinit)← Setup(λ, α)

n
$←− [1, nmax]

st1 ← stinit, i← 1

Aux1 = (n, c,V, T ,T,S,B, st1)

WHILE (i ≤ n)

(bi, τi, Auxi+1)← BBallotGen,V erifyBallot,V erifyAudit,Tally(prm,Auxi)

vi ← V erifyAudit(bi, τi)

IF (vi = ⊥)

Abort

i← i+ 1

END WHILE

stn+1 ← BBallotGen,V erifyBallot,V erifyAudit,Tally(prm,Auxn+1)

B ← (b1, b2, . . . , bn)

T ← Tally(prm,B, stn+1, st1)

(T 6= ⊥) ∧ (T 6= f(v1, v2, . . . , vn))

A DRE based e-voting scheme that is both universally verifiable and voter au-
ditable is called an E2E verifiable e-voting scheme. The first property, i.e. univer-
sal verifiability assures that if a ballot passes the V erifyBallot() test, there will
be a trapdoor such that V erifyAudit() function would return a valid vote, given
the ballot and the trapdoor. That is, if all the ballots pass the V erifyBallot()
test, then all of them would correspond to a vote selected from the set V. Hence,
if all the ballots pass the verification test, then the tally will not include any
inappropriate/out-of-range vote. The second property, i.e. auditability provides
assurance that the ballots can be audited by the voters. Any voter may ask the
DRE machine to reveal the trapdoor corresponding to a ballot, so she would
be able to verify that the ballot produced against her vote indeed corresponds

9

to the correct choice she had made during voting. Every voter can check the
correctness of her cast ballot by asking to reveal the trapdoor. However, reveal-
ing the trapdoor makes the entire voting process susceptible to coercion attack.
The voter can take the ballot and the corresponding trapdoor to a coercer to
demonstrate that she indeed has voted in a particular way. In order to circum-
vent this, we adopt the method of voter initiated auditing by Benaloh [6]. We
allow a voter to cast multiple ballots with the condition that the DRE will not
reveal the trapdoor corresponding to her last ballot. However, she will receive the
trapdoors corresponding to all other ballots. We call her last ballot a ‘confirmed’
ballot and all other previous ballots ‘audited’ ballots. There is no limit on how
many ballots a particular voter can audit. The voter only chooses to audit or
confirm her ballot once the ballot is printed on the receipt. If the voter chooses
to audit her ballot, the DRE has to disclose the trapdoor that can reveal the vote
encrypted in the ballot. Since, the DRE does not know beforehand whether the
voter is going to confirm her ballot or audit it, the DRE cannot act maliciously
and generate a wrong ballot that does not correspond to the choice the voter
made previously without getting detected. When the voter confirms her ballot,
the DRE does not reveal the corresponding trapdoor making coercion impossi-
ble. The DRE posts all audited and confirmed ballots on the Bulletin Board. The
audited ballots are accompanied by their respective trapdoors. Hence, anyone
can use the V erifyAudit(·) function to regenerate the votes corresponding to all
the audited ballots. Then the audited ballots can be subtracted from the tally
to obtain the tally constituted by the confirmed ballots only as stated in Sec-
tion 4. Recall that the universal verifiability property assures that every ballot
that passes the V erifyBallot() test would correspond to a unique trapdoor that
maps the ballot to a unique vote in V. Thus, the two properties viz. universal
verifiability and auditability together provide assurance that every valid ballot
would contribute a unique vote to the final tally. A voter can use voter initiated
auditing method to confirm with a high degree of confidence that this vote is
same as the one she entered to the DRE machine.

The following lemma proves that no PPT adversary can generate a final state
such that the tally function returns a different tally that does not conform to the
votes that the ballots correspond to. This means that once the voting is over,
the adversary cannot generate a final state st so that the tally function returns
an incorrect result(i.e. sum of votes).

Lemma 1. Let us consider the following experiment ExpA,FST (λ). For any
probabilistic polynomial time adversary A, Pr [ExpA,FST (λ) = 1] ≤ negl(λ).

10

ExpA,FST (λ)

(nmax, c,V, T ,T,S,B, stinit)← Setup(λ, α)

n
$←− [1, nmax], st1 ← stinit, i← 1

V = (v1, v2, . . . , vn)
$←− Vn

Aux = (n, c,V, T ,T,S,B, st1, V)

WHILE (i ≤ n)

(bi, πi, τi, sti+1)← BallotGen(prm, vi, sti)

i← i+ 1

END WHILE

B ← (b1, b2, . . . , bn)

Π ← (π1, π2, . . . , πn)

τ ← (τ1, τ2, . . . , τn)

S← (st2, st3, . . . , stn+1)

st← ABallotGen,V erifyBallot,V erifyAudit,Tally(B,Π, Γ, τ, S, Aux)

T = Tally(prm,B, st, st1)

Return (T 6= ⊥) ∧ (T 6= f(v1, v2, . . . , vn))

Proof. This property follows directly from the auditability property. If there ex-
ists an adversary A, such that Pr[ExpA,FST (λ) = 1] > negl(λ), then we can
construct another adversary B against the security experiment ExpB,SNDT (λ).
B can generate all the ballots by simulating the BallotGen() algorithm with arbi-
trary votes. The algorithm returns the encrypted ballot, proof of well-formedness,
the trapdoor , and the updated states whenever it is invoked with some input.
B returns the ballot, the trapdoor and the updated state. When n number of
votes have been cast, the adversary B invokes A with the required inputs. A
returns a st such that T = Tally(prm,B, st, st1) holds. In addition T 6= ⊥, and
T 6= f(v1, v2, . . . , vn) also hold. Now, B can return the same st. It is easy to
see that B will win the experiment ExpB,SNDT (λ) if A wins the ExpA,FST (λ)
experiment. Hence, the result holds.

3.3 Security against Malicious Bulletin Board

Each ballot posted by the DRE machine onto the Bulletin Board is digitally
signed by the DRE machine itself. This prevents an adversary that controls
the Bulletin Board from inserting new items on the Bulletin Board or altering
existing ones. However, the Bulletin Board may attempt to drop one or more
ballots. A robust e-voting scheme should ensure that the Bulletin Board can-
not drop ballots without detection. Consider the following security experiment
ExpA,MBB(λ). The advantage of the adversary A, against the security exper-
iment ExpA,MBB(λ) is written as AdvA,FST (λ) = Pr[ExpA,MBB(λ) = 1]. A
DRE based e-voting scheme (Setup,BallotGen, V erifyBallot, V erifyAudit, Tally)
is said to be secure against malicious Bulletin Board if for all PPT adversary
B, AdvB,MBB(λ) is negligible. This property ensures that if the Bulletin Board
drops some ballots, it would not go undetected as in such cases, the tally func-
tion would return error symbols. Note that this property may not be required

11

for an e-voting system if the Bulletin Board is considered to be secure against
adversarial attack.

ExpA,MBB(λ)

(nmax, c,V, T ,T,S,B, stinit)← Setup(λ, α)

n
$←− [1, nmax], st1 ← stinit, i← 1

V = (v1, v2, . . . , vn)
$←− Vn

Aux = (n, c,V, T ,T,S,B, st1, V)

WHILE (i ≤ n)

(bi, πi, τi, sti+1)← BallotGen(prm, vi, sti)

i← i+ 1

END WHILE

B ← (b1, b2, . . . , bn)

Π ← (π1, π2, . . . , πn)

τ ← (τ1, τ2, . . . , τn)

B′ ← ABallotGen,V erifyBallot,V erifyAudit,Tally(B,Π, Γ, τ, stn+1, Aux)

T = Tally(prm,B′, st, stn+1)

Return (T 6= ⊥) ∧ (B′ ⊂ B)

3.4 Voter Privacy

Here, we shall define the privacy property of a DRE based e-voting system. We
shall be using almost the same definition of privacy which was proposed by Be-
naloh in [9]. However, the definition provided in [9] is aimed for e-voting systems
that require tallying authorities, hence, we have made a minor modification to
the original definition due to the fact that our e-voting technique does not require
any tallying authority. The definition of Benaloh requires a key pair of the chal-
lenger that emulates the real-world tallying authority. The votes are encrypted
using the public key. The adversary uses the voting oracle to cast ballots. In
each attempt, the adversary provides a pair of votes: v0, and v1. The challenger
chooses either v0 or v1 depending upon a pre-selected bit d. Once the adversary
has cast enough ballots, the challenger checks whether the tally would be the
same for d = 0, and d = 1 or not. If they are not the same, the challenger aborts
and the adversary fails. If they are, the challenger generates the tally and a NIZK
proof of correctness of the tally. Now, the adversary has to guess the value of
d. Here, we shall keep the fundamental precepts of Benaloh’s definition intact.
However, it should be noted that unlike Benolah’s definition of voter privacy, our
scheme does not have any key pair of tallying authorities; rather in our scheme
the DRE machine generates the ballots depending on its current state, and a
chosen randomness. As a result of the generation of a ballot, the DRE machine
needs to update its state. Once all the ballots are generated, the DRE machine
publishes its final state. This is precisely the difference between our definitions
of voter privacy and that of Benaloh’s.

