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ABSTRACT Recently, a chaotic image encryption algorithm based on information entropy (IEAIE) was
proposed. This paper scrutinizes the security properties of the algorithm and evaluates the validity of the
used quantifiable security metrics. When the round number is only one, the equivalent secret key of every
basic operation of IEAIE can be recovered with a differential attack separately. Some common insecurity
problems in the field of chaotic image encryption are found in IEAIE, e.g. the short orbits of the digital
chaotic system and the invalid sensitivity mechanism built on information entropy of the plain image.
Even worse, each security metric is questionable, which undermines the security credibility of IEAIE.
Hence, IEAIE can only serve as a counterexample for illustrating common pitfalls in designing secure
communication method for image data.

INDEX TERMS Chaotic cryptanalysis, multimedia cryptography, image encryption, secure communica-
tion, privacy protection.

I. INTRODUCTION we say a system is very sensitive to the initial condition, i.e.,
a small change at the very beginning will eventually lead to
a completely different result. This implies unpredictability
because an accurate measurement of the initial condition is in

With the popularity of imaging sensors in smartphones and
various video recording scenarios, e.g. dashboard camera
and closed-circuit television (CCTV), a vast volume of mul- T . ; . . .
timedia data are recorded every day [T], [2]. Meanwhile, principle impossible. As the sensitivity and unpredictability
the fast network transmission technique allows them to be ?‘rlf some good feat}lres. we Wgnt to gave n dapp hcatl(l))ns
transmitted among cloud servers, social media platforms, 1ke secure communlcatlollll S an (pszu ho_) ranl dor;ll fumt e;
and personal cellphones with ever-growing speed and scope. generation, many researchers aroun the world have 'tr1e

Once a multimedia file containing some personal privacy to apply chaos to build various cryptographic primitives:
information leaves the original control scope, they may permutation relation [3], pseudo-random number generator
threaten the owner and the related persons very quickly. So, [6], [, hash .functlon (8. P rivate-key encryption 5¢ heme
the security and privacy of multimedia data have become the (9], [10), public-key .enc.ryptll)on sdcheme ’ al.Jthe.n tication
concerns of everyone living in the cyberspace. To respond [4], secure communication base on sync ronization .[@]’
to such a challenge, a large number of multimedia privacy secret-key share (agreement) algorithm [I3], data hiding
protections and preservation schemes were proposed in the [I4], and privacy protection [I3]. The main objective of

past two decades chaotic cryptanalysis is to disclose the information about the
i secret key of a chaotic encryption (or secure communication)
One of the well-known features of chaos is the so-called scheme under all kinds of security models: ciphertext-only

butterfly effect: if a butterfly flips its wings in Brazil, tomor- attack [@]’ known-plaintext attack @], [T7)], chosen-plaintext
row Texas, USA will have a storm. In a more scientific term,
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attack [18]], [19], chosen-ciphertext attack [20]], and impossi-
ble differential attack [21]. Meanwhile, chaotic cryptanalysis
also provides a novel perspective to study the dynamical
properties of the underlying chaotic system. As degradation
of any chaotic system definitely happens in a digital domain
[22]], [23]], a chaos-based encryption scheme may own some
special security defects that do not exist in the non-chaotic
encryption schemes [24]-[26].

In [27], a chaotic image encryption algorithm was pro-
posed using information entropy value calculated from the
plain-image, which is named as IEAIE in this paper. In
the algorithm, a pseudo-random number sequence generated
by the two-dimensional Logistic-adjusted-Sine map (2D-
LASM) proposed in [|6] is used to control a combination
of some basic operations, including position permutation
and modulo addition. Especially, the information entropy of
the plain-image is used to build up a sensitivity mechanism
of the encryption result of IEAIE on the plain-image. This
paper reports security defects of the chaos-based pseudo-
random number generator and the sensitivity mechanism. As
for one round version of IEAIE, its three basic parts can be
broken with a strategy of the divide-and-conquer technique
in the scenario of differential attack. In addition, each used
security metric is questioned from the perspective of modern
cryptanalysis.

The rest of the paper is organized as follows. Section
briefly introduces the algorithm IEAIE. Section [[II| presents
cryptanalysis of IEAIE by disproving security metrics used
for IEAIE. The last section concludes the paper.

Il. CONCISE DESCRIPTION OF IEAIE
IEAIE ignores any special storage format of image data and

just treats it as text data, which is represented as a M x N
8-bit matrix I[1]

o The secret key is composed of two sets of initial condi-
tions of 2D-LASM

ipr =sin(m - p- (v +3) -2 - (1 —ay)),

Yir1 =sin(m - p- (2 +3) -y - (1 —93)),
(x0,y0) and (z(,y}), where p € [0.37,0.38] U
[0.4,0.42] U [0.44, 0.93)].

o Keystream generation procedure: 1) iterate 2D-LASM
(T from initial condition

(D

T = (.’E() + m) mod 1 (2)
Yo = (yo + m> mod 1
200 + XN times, and from 201 times iteration, assign

the obtalned sequence into an M x N matrix P in the
raster order, where

s = H(I), 3)
IThe transform (5) in [27] can not always generate bijective (one-to-
one) permutation mapping and should be corrected to assure successful

decryption of IEAIE.

2

H(X) is the information entropy value of image block
X, namely
281
H(X) ==Y p(¢)-logs(p(¢)), 4
i=0
¢; is the pixel of value ¢ in X, and p(¢;) denotes the
ratio between the number of ¢; in X and M - N. In this
paper, a mod n = a — n|a/n], where |-| denotes the
floor function.
3) set

u=[u-10"] mod M + 1,
{ [ ] m )

v = [v/-10] mod N + 1,

where u’ is the a-th row of P, v’ is the b-th column of
P (scalar multiplication and addition are performed if a
matrix or vector is involved, the same hereinafter),

{a [(xo+yo+1)-107] mod M + 1,

6
b=[(x)+yo+2)-10"] mod N + 1, ©

and [-] denotes the ceil function. Separately conduct the
two vectors u and v with the following way: if there
are elements of the same value, change one as the least
number that does not exist in the updated vector.

3) iterate 2D-LASM (I)) from initial condition

{1‘6 = (.136 