In our security experiment there is a challenger and an adversary. We consider
a PPT adversary A who can compromise an arbitrary number of voters. A can

12

influence the compromised voters to vote the way she wants. She can choose their
votes, the number of audits she wants each of them to make etc. The challenger
emulates the uncompromised voters. We also give A the freedom to choose two
sets of votes (e.g. V0 and V1) for the uncorrupted voters. As such our security
notion is stronger than what is required of an e-voting scheme as in a normal
election the adversary does not get to choose the votes of uncompromised voters.
These votes are chosen by honest voters (or by the challenger) themselves. So
if any e-voting scheme is secure under this security notion, it will definitely be
secure in a real world scenario where the adversary has no control over the
selection of votes by the honest voters. We require that the tally constituted by
V0 and V1 as votes of honest voters (chosen by A) should be equal, as otherwise
distinguishing between them would be trivial. The challenger flips a coin and
depending on the outcome, selects a bit b ∈ {0, 1}. The challenger uses Vb as the
set of votes for the uncompromised voters. The corrupt voters and the honest
voters may come in any arbitrary order chosen by the adversary A. Once, the
protocol finishes, all the ballots are posted on the public Bulletin Board. Now,
the adversary has to guess the bit b. If she can guess b correctly, she wins the
game. We call the game ExpA,IND−CV A(λ). The advantage of A against this
security game is AdvA,IND−CV A(λ). Let us assume that ExpA,IND−CV A(λ)
equals 1 only when adversary can guess b correctly. As such,

AdvA,IND−CV A(λ) = Pr[ExpA,IND−CV A(λ) = 1]− 1

2

Remark: In the experiment ExpA,IND−CV A(λ), the adversary gets to choose
two distinct sets of votes for all the voters, with the condition that the tally for
these two sets should be the same. These two sets are V0 and V1. Note that the
intersection of these two sets may not be empty. That is some votes in V0 and
V1 may be identical. However all the votes must not be the same, otherwise the
adversary would not need to distinguish between them. The e-voting scheme is
secure against chosen vote attack if for all PPT adversary A,

AdvA,IND−CV A(λ) ≤ negl(λ)

4 Voting Procedure

In this section, we describe a practical voting process. In DRE based voting
schemes, every voter has to go to a polling kiosk to cast her vote. Each voter
brings identification documents for authentication and after successful authen-
tication obtains a random credential (a passcode or a smart-card) which allows
them to log onto a DRE to cast one vote. The DRE is programmed with the
total number of allowable votes N (including audited ballots), the actual number
of voters n (n < N), the number of candidates, the set of acceptable votes V,
the set of trapdoors T, the state space S, the ballot space B, and the initial
state st1 = stinit. Apart from these, the DRE also has access to the function
BallotGen(·). Initially st1 is posted on the Bulletin Board. In an iterative stage

13

i ∈ [1, N], let us assume that the d’th voter (d ∈ [1, n]) is casting her ballot. The
DRE machine provides an interactive interface to the voter so she could specify
her voting choice. Once the voter has input her vote vi, the DRE machine in-
vokes BallotGen(vi, sti). Here sti is the current state of the DRE. The function
BallotGen(·) returns (bi, πi, τi, sti+1). The DRE prints bi and πi on the paper.
The BallotGen function should include the ballot id i in the construction of πi in
order to defend against clash attack. Then the DRE provides two options to the
voter: either audit her ballot or to confirm it. If the voter chooses to audit her bal-
lot, the DRE prints τi on paper. The DRE makes an entry on the Bulletin Board
of the form (Audited, i, bi, τi). Then the DRE updates her state to sti+1. The
DRE then starts over again, and lets the voter make a fresh choice again. The
voter may choose to audit as many times as she wants provided the total number
ballots generated is less than nmax. In the end, the voter makes a final choice and
proceeds to confirm her vote. If the voter confirms her vote vi, the DRE machine
posts (Confirmed, i, bi, πi) on the Bulletin Board. The voter receives the printed
receipt containing all the items printed by the DRE machine since she started
interacting with it. This includes data corresponding to her audited ballots and
the data corresponding to her final confirmed ballot. Once, all the voters have
cast their votes, the DRE machine posts its final state stN on the Bulletin Board.
Here, we assume that the total number of audited and confirmed ballots on the
Bulletin Board is N . Anyone can compute T = Tally (B, stN , st1), where B is
the set of all ballots. Let D be the set of indices of all audited ballots posted on
the Bulletin Board. Anyone can also compute ṽj = V erifyAudit(bj , τj) for all
j ∈ D. The tally is v, where v = T −

∑
j∈D ṽj .

Lemma 2. Let there be n voters in a certain election. The voters are designated
as Vi : i ∈ [1, n]. Each voter Vi makes ni audits, before casting her final ballot.
Let, P be probability that the DRE generates a ballot fraudulently during casting
of a ballot. As such, the probability that the DRE machine will successfully be
able to cast at least one inexact confirmed ballot leading to an incorrect tally is
given by (1−P)A (1− (1− P)n), where A is the total number of audits done by
all the voters.

Proof. The DRE will be caught if it generates a wrong ballot which the voter
chooses to audit. Let, Xi denote the event that the i’th ballot is fraudulently
generated by the DRE machine. Since, each voter Vi makes ni audits before
confirming a ballot, the probability we are intersted in is as follows:

K = Pr



Xc
1 ∩Xc

2 ∩ . . . ∩Xc
n1
∩

Xc
n1+2 ∩Xc

n1+3 ∩ . . . ∩Xc
n1+n2+1∩

· ·
· ·

· ·
Xc∑n−1

i=1 ni+n
∩Xc∑n−1

i=1 ni+n+1
∩ . . . ∩Xc∑n

i=1 ni+n−1
∩(

Xc
n1+1 ∩Xc

n1+n2+1 ∩ . . . Xc∑n
i=1 ni+1

)c


14

Since, Xi’s are independent events, and Pr[Xi] = P for all i ∈ [1,
∑n
i=1 ni +

n], we have
K = (1− P)

∑n
i=1 ni (1− (1− P)n)

Since,
∑n
i=1 ni is the total number of audits done by all the n voters,

K = (1− P)A (1− (1− P)n) ,

where A is the total number of audits.

Differentiating with respect to P , we get

∂K

∂P
= n(1− P)A (1− P)

n−1 −A (1− (1− P)n) (1− P)A−1

If K is maximum at P = Pmax, then ∂K
∂P

∣∣
P=Pmax

= 0. Solving the above equation,

we get, (1 − Pmax)n = A
A+n . Let us assume that the total number of audits

A = κn. Putting A = κn, we get (1−Pmax)n = κ
κ+1 . Thus, Pmax = 1−(κ

κ+1)1/n.

Hence, Kmax = (1−Pmax)κn (1− (1− Pmax)n) = κκ

(κ+1)(κ+1) . Figure 1 shows how

Kmax changes with the change of the value of κ.

Value of κ

V
a
lu

e
o
f
K

m
a
x

Fig. 1. Graphical presentation of the variation in the value of Kmax with respect to
the variation in κ.

5 Discussion

Here we provide a detailed discussion on the properties of our scheme. We con-
sider verifiability by an individual voter, and global verifiability. We also consider
attacks on the Bulletin Board and coercion resistance. We also discuss the ro-
bustness of this scheme.

15

Verification by Voter Our scheme provides E2E verifiability of each of the
cast vote. Hence, each voter would be able to verify that her vote was cast and
included in the tally as per her wish. Further, any third party would be able
to check that none of the ballots that constitute the tally corresponds to out-
of-range vote. The former goal is achieved thanks to the auditability property.
This property ensures that the tally must be constituted of the votes obtained
through decryption of the votes with the help of their corresponding trapdoors.
Again the uniqueness property of trapdoors ensure that their can be only one
trapdoor corresponding to one ballot with which it could be decrypted. So, a
voter can do sufficient number of audits to ensure that her vote is correctly
encapsulated in her final confirmed ballot. The DRE machine does not know at
the time of printing the receipt whether the voter is going to audit her ballot
or not, so she cannot cheat on the voter without risking getting caught. Thus,
when the polling ends, the voter can assure herself that her vote is properly
cast, and counted into the tally by performing sufficient number of audits and
by matching her final receipt with the one posted on the Bulletin Board.

Public Verifiability A vote is the secret information of a voter. No one else
should get to learn it. However, for the sake of verifiability, third parties should be
able to at least verify that all the cast ballots correspond to votes that are within
the permissible limit, and there is no ballot that correspond to out-of-range vote.
This is done by using the non-interactive proofs π that demonstrate the well-
formedness of each ballot. Given a ballot and a proof π, the V erifyBallot func-
tion returns true with overwhelming probability only if the vote that corresponds
to the ballot belongs to the set V. Hence, the tally computed from the ballots
are constituted by valid votes. The DRE should include the id of each ballot in
the construction of the proof π in order to defend against clash attack [31].

Bulletin Board The Bulletin Board, used as a storage, is secure against Denial
of Service attack. Note that, insertion of any new entry by the adversary would
require the adversary to know the signature-key of the DRE machine. So, the
adversary cannot alter existing data on the Bulletin Board if the signature is not
malleable. If the adversary drops one or more ballots from the Bulletin Board,
the verification would fail which will alert the authorities. This is due to the fact
that for any PPT adversary AdvA,MBB(λ) ≤ negl(λ).

Robustness In our scheme, all the ballots and other information are generated
by the DRE machine. The voter only uses the DRE machine’s interface to enter
her choice. Moreover, the voter does not have the secret signing key of the DRE
machine. Hence, she cannot generate arbitrary receipts. Therefore, a malicious
voter cannot halt the election process anyway.

6 DRE-CV

Here, we discuss our new DRE based cumulative e-voting system. We have used
the DRE-ip scheme by Shahandashti and Hao [39] as a building block. The DRE-

16

ip scheme is designed for simple plurality voting. There, the votes have two simple
values: 0 or 1. In order to adapt it for supporting cumulative voting which is
a type of ranked-choice electoral voting systems, we need to construct different
non-interactive zero knowledge proof in order to make it universally verifiable.
Below, we formally define the construction according to our formalization.

The scheme consists of five algorithms who work as below:

� Setup(λ, α) This algorithm takes the security parameter λ, and the total
number of points α available to each of the voters. The algorithm returns
the maximum number of votes nmax, the number of candidates c, the set of
valid votes

V =

{
(v1, v2, . . . , vc) : v1, v2, . . . , vc ∈ [α],

c∑
i=1

vi = α

}

the Tally space

T =

{
n∑
i=1

vi : vi ∈ V, n ∈ [1, nmax]

}
the set of trapdoors

τ = {x1, x2, . . . , xc : xi ∈ Zp}

the set of states
S = τ

the set of ballots
B = {Gc ×Gc}

and the initial state stinit = (0, 0, . . . , 0). It assigns prm = (G, p, g, g̃), where
g and g̃ are two generators of G, such that the relationship between them is
not known.

� BallotGen(v, stin) This algorithm takes a vote v ∈ V and a state stin. It
parses the vote v as (v1, v2, . . . , vc) and the state stin as (st1, st2, . . . , stc).
The algorithm selects random X = (x1, x2, . . . , xc) ∈ Zcp. Then it assigns
bi = gxi+vi , and x̃i = g̃xi . It generates a NIZK proof Π = (π1, π2, . . . , πc)
and Π̃ of well-formedness of the ballot. Each proof πi, i ∈ [1, c] proves that
bi = DHg̃(g, x̃i) ∗ gKi for some Ki ∈ [α]. In addition Π̃ proves that

c∏
i=1

bi = DHg̃

(
g,

c∏
i=1

x̃i

)
∗ gα

Thus, together Π and Π̃ proves that there exists v = (v1, v2, . . . , vc) ∈ V,
such that bi = gxi+vi , and x̃i = g̃xi . Details about the NIZK proof con-
struction can be found in Appendix. Let B = (b1, b2, . . . , bc), and X̃ =
(x̃1, x̃2, . . . , x̃c). Let b̃ = 〈B, X̃〉, π̄ = (Π, Π̃), τ = X, and stout = (st′1, st

′
2, . . . , st

′
c),

where st′k = stk + xk for all k ∈ [1, c]. The algorithm returns (b̃, π̄, τ, stout).

17

� V erifyAudit(b̃, τ) This algorithm takes as input a ballot b̃, and a trapdoor
τ . It parses b̃ as 〈B, X̃〉, and τ as (x1, x2, . . . , xc). Here, B = (b1, b2, . . . , bc),
and X̃ = (x̃1, x̃2, . . . , x̃c). If the parsing cannot be done properly, it returns
⊥. Else it computes v = (v1, v2, . . . , vc) ∈ Zcp, such that bi = gxi+vi , and
x̃i = g̃xi , for all i ∈ [1, c]. Then it returns v. Else it returns ⊥.

� V erifyBallot(b̃, π̄,V) This algorithm takes as input a ballot b̃, a proof of
well-formedness π̄. It first parses b̃ as 〈B, X̃〉, and π̄ as (Π, Π̃). Here, B =
(b1, b2, . . . , bc), X̃ = (x̃1, x̃2, . . . , x̃c). If the parsing cannot be done properly,
it returns False. Then Π is parsed as (π1, π2, . . . , πc). If the parsing cannot
be done, it returns False. Else it checks whether or not πi is a valid NIZK
proof for the following statement:

∃Ki ∈ [α] : bi = DHg̃ (g, x̃i) ∗ gKi

for all i ∈ [1, c]. If the check is not successful for at least one value of i ∈ [1, c],
the algorithm returns False. Else the algorithm checks whether Π̃ is a valid
NIZK proof for the following statement:

c∏
i=1

bi = DHg̃

(
g,

c∏
i=1

x̃i

)
∗ gα

If the check is successful, the algorithm return True, otherwise it returns
False.

� Tally(B, stf , st1) This function takes as input the set of ballots B = (b̃1, b̃2, . . . , b̃c),
the initial state st1 = (0, 0, . . . , 0), and the final state stf . It parses st1 as

(s1, s2, . . . , sc). If the parsing cannot be done, it returns ⊥. Else it parses b̃i as
〈Bi, X̃i〉, for i ∈ [1, n]. Here,Bi = (bi1, bi2, . . . , bic), and X̃i = (x̃i1, x̃i2, . . . , x̃ic).
The algorithm checks whether

n∏
i=1

x̃ij = g̃sj ;∀j ∈ [1, c]

If the check is not successful it returns ⊥. Else, it find (v1, v2, . . . , vc) ∈ T ,
such that

n∏
i=1

bij = gsj+vj

This check can be done in polynomial time as |T | ∈ poly(λ). If it can find such
(v1, v2, . . . , vc) ∈ T , it returns the same. If the above check is unsuccessful,
it returns ⊥.

6.1 Correctness

Now, we show that the above cumulative e-voting scheme is correct. As discussed
before, the scheme will be correct if the following properties are satisfied:

18

1. IfBallotGen(prm, vi, st) algorithms returns (b̃i, πi, τi, st
′), then V erifyBallot(prm, b̃i, πi,V)

should return True, and V erifyAudit(prm, b̃i, τi) should return vi. In our
proposed scheme, b̃i = 〈Bi, X̃i〉,Bi = (bi1, bi2, . . . , bic), and X̃i = (x̃i1, x̃i2, . . . , x̃ic).
Again, bij = DHg̃ (g, x̃ij) ∗ gvij , and vi = (vi1, vi2, . . . , vic), for j ∈ [1, c].
In our scheme, πi is the non-interactive zero knowledge proof of the fact
that (K1,K2, . . . ,Kc) ∈ V, where gKj = bij/DHg̃ (g, x̃ij) for j = 1, 2, . . . , c.

Hence, V erifyBallot(prm, b̃i, πi,V) = True. Moreover, τi = (xi1, xi2, . . . , xic),
where xij = logg̃ x̃ij , for j ∈ [1, c]. As such, V erifyAudit(prm, b̃i, τi) = vi =
(vi1, vi2, . . . , vic).

2. Lastly, if (b̃i, πi, τi, sti+1)← BallotGen(prm, vi, sti), for i = 1, 2, . . . , n, then
Tally(prm,B, sti+1, st1) must return the tally f(v1, v2, . . . , vn), where B =
{b̃i : i ∈ [1, n]}. Now, in our scheme, b̃i = 〈Bi, X̃i〉, Bi = (bi1, bi2, . . . , bic),
X̃i = (x̃i1, x̃i2, . . . , x̃ic), bij = DHg̃ (g, x̃ij) ∗ gvij . Again, st1 = (0, 0, . . . , 0),
and stn+1 = (s1, s2, . . . , sc), where sj =

∑n
i=1 xij , and xij = logg̃ x̃ij : for all

j ∈ [1, c]. As discussed before, the tally function returns L = (l1, l2, . . . , lc),
where lj = logg (

∏n
i=1 bij/g

sj) = logg (
∏n
i=1 bij/DHg̃(g, g̃

sj)) =
logg (

∏n
i=1 bij/DHg̃(g,

∏n
i=1 x̃ij)) = logg (

∏n
i=1(DHg̃ (g, x̃ij) ∗ gvij)/

∏n
i=1DHg̃ (g, x̃ij)) =∑n

i=1 vij .Thus, the tally L = (l1, l2, . . . , lc) = (
∑n
i=1 vi1,

∑n
i=1 vi2, . . . ,

∑n
i=1 vic) =

f(v1, v2, . . . , vc).

Hence, the e-voting scheme is correct.

6.2 Uniqueness of the Trapdoor

We have discussed binding property of trapdoor previously in section 3. The
above cumulative e-voting protocol will follow this property if for all PPT ad-
versary A, the following probability is negligible

Pr[ExpA,TBND(λ) = 1]

ExpA,TBND(λ)

(prm, nmax, c,V, T ,T,S,B, stinit)← Setup(λ, α)

Aux = (nmax, c,V, T ,T,S,B, stinit)

(b̃, τ, τ ′)← ABallotGen,V erifyBallot,V erifyAudit,Tally(prm,Aux)

v = V erifyAudit(b̃, τ)

v′ = V erifyAudit(b̃, τ ′)

Return (v 6= ⊥) ∧ (v′ 6= ⊥) ∧ (v 6= v′)

Let us assume v = (v1, v2, . . . , vc), and v′ = (v′1, v
′
2, . . . , v

′
c). If Pr[ExpA,TBND(λ) =

1] � negl(λ), there exist b̃ = (B, X̃), B = (b1, b2, . . . , bc), X = (x̃1, x̃2, . . . , x̃c)
τ = (x1, x2, . . . , xc), τ

′ = (x′1, x
′
2, . . . , x

′
c), satisfying

bi = DHg̃ (g, x̃i) ∗ gvi ,∀i ∈ [1, c]

bi = DHg̃ (g, x̃i) ∗ gv
′
i ,∀i ∈ [1, c]

19

and

x̃i = g̃xi = g̃x
′
i ,∀i ∈ [1, c]

This undoubtedly means that xi = x′i, and vi = v′i,∀i ∈ [1, c]. Hence, v = v′.
Thus, our scheme exhibits the uniqueness property of trapdoors.

6.3 Universal Verifiability

The above scheme will exhibit universal verifiability if the below probability is
negligible.

AdvA,SNDN (λ) = Pr[ExpA,SNDN (λ) = 1]

ExpA,SNDN (λ)

(prm, nmax, c,V, T ,T,S,B, stinit)← Setup(λ, α)

Aux = (nmax, c,V, T ,T,S,B, stinit)

(b̃, π̄)← ABallotGen,V erifyBallot,V erifyAudit,Tally(prm,Aux)

(V erifyBallot(b̃, π̃,V) = True) ∧ (∀τ ∈ T : V erifyAudit(b, τ) = ⊥)

If the NIZK proof system is sound and if V erifyBallot(b̃, π̃,V) = True,
where b̃ = 〈B, X̃〉, B = (b1, b2, . . . , bc), X̃ = (x̃1, x̃2, . . . , x̃c), π̄ = (Π, Π̃), then for
all i ∈ [1, c], ∃Ki ∈ [α], such that bi = DHg̃(g, x̃i) ∗ gKi . In addition to that,∏c
i=1 bi = DHg̃ (g,

∏c
i=1 x̃i)∗gα. Let us assume that xi = logg̃ x̃i,∀i ∈ [1, c]. Also

assume that X = (x1, x2, . . . , xc). Again,
∏c
i=1 bi = DHg̃ (g,

∏c
i=1 x̃i) ∗ gα =∏c

i=1DHg̃ (g, x̃i) ∗ gα. Hence,
∏c
i=1 g

Ki = gα, or
∑c
i=1Ki = α. Since Ki ∈ [α]

for all i ∈ [1, c], and
∑c
i=1Ki = α, K = (K1,K2, . . . ,Kc) ∈ V. Thus, X is

the trapdoor such that V erifyAudit(b̃, X) = K ∈ V. Hence, our scheme is
universally verifiable.

6.4 Auditability

Here, we show that our scheme is auditable by the voter.

Our scheme (Setup,BallotGen, V erifyBallot, V erifyAudit, Tally) will be
auditable by voter if for all PPT adversary A, AdvA,SNDT (λ) is negligible, where

AdvA,SNDT (λ) = Pr[ExpA,SNDT (λ) = 1]

20

ExpB,SNDT (λ)

(prm, nmax, c,V, T ,T,S,B, stinit)← Setup(λ, α)

n
$←− [1, nmax]

st1 ← stinit, i← 1

Aux1 = (n, c,V, T ,T,S,B, st1)

WHILE (i ≤ n)

(b̃i, τi, Auxi+1)← ABallotGen,V erifyBallot,V erifyAudit,Tally(prm,Auxi)

vi ← V erifyAudit(b̃i, τi)

IF (vi = ⊥)

Abort

i← i+ 1

END WHILE

stn+1 ← ABallotGen,V erifyBallot,V erifyAudit,Tally(prm,Auxn+1)

B← (b̃1, b̃2, . . . , b̃n)

T ← Tally(prm,B, stn+1, st1)

(T 6= ⊥) ∧ (T 6= f(v1, v2, . . . , vn))

Let us assume that for a PPT adversary A, AdvA,SNDT (λ) � negl(λ). Let

us also assume that stn+1 = (t1, t2, . . . , tn). Further, we assume b̃i = 〈Bi, X̃i〉,
Bi = (bi1, bi2, . . . , bic), and X̃i = (x̃i1, x̃i2, . . . , x̃ic) for all i = 1, 2, . . . , n. In
addition, we assume that vi = (vi1, vi2, . . . , vic), and τi = (τi1, τi2, . . . , τic) for all
i ∈ [1, n]. Since, vi = V erifyAudit(b̃i, τi),∀i ∈ [1, n], we must have x̃ij = g̃xij ,
and bij = gxij+vij ,∀i ∈ [1, n], j ∈ [1, c]. Let, L = (l1, l2, . . . , lc) be the output
of the tally function. Hence, L ∈ T \ {f(v1, v2, . . . , vn)} with a non-negligible
probability. This can only happen if the following equations are satisfied:

n∏
i=1

x̃ij = g̃tj ;∀j ∈ [1, c]

and
n∏
i=1

bij = gtj+lj ;∀j ∈ [1, c]

Substituting x̃ij with g̃xij , and bij with gxij+vj , we get tj =
∑n
i=1 xij , and∑n

i=1(xij + vij) = tj + lj for all j ∈ [1, c]. That is
∑n
i=1 vij = lj , for all j ∈ [1, c].

Therefore, Tally(prm,B, stn+1, st1) = f(v1, v2, . . . , vn). Hence, our assumption
was wrong, and the scheme is auditable by the voter.

6.5 Receipt-freeness

In our scheme, the DRE machine does not reveal the trapdoor corresponding
to the final confirmed ballot of the voter. The receipt that a voter receives does
not allow her to prove to someone how she voted. In fact, the receipt of a voter
does not contain any sensitive information that is not available with the Bulletin
Board. We shall prove that in section 7 that the Bulletin Board does not divulge
any information about a voter’s voting preference. Hence, our scheme is receipt-
free.

21

6.6 Protection against Malicious Bulletin Board

We have discussed protection from malicious Bulletin Board in section 3. Our
DRE-CV scheme will be secure against this attack if the tally function does not
output a valid tally when some ballots are dropped. Let us assume that the set of
ballots are {b̃i : i ∈ [1, n]}, where b̃i = 〈Bi, X̃i〉, Bi = (bi1, bi2, . . . , bic), and X̃i =
(x̃i1, x̃i2, . . . , x̃ic) for all i ∈ [1, n]. Hence,

∏n
i=1 x̃ij = g̃tj , and

∏n
i=1 bij = gtj+vj ,

for all j ∈ [1, c]. Here, the tally of n ballots is (t1, t2, . . . , tn). Now, let us assume
that K is the set of indices of the ballots which are dropped by the adversary,
where |K| ≥ 1. It is easy to see that

∏
i∈[1,n]\K x̃ij 6= g̃tj , for j ∈ [1, c]. Therefore,

the tally function would return ⊥, when at least one ballot is dropped. So, when
a malicious adversary attempts to tamper with the bulletin board by dropping
ballots or changing the tally, the attack will be publicly detectable.

7 Security Properties

Here, we discuss the security properties of the proposed scheme. We show that
the proposed scheme is secure in the sense that it does not reveal any additional
information regarding the votes of individual voters other than what the final
tally normally does. For this purpose, we prove that our scheme is secure against
the Chosen Vote Attack defined in section 3. In other words, no PPT adversary
can make any inference vis-à-vis the secret ballots of honest voters which she
cannot do from the tally or other information that she is entitled to have access
to.

ExpGA,DDH(λ)

g
$←− G

A
$←− G, B

$←− G
c0 = DHg(A,B)

c1 = g ∗DHg(A,B)

b
$←− {0, 1}

b′ = AG(g,A,B, cb)

return (b = b′)

Assumption 1 The advantage of the DDH adversary A is denoted as

AdvGA,DDH(λ) =

∣∣∣∣Pr [ExpGA,DDH(λ) = 1
]
− 1

2

∣∣∣∣
The above probability is taken over all random coins used in the experiment
as well as those used by A. If the Decisional Diffie Hellman assumption is in-
tractable in G, then AdvGA,DDH(λ) ≤ negl(λ).

22

ExpGA,MDDH(λ)

κ
$←− poly(λ)

g
$←− G

A
$←− G

Bi
$←− G : i ∈ [1, κ]

c0i = DHg(A,Bi) : i ∈ [1, κ]

c1i = g ∗DHg(A,Bi) : i ∈ [1, κ]

D0 = (c01, c
0
2, . . . , c

0
κ)

D1 = (c11, c
1
2, . . . , c

1
κ)

B = (B1, B2, . . . , Bκ)

b
$←− {0, 1}

b′ = AG(g,A,B, Db)
return (b = b′)

Assumption 2 The advantage of the MDDH adversary A is given by

AdvGA,MDDH(λ) =

∣∣∣∣Pr [ExpGA,MDDH(λ) = 1
]
− 1

2

∣∣∣∣
The above probability is taken over all random coins used in the experiment as
well as those used by A.

Lemma 3. AdvGB,MDDH(λ) ≤ AdvGA,DDH(λ).

Proof. Let, B be an adversary against the security experiment ExpGB,MDDH(λ).

We show howA can use it against ExpGA,DDH(λ).A receives as inputs g,A,B and
the challenge cb ∈ {DHg(A,B), g∗DHg(A,B)}.A selects random d1, d2, . . . , dκ ∈R
Zp. A computes Bi = B ∗ gdi , cbi = cb ∗ Adi ,∀i ∈ [1, k]. Thus, A sets cbi =
DHg(A,Bi) ∗ gb for all i ∈ [1, κ]. Now, let us assume Db = (cb1, c

b
2, . . . , c

b
κ) and

B = (B1, B2, . . . , Bκ). Note that, if cb = DHg(A,B), then

Db = (DHg(A,B1), DHg(A,B2), . . . , DHg(A,Bκ))

Alternatively, if cb = g∗DHg(A,B), thenDb = (g∗DHg(A,B1), g∗DHg(A,B2), . . . , g∗
DHg(A,Bκ)). Now, A invokes B with the following inputs: g,A,B, and Db. B
will return a bit b′ ∈ {0, 1}. A will return the same bit b′. It is easy to see that
the success probability of A is at least that of B. Hence, the result holds.

Assumption 3 Consider the following security experiment ExpGA,SDDH(λ):
Let us define the advantage of any PPT adversary A against this security

experiment as

AdvGA,SDDH(λ) =

∣∣∣∣Pr [ExpGA,SDDH(λ) = 1
]
− 1

2

∣∣∣∣
The above probability is taken over all random coins used in the experiment as
well as those used by A.

23

ExpGA,SDDH(λ)

η, α
$←− poly(λ)

g
$←− G,g̃

$←− G
(V, V ′) = AG(η, α, g, g̃)

if ((|V | 6= η)||(|V ′| 6= η)||(
∑
v∈V v 6=

∑
v′∈V ′ v

′))

Abort

if ((∃v ∈ V : v /∈ [α])||(∃v′ ∈ V ′ : v′ /∈ [α]))

Abort

Xi
$←− G : i ∈ [η]

c0i = gvi ∗DHg̃(g,Xi) : i ∈ [η]

c1i = gv
′
i ∗DHg̃(g,Xi) : i ∈ [η]

D0 = (c01, c
0
2, . . . , c

0
η)

D1 = (c11, c
1
2, . . . , c

1
η)

s =
∑η
i=1DLg̃(Xi)

X = (X1, X2, . . . , Xη)

b
$←− {0, 1}

b′ = AG(g, g̃, s,X, Db, V, V ′)
return (b = b′)

Lemma 4. AdvGB,SDDH(λ) ≤ AdvGA,MDDH(λ)

Proof. Assume that B is an adversary against the security experiment ExpGB,SDDH(λ).
We show how the MDDH adversary A can use B against the MDDH assump-
tion. A runs B internally as a subroutine. A receives as input g̃, A = g,B =
(B1, B2, . . . , Bη−1), and a challenge Db = (cb1, c

b
2, . . . , c

b
η−1), cbi ∈ {DHg̃(g,B), g ∗

DHg̃(g,B)}. Here, DHg̃(g,B) = (DHg̃(g,B1), DHg̃(g,B2), . . . , DHg̃(g,Bη−1)).

A selects random α
$←− poly(λ), and invokes BG(η, α, g, g̃). B outputs V =

(v1, v2, . . . , vη) and V ′ = (v′1, v
′
2, . . . , v

′
η), where vi, v

′
i ∈ [α] for all i ∈ [1, η].

Let us assume that
∑η
i=1 vi =

∑η
i=1 v

′
i = ṽ. The adversary A computes c̃bi =

(cbi)
vi−v′igv

′
i and X̃i = B

vi−v′i
i for all i ∈ [1, η− 1]. A also computes c̃bη = gs+ṽ∏η−1

i=1 c
b
i

and X̃η = g̃s∏η−1
i=1 Xi

. Note that, if cbi = DHg̃(g,Bi) for all i ∈ [η − 1], then

c̃bi = DHg̃(g,Xi) ∗ gv
′
i for all i ∈ [η− 1]. Alternatively, if cbi = g ∗DHg̃(g,Bi) for

all i ∈ [η − 1], then c̃bi = DHg̃(g,Xi) ∗ gvi for all i ∈ [η − 1]. Similarly, if cbi =

DHg̃(g,Bi), for all i ∈ [η−1], then c̃bη = gs

DHg̃(g,
∏η−1
i=1 Xi)

gv
′
η = gs∏η−1

i=1 DHg̃(g,Xi)
gv
′
η .

Else if cbi = g ∗ DHg̃(g,Bi),∀i ∈ [1, η − 1], then c̃bη = gs

DHg̃(g,
∏η−1
i=1 Xi)

gvη =

gs∏η−1
i=1 DHg̃(g,Xi)

gvη . Again, s = DLg̃(
∏η
i=1Xi) =

∑η
i=1DLg̃(Xi). Let us assume

Db = (c̃b1, c̃
b
2, . . . , c̃

b
η) and X = (X1, X2, . . . , Xη). Now, A invokes B with the

following inputs: g, g̃, s,X, Db, V, V
′. B will return a bit b′. A will return 1 − b′.

24

It is easy to see that the success probability of A is at least that of B, that is
AdvG,SDDHB (λ) ≤ AdvG,MDDH

A (λ).

Assumption 4 Consider the following security experiment ExpGA,LDDH(λ):

ExpGA,LDDH(λ)

n, α
$←− poly(λ)

g
$←− G,g̃

$←− G
(η, Vn×η, V

′
n×η) = AG(n, α, g, g̃)

if (η < 2)

Abort

[v] = Vn×η, [v
′] = V ′n×η

if (((∃i ∈ [1, n])∧(∃j ∈ [1, η]))∧((vij /∈ [α])∨(v′ij /∈ [α])))

Abort

if ((∃j ∈ [1, η]) ∧ ((
∑n
i=1 vij 6= α) ∨ (

∑n
i=1 v

′
ij 6= α)))

Abort

if ((∃i ∈ [1, n]) ∧ (
∑η
j=1 vij 6=

∑η
j=1 v

′
ij))

Abort

X
$←− Gη×n

X = [Xij]

c0ij = gvij ∗DHg̃(g,Xij) : j ∈ [1, η], i ∈ [1, n]

c1ij = gv
′
ij ∗DHg̃(g,Xij) : j ∈ [1, η], i ∈ [1, n]

D0 = [c0ij]

D1 = [c1ij]

si =
∑η
j=1 logg̃(Xij) : i ∈ [1, n]

s = (s1, s2, . . . , sn)

b
$←− {0, 1}

b′ = AG(g, g̃, s,X,Db, V, V
′)

return (b = b′)

Let us define

AdvG,LDDHA (λ) =

∣∣∣∣Pr [ExpGA,LDDH(λ) = 1
]
− 1

2

∣∣∣∣
The above probability is taken over all random coins used in the experiment as
well as those used by A.

Lemma 5. AdvGB,LDDH(λ) ≤ poly(λ) ∗AdvGA,SDDH(λ).

Proof. We show that if there exists an adversary B against the security exper-
iment ExpGB,LDDH(λ), then it could be used to construct another adversary A

25

against the security experiment ExpGB,SDDH(λ). A works as below:

Upon receipt of η, α, g, g̃, it selects random n
$←− poly(λ), and invokes BG(n, α, g, g̃)

and receives η ∈ poly(λ), and two n × η′ matrices V = [vij] and V ′ = [v′ij].
If η′ 6= η, then A aborts and returns a random bit. Else, A continues. Let
∆ = (∆1, ∆2, . . . ,∆n) be such that ∆i =

∑η
j=1 vij . A checks the dimension of

both the matrices V and V ′. If both the matrices are n × η, then it contin-
ues, else it aborts and returns a random bit. If any of the elements in either
V or V ′ does not belong to [α] then A aborts and returns a random bit. If A
has not yet aborted, it generates two 1× η vectors

−→
V = (−→v 1,

−→v 2, . . . ,
−→v η) and

−→
V ′ = (−→v ′1,−→v ′2, . . . ,−→v ′η), such that −→v i 6= −→v ′i for any i ∈ [1, η],−→v i,−→v i ∈ [α],∀i ∈
[1, η] and

∑η
i=1
−→v i =

∑η
i=1
−→v ′i. A returns (

−→
V ,
−→
V ′). In return A receives the

challenge Db = (cb1, c
b
2, . . . , c

b
η),X = (X1, X2, . . . , Xη), s =

∑η
i=1 logg̃(Xi). Note

that, here cbi ∈ {gv1i ∗DHg̃(g,Xi), g
v′1i ∗DHg̃(g,Xi)}. A selects −→s ∈R Znp . Let

us assume −→s = (−→s 1,
−→s 2, . . . ,

−→s n). Now, A generates two n × (η − 1) matri-
ces K = [kij] and, L = [lij], such that kij = (vij − v′ij) ∗ (vj − v′j)

−1, and

lij = (vij ∗ v′j − v′ij ∗ vj) ∗ (v′j − vj)
−1 for all i ∈ [1, n], j ∈ [1, η − 1]. Since,

vij , v
′
ij , vj , v

′
j ∈ Zp for all i ∈ [1, n], j ∈ [1, η− 1] and vj 6= v′j for all j ∈ [1, η− 1],

kij and lij can be computed for all i ∈ [1, n], j ∈ [1, η − 1]. Now, A computes

Xij = X
kij
i ∗ g̃lij : ∀i ∈ [1, n], j ∈ [1, η − 1]

cbij = (cbi)
kij ∗ g̃lij : ∀i ∈ [1, n], j ∈ [1, η − 1]

It is easy to see that if cbi = gvi ∗ DHg̃(g,Xi), then cbij = gvij ∗ DHg̃(g,Xij)

for all i ∈ [1, n], j ∈ [1, η − 1]. Alternatively, if cbi = gv
′
i ∗ DHg̃(g,Xi), then

cbij = gv
′
ij ∗ DHg̃(g,Xij) for all i ∈ [1, n], j ∈ [1, η − 1]. Then A generates,

∀i ∈ [1, n]:

Xiη =
g̃
−→s i∏η−1

j=1 Xij

cbiη =
g
−→s i ∗ g∆i∏η−1
j=1 c

b
ij

Let us denote X = [Xij], Db = [cbij]. Now, A invokes B with the following inputs:
g, g̃,−→s ,X,Db, V, V

′. B returns a bit b′. A returns the same bit. Let us now calcu-
late the success probability ofA. Pr[ExpGA,SDDH(λ) = 1] = Pr[ExpGA,SDDH(λ) =

1
∣∣η = η′]Pr[η = η′]+Pr[ExpGA,SDDH(λ) = 1

∣∣η 6= η′]Pr[η 6= η′] = Pr[ExpGB,LDDH(λ) =

1] ∗ 1
poly(λ) + (1− 1

poly(λ)) ∗
1
2 = 1

2 + 1
poly(λ)

(
Pr[ExpGA,LDDH(λ) = 1]− 1

2

)
= 1

2 +
1

poly(λ)Adv
G
B,LDDH(λ). Thus, AdvGA,SDDH(λ) ≥ Pr[ExpGA,SDDH(λ) = 1] − 1

2 =
1

poly(λ)Adv
G
B,LDDH(λ). Hence, the result holds.

Now, we show that DRE-CV is secure against the IND − CV A attack de-
scribed in section 3. We consider a PPT adversary B who along with the chal-
lenger emulates the security experiment ExpGB,IND−CV A(λ). First, the Setup()

26

function generates the public parameters, and other parameters including the
maximum number of voters. Then the challenger invokes B with these param-
eters. B returns the number of honest voters η and two sets V 0

c×η and V 1
c×η.

The challenger flips a coin and depending upon the outcome, chooses a bit b.
The set V bc×η will be used by the challenger as the set of confirmed votes for η

honest voters. That is, each column of V bc×η will be the used as the confirmed
vote of one of the η honest voters. Note that the audited ballots of honest voters
are not chosen by B. This is because the honest voters are totally controlled
by the challenger. It is the prerogative of the challenger to decide how many
audits an honest user may conduct. The challenger also lets the adversary de-
cide the sequence in which the colluding voters and the honest voters arrive. All
the confirmed and audited ballots are posted on the Bulletin Board along with
the NIZK proofs of well-formedness(if any). Once, the polling is complete, the
challenger posts the tally and the aggregate randomness on the Bulletin Board
the adversary needs to predict the bit b. The experiment will be successful if the
adversary can predict b correctly.

The following lemma shows that our scheme is secure against the IND−CV A
attack.

Lemma 6.

AdvGB,IND−CV A(λ) ≤ AdvGA,LDDH(λ) +O
(
AdvGG,UZK(λ)

)
Proof. We show that if there exists an adversary B, against the ExpGB,IND−CV A(λ),
it could be used in the construction of another adversary A, against the secu-
rity experiment ExpGA,LDDH(λ). A runs B as a subroutine. When A is invoked

with the inputs c, α, g, g̃, A selects n ∈ poly(λ), and invokes BG(c, n, α, g, g̃). B
returns (η, V 0

c×η, V
1
c×η). V 0

c×η, and V 1
c×η represent the two possible sets of votes

of honest voters. A returns (η, V 0
c×η, V

1
c×η). If ExpGA,LDDH(λ) is not aborted, A

receives s = (s1, s2, . . . , sc), Xc×η = [Xij] and the challenge Db = [cbij], where
i ∈ [1, c], j ∈ [1, η]. Now,A starts the polling process. The adversary B casts votes
on behalf of all the colluding voters. B confirms/audits her ballots as many times
she wants. Whenever B tries to cast/audit a ballot, the challenger(A) interacts
with her as usual, generating the randomnesses and the ballots in accordance
with the scheme. When the turn of the i’th honest voter comes, the DRE ma-
chine selects a column i of cb and X. Now, let the confirmed ballot of the honest
voter i be Bi = (Bi1, Bi2, . . . , Bin), where Bij = 〈bij , x̃ij〉. A assigns bij = cbij ,
and x̃ij = Xij for j ∈ [1, c]. A may also perform any number of audits on behalf
of the honest voters. When A audits, she generates arbitrary votes and ran-
domnesses and produces ballots accordingly. Note that, A knows when she is
going to audit a ballot, so she can generate bespoke ballots against self-chosen
randomness and votes for every audit she makes. A generates simulated NIZK
proof of well-formedness for all confirmed ballots which she posts on the Bulletin
Board along with the ballots. Now, when all the votes are cast, A posts on the
Bulletin Board the tally and the randomnesses on the Bulletin Board. A can
generate the tally by adding the votes of all the audited ballots, the confirmed

27

ballots of the adversary, and the confirmed ballots of the honest voters which
are

∑η
j=1 vij as shown in the description of ExpGA,LDDH(λ). Note that V bc×η is

known to A in ExpGA,LDDH(λ). A also receives the aggregate randomness vector

s = (s1, s2, . . . , sn) from the challenger of ExpGA,LDDH(λ). She adds to s, the
randomnesses produced by herself during the process of generating the ballots
for adversary-controlled voters and the audited ballots of honest users. Thus,
she computes the sum of all randomnesses of all the ballots generated during the
voting process. Once A has posted this tally and the overall randomness on the
Bulletin Board, the adversary B will return a bit b′. A can return the same bit.

Let us now calculate the success probability of A. The difference between
the security game ExpGB,IND−CV A(λ), and the real world IND − CV A exper-

iment is that in ExpGB,IND−CV A(λ) some of the NIZK proofs are simulated,
where in real life they all of them will be computed by the prover(s). Let,
B′ be an adversary against ExpGB′,IND−CV A(λ) that receives simulated proofs.

Then,

∣∣∣∣AdvGB,IND−CV A(λ) − AdvGB′,IND−CV A(λ)

∣∣∣∣ ≤ O
(
AdvGG,UZK(λ)

)
. Hence,

AdvGB,IND−CV A(λ)−O
(
AdvGG,UZK(λ)

)
≤ AdvGB′,IND−CV A(λ) ≤ AdvGA,LDDH(λ).

Therefore, AdvGB,IND−CV A(λ) ≤ AdvGA,LDDH(λ) +O
(
AdvGG,UZK(λ)

)
.

Now, we can unify all the results proven in this section and claim the follow-
ing.

AdvGB,IND−CV A(λ) ≤ poly(λ) ∗AdvGA,DDH(λ) +O
(
AdvGG,UZK(λ)

)
Hence, our cumulative e-voting scheme will be secure against the chosen votes
attack if the Decisional Diffie Hellman assumption holds in the group G, and if
the proof systems used in the scheme are indeed zero knowledge.

The result of Lemma 6 shows that the attacker can learn no extra information
that the tally cannot allow her to obtain. This result can be easily extended to
show that if the attacker gains momentary access to the DRE machine while
the polling is going on, she can only be able to learn the partial tally from the
beginning of the polling till the point of gaining access, and as such she will also
be able to compute the partial tally from the point of gaining access till the end
of polling. The proof of this fact is almost similar to that of Lemma 6. Formally,
if the polling begins at time t = t0, and t = te, and the attacker gains access
to the DRE machine at time t = t1, t2, . . . , te−1, then the adversary will only
be able to compute the partial tally of all votes cast between time [ti−1, ti], for
all i = 1, 2, . . . , k. The DRE machine does not store the trapdoors, hence the
attacker can never decrypt the individual votes cast between any two successive
time points of accessing the DRE machine.

8 Overhead

In this section, we discuss the efficiency of our scheme. We measure the effi-
ciency in terms of both computational and communication cost. In order to

28

generate a ballot, the DRE needs to do 2c exponentiations. The NIZK proof

πij

[
xij : Bij , X̃ij

]
requires 4a + 2 exponentiations for each j ∈ [1, c], thus, for

all j ∈ [1, c] the figure sums up to 4ac+ 2c. The NIZK proof πi

[
xi : Bi, X̃i

]
re-

quires 2 exponentiations. Thus, the total number of exponentiations required
per confirmed ballot is given by 4ac + 4c + 2. The audited ballots do not
have NIZK proofs, hence, each of them requires only 2c exponentiations to be
computed. If there are β audited ballots, the total computation cost will be
(4ac+ 4c+ 2)n+ 2cβ.

The size of a ballot is 2c. The size of the c+ 1 NIZK proofs associated with
each ballot is 4(a+ 1)c+ 4. Thus, the overall communication cost of transferring
each confirmed ballot to the Bulletin Board is 4ac+6c+4. The size of the secret
randomness associated with each audited ballot is c. So, the size of each of the
audited ballot is 3c. If there are n confirmed ballots and β audited ballots, the
total communication cost will be (4ac+ 6c+ 4)n+ 3cβ.

Computation Cost Communication Cost

Type Ballot Secret Key NIZKP Total Ballot Secret Key NIZKP Total

Audited 2c 0 – 2c 2c c – 3c

Confirmed 2c 0 4ac+ 2c+ 2 4ac+ 4c+ 2 2c - 4(a+ 1)c+ 4 4ac+ 6c+ 4

Table 1. The computation and communication cost for the proposed cumulative voting
scheme.

9 Related Work

Now, we shall discuss the existing works on formal definitions of privacy and
verifiability of e-voting systems.

9.1 Verifiability

In this section, we discuss related previous works on formalization of verifiability
notion in e-voting systems. Küsters et al. proposed a general definition of ac-
countability in [32]. Their proposed KTV framework encompasses the notion of
verifiability. In this definition there is a judge that accepts a run of a protocol if
a certain goal is met. They call a protocol verifiable if there is a tolerance limit
δ ∈ [0, 1], such that the judge will accept the run of the protocol that does not
meet the goal γ with a probability not more than δ.

The first formal definition of verifiability was proposed by Benaloh in [9].
They consider an l-threshold, m teller and n voter election system. According
to their definition, an (l,m, n) election schema is said to be verifiable, if the

29

probability that in an election system the checks return good and the tally is
not correct is a negligible function of the number of proper tellers in that election
system. One limitation of this definition is that they consider that the election
is conducted on trusted machine which is a démodé assumption nowadays.

Kiayias et al. [1, 30] defined end-to-end verifiable e-voting scheme to be a
five-tuple (Setup, Cast, Tally, Result, Verify) where each tuple is a probabilistic
polynomial time algorithm. A total of 4 entities are involved in the election
process: the voter, the election authority, the tellers and the Bulletin Board.
The voters use a voter supporting device to cast their votes. Voters who have
successfully cast their votes obtain a receipt. According to this definition, an
e-voting system is end-to-end verifiable if at least θ voters have successfully
terminated and the result does not deviate from the actual aggregate of all cast
votes by more than k, where θ and k are parameters related to the definition of
verifiability of the system.

Cortier et al. [20] proposed another definition of verifiable e-voting system.
According to their definition, an e-voting system is a 7 tuple (Setup, Creden-
tial,Vote, VerifyVote, Valid, Board, Tally, Verify). All of them are probabilistic
polynomial time algorithms. They considered verifiability against a malicious
Bulletin Board, verifiability against a malicious registrar. An election protocol
that is verifiable against both a malicious registrar and the malicious Bulletin
Board is said to satisfy the strong verifiability property. On the other hand, for
weak verifiability both the registrar and the Bulletin Board are assumed to be
honest. Apart from these, they also introduced the notion of tally uniqueness.
Here, the requirement is to ensure that there cannot be more than one result
corresponding to the same run of the election protocol.

Smyth et al. [41] model an election scheme as a 4-tuple (Setup, Vote, Tally,
Verify) of PPT algorithms. The algorithm vote is run by the voters and the
algorithm Tally is run by the tellers. They proposed that an election system
is verifiable if it satisfies both individual verifiability as well as universal veri-
fiability. The election scheme is individually verifiable if the ballots of distinct
voters are different with very high probability. An election protocol is universally
verifiable if the adversary cannot simulate a run of the e-voting protocol, such
that the tally function yields a different tally to the one which is output by the
adversary and which passes the Verify test.

Baum et al. [4] presented a definition of game based correctness. They fo-
cussed on publicly auditable secure multi-party computation protocol in a UC
framework where the input parties are different from working parties. [19] pro-
vided another definition according to which a voting scheme is verifiable if the
tally is unique and the voting authority can find a witness that proves the correct-
ness of the tally. Yet another definition of verifiability was provided by Szepieniec
et al. in [42]. According to this definition a protocol P is verifiable if there exists
a verifier V that can distinguish between the transcript of an honestly executed
protocol from the one where some of the participants acted dishonestly.

A comparative study of all these works can be found in [21]. The difference
between our verifiability definition and the ones proposed in the literature lies

30

in the fact that our scheme does not require a public, private key-pair of the
election authority for generating encrypted ballots. Our verifiability definitions
are crafted in a way so that the adversary controlling the DRE machine would not
be able to deceive a voter with any significant probability if the requirements
are met. In the case that the DRE machine is completely compromised, the
tallying integrity will still be preserved due to the end-to-end verifiability and
the information leakage will be limited to only the partial tally at the time of
comprise. Our formal definitions of verifiability is satisfied without involving
tallying authorities, which is different from the previous works.

9.2 Privacy

We now discussed existing works on game based definitions on privacy in e-voting
techniques. The first game based definitions of privacy focused on unlinkability
of votes to voters. Ideally, if there are two voters u0, and u1, and two votes v0,
and v1, then the adversary will not be able to distinguish between the following
two facts:

– u0 chooses v0, and u1 chooses v1 as her vote.
– u0 chooses v1, and u1 chooses v0 as her vote.

This type of definition can be found in [7,8]. One limitation of this definition
is that it only considers swapping of votes, but does not consider different voting
patterns that lead to the same tally. In order to avoid this shortcoming, Benaloh
et al. proposed a new definition of privacy in [9]. [11, 12, 14] proposed another
definition that says the adversary should not be able to distinguish between a real
and a fake Bulletin Board that does not show the tally corresponding to the fake
Bulletin Board. A variation of this definition was proposed in [23] that discusses
ballot privacy against computationally unbounded adversary. For this purpose
they proposed a new primitive called commitment consistent encryption (CCE),
that can be used alongside a voting scheme. This primitive makes it possible to
obtain a verifiable elections with a perfectly private audit trail which preserves
the privacy of the votes even against a computationally unbounded adversary.
Another proposal was given in [13] in which the adversary is given access to
the tally as well as the a proof of correctness of the tally. When the adversary is
given a fake Bulletin Board, the challenger uses a simulator to create a simulated
proof of correctness of the tally corresponding to the real board. Smyth et al.
modified this definition in [40]. Chase et al. provided yet another definition of
privacy in [15]. In this definition the adversary sees real tally and real NIZK
proofs, however, the definition makes it necessary for the tally to be same in
two Bulletin Boards the adversary needs to distinguish between. Cortier et al.
provided yet another definition in [10]. [10] also provides a survey of all previous
works on formal definition of privacy in e-voting.

Existing definitions of privacy generally rely on a tallying authority (consti-
tuted by one or more trustees) that owns a secret key to the decryption oracle
of encrypted ballots. Ballots are encrypted using the corresponding public key.

31

A set of trustees then jointly compute the tally from these encrypted ballots.
Existing privacy definitions are designed to follow this setting. However, in our
scheme there is no such tallying authorities. The DRE machine does not need to
store any keys to compute ballots corresponding to voters’ choices. Instead the
DRE machine generates a ballot depending upon the choice of the voter, and the
current state of the DRE. Every time a ballot is generated, the state of the DRE
machine changes. After the last ballot is generated, the final state of the DRE
machine is posted on the bulletin board. The initial state of the DRE machine
is known to all. Now, anyone can compute the tally from the information pub-
lished on the bulletin board. It is worth nothing that in any DRE-based voting
system, the DRE machine learns the vote by definition as the voter chooses a
candidate on the touch screen (however, the machine does not know the identity
of the voter since the logon credential is randomly assigned to each voter after
authentication) [27] . Therefore, our definition of privacy focuses on a scenario
where the adversary has no access to the DRE machine internal state, but can
cast votes on behalf of corrupt voters, and then gets access to all the public data,
including the ballots, the initial and final states of the DRE.

10 Conclusion

In this paper we seek to find new formal definitions for DRE-based verifiable e-
voting systems without tallying authorities. We observe that the existing formal
definitions of privacy and verifiability rely on employing trustworthy tallying
authorities for tallying votes. We have proposed a new framework for E2E ver-
ifiable e-voting scheme that uses DRE systems without involving any tallying
authorities. In addition, we have also proposed a new DRE-based cumulative
e-voting scheme. We have proven that this new e-voting scheme is compatible
with the definition of privacy and verifiability proposed in this paper. We have
also analyzed the system complexity of this e-voting system.

Acknowledgement

Feng Hao and Samiran Bag would like to acknowledge the support by the Royal
Society grant, ICA/R1/180226.

References

1. Demos-2: Scalable e2e verifiable elections without random oracles. In Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications Security,
CCS ’15, pages 352–363. ACM, 10 2015.

2. Ben Adida. Helios: Web-based open-audit voting. In Proceedings of the 17th
Conference on Security Symposium, SS’08, pages 335–348, Berkeley, CA, USA,
2008. USENIX Association.

32

3. Ben Adida and Ronald L. Rivest. Scratch & vote: Self-contained paper-based
cryptographic voting. In Proceedings of the 5th ACM Workshop on Privacy in
Electronic Society, WPES ’06, pages 29–40, New York, NY, USA, 2006. ACM.

4. Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly auditable secure
multi-party computation. In Michel Abdalla and Roberto De Prisco, editors, Se-
curity and Cryptography for Networks, pages 175–196, Cham, 2014. Springer In-
ternational Publishing.

5. Susan Bell, Josh Benaloh, Michael D. Byrne, Dana Debeauvoir, Bryce Eakin, Philip
Kortum, Neal McBurnett, Olivier Pereira, Philip B. Stark, Dan S. Wallach, Gail
Fisher, Julian Montoya, Michelle Parker, and Michael Winn. Star-vote: A secure,
transparent, auditable, and reliable voting system. In 2013 Electronic Voting Tech-
nology Workshop/Workshop on Trustworthy Elections (EVT/WOTE 13), Wash-
ington, D.C., August 2013. USENIX Association.

6. Josh Benaloh. Simple verifiable elections. EVT, 6:5–5, 2006.
7. Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (extended

abstract). In Proceedings of the Twenty-sixth Annual ACM Symposium on Theory
of Computing, STOC ’94, pages 544–553, New York, NY, USA, 1994. ACM.

8. Josh C Benaloh and Moti Yung. Distributing the power of a government to enhance
the privacy of voters. In Proceedings of the Fifth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’86, pages 52–62, New York, NY,
USA, 1986. ACM.

9. Josh Daniel Cohen Benaloh. Verifiable Secret-ballot Elections. PhD thesis, New
Haven, CT, USA, 1987. AAI8809191.

10. D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi. Sok: A compre-
hensive analysis of game-based ballot privacy definitions. In 2015 IEEE Symposium
on Security and Privacy, pages 499–516, May 2015.

11. David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and Bogdan
Warinschi. Adapting helios for provable ballot privacy. In Vijay Atluri and Clau-
dia Diaz, editors, Computer Security – ESORICS 2011, pages 335–354, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

12. David Bernhard, Vronique Cortier, Olivier Pereira, and Bogdan Warinschi. Mea-
suring vote privacy, revisited. pages 941–952, 10 2012.

13. David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove yourself:
Pitfalls of the fiat-shamir heuristic and applications to helios. In Xiaoyun Wang and
Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012, pages 626–643,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

14. David Bernhard, Olivier Pereira, and Bogdan Warinschi. On necessary and suf-
ficient conditions for private ballot submission. IACR Cryptology ePrint Archive,
2012:236, 2012.

15. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Ver-
ifiable elections that scale for free. In Kaoru Kurosawa and Goichiro Hanaoka,
editors, Public-Key Cryptography – PKC 2013, pages 479–496, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

16. D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. Sherman, and
P. Vora. Scantegrity: End-to-end voter-verifiable optical- scan voting. IEEE Secu-
rity & Privacy, 6(3):40–46, May 2008.

17. David Chaum. Blind signatures for untraceable payments. In Advances in cryp-
tology, pages 199–203. Springer, 1983.

18. David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE security
& privacy, 2(1):38–47, 2004.

33

19. Benôıt Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval, Julien Stern,
and Jacques Traoré. On Some Incompatible Properties of Voting Schemes, pages
191–199. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

20. Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène. Elec-
tion verifiability for helios under weaker trust assumptions. In 19th European Sym-
posium on Research in Computer Security - Volume 8713, ESORICS 2014, pages
327–344, New York, NY, USA, 2014. Springer-Verlag New York, Inc.

21. Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller, and Tomasz
Truderung. Sok: Verifiability notions for e-voting protocols. 2016 IEEE Symposium
on Security and Privacy (SP), pages 779–798, 2016.

22. Chris Culnane, Peter Y. A. Ryan, Steve Schneider, and Vanessa Teague. vvote: a
verifiable voting system (DRAFT). CoRR, abs/1404.6822, 2014.

23. Édouard Cuvelier, Olivier Pereira, and Thomas Peters. Election verifiability or
ballot privacy: Do we need to choose? In Jason Crampton, Sushil Jajodia, and
Keith Mayes, editors, Computer Security – ESORICS 2013, pages 481–498, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

24. Kevin Fisher, Richard Carback, and Alan T. Sherman. Punchscan: Introduction
and system definition of a high-integrity election system. In Workshop on Trust-
worthy Election. 2006, 2006.

25. Jens Groth. Simulation-sound nizk proofs for a practical language and constant size
group signatures. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology
– ASIACRYPT 2006, pages 444–459, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

26. Feng Hao, Dylan Clarke, Brian Randell, and Siamak F Shahandashti. Verifiable
classroom voting in practice. IEEE Security & Privacy, 16(1):72–81, 2018.

27. Feng Hao, Matthew N. Kreeger, Brian Randell, Dylan Clarke, Siamak F. Sha-
handashti, and Peter Hyun-Jeen Lee. Every vote counts: Ensuring integrity
in large-scale electronic voting. In 2014 Electronic Voting Technology Work-
shop/Workshop on Trustworthy Elections (EVT/WOTE 14), San Diego, CA, Au-
gust 2014. USENIX Association.

28. Feng Hao and Peter YA Ryan. Real-World Electronic Voting: Design, Analysis
and Deployment. CRC Press, 2016.

29. Dorota Kamrowska-Zaluska. Participatory budgeting in poland–missing link in
urban regeneration process. Procedia engineering, 161:1996–2000, 2016.

30. Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end verifiable
elections in the standard model. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015, pages 468–498, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

31. R. Kusters, T. Truderung, and A. Vogt. Clash attacks on the verifiability of e-
voting systems. In 2012 IEEE Symposium on Security and Privacy, pages 395–409,
May 2012.

32. Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountability: Definition
and relationship to verifiability. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS ’10, pages 526–535, New York, NY,
USA, 2010. ACM.

33. C. Andrew Neff. Practical high certainty intent verification for encrypted votes,
2004.

34. Richard H Pildes and Kristen A Donoghue. Cumulative voting in the united states.
University of Chicago Legal Forum, page 241, 1995.

34

35. P. Y. A. Ryan, D. Bismark, J. Heather, S. Schneider, and Z. Xia. Prêt á voter voter:
a voter-verifiable voting system. IEEE Transactions on Information Forensics and
Security, 4(4):662–673, Dec 2009.

36. Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme. In Louis C.
Guillou and Jean-Jacques Quisquater, editors, Advances in Cryptology — EURO-
CRYPT ’95, pages 393–403, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

37. Daniel Sandler, Kyle Derr, and Dan S. Wallach. Votebox: A tamper-evident, veri-
fiable electronic voting system. In Proceedings of the 17th Conference on Security
Symposium, SS’08, pages 349–364, Berkeley, CA, USA, 2008. USENIX Association.

38. Siamak F Shahandashti. Electoral systems used around the world. In Real-World
Electronic Voting (Eds. Hao, Ryan), pages 93–118. CRC Press, 2016.

39. Siamak F Shahandashti and Feng Hao. Dre-ip: a verifiable e-voting scheme without
tallying authorities. In European Symposium on Research in Computer Security,
pages 223–240. Springer, 2016.

40. Ben Smyth and David Bernhard. Ballot secrecy and ballot independence coincide.
In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, Computer Secu-
rity – ESORICS 2013, pages 463–480, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

41. Ben Smyth, Steven Frink, and Michael R. Clarkson. Computational election ver-
ifiability: Definitions and an analysis of helios and jcj. IACR Cryptology ePrint
Archive, 2015:233, 2015.

42. Alan Szepieniec and Bart Preneel. New techniques for electronic voting. USENIX
Journal of Election Technology and Systems (JETS), 2015.

11 Appendix

11.1 NIZK Proof

Πij

[
xij : Bij , X̃ij

]
: This NIZK proof proves that given X̃ij = g̃xij and Bij ,

Bij = gxijgvij , where vij ∈ [a]. This is same as proving the below statement:

σ ≡ (Bij = gxij ∧ X̃ij = g̃xij) ∨ (Bij = gxijg ∧ X̃ij = g̃xij) ∨ . . . ∨ (Bij =

gxijga ∧ X̃ij = g̃xij). σ is a one-out-of-(a + 1) OR statement. Exactly one of
the sub-statements can be true. Let us assume that κ ∈ [a] be such that Bij =
gxijgκ. The prover chooses resk, chk ∈R Zp, for k ∈ [1, a+ 1] \ κ and computes

comk = g̃reskX̃chk
ij , and com′k = greskXchk

ij : ∀j ∈ [1, a + 1] \ κ. The prover
also chooses r ∈R Zp and computes comκ = g̃r and com′κ = gr. Now, let ch
be the grand challenge of the NIZK proof. This challenge ch is obtained as the
output of a hash function that takes as input all the public information, and
commitments generated thus far. In order to defeat clash attack [31], we should
also include the ballot id as an input to this hash function. The prover computes
chκ = ch−

∑
k∈[1,a+1]\κ chk. The prover computes resκ = r − chκ ∗ xij .

The verification equations are as below:

1. g̃resk
?
= comk

X̃
chk
ij

: k ∈ [1, a+ 1].

2. gresk
?
=

com′k
(Bij/gk−1)chk

: k ∈ [1, a+ 1].

3. ch =
∑a+1
k=1 chk

35

If these 2(a+1) equations are satisfied, the NIZK proof is correct. The NIZK
proof consists of 2(a + 1) commitments, a + 1 challenges, and a + 1 responses.
Hence, the size of the NIZK proof is 4(a + 1). The prover needs to do 4a + 2
exponentiations, whereas the verifier needs to do 4(a+ 1) exponentiations.

Πi

[
xi : Bi, X̃i

]
: This NIZK proof proves that

∑c
j=1 vij = a, given Bi =

(Bi1, Bi2, . . . , Bic), and X̃i = (X̃i1, X̃i2, . . . , X̃ic). Let, B =
∏c
k=1Bik and X̃ =∏c

k=1 X̃ik. Obviously, B = X̃ ∗ ga. The prover(DRE) selects r ∈R Zp, and com-
putes two commitments com = g̃r and com′ = gr. Let the challenge be ch. The
prover generates a response res = r−ch∗(

∑c
k=1 xik). The verification equations

are as follows:

1. g̃res
?
= com

X̃ch

2. gresk
?
= com′

(B/ga)ch

This NIZK proof comprises two commitment, one challenge and one response,
thus the total size of the NIZK proof is 4. The prover needs to do two exponentia-
tions for generating the proof whereas, the verifier needs to do 4 exponentiations
for verifying it.

36

	End-to-End Verifiable Cumulative Voting without Tallying Authorities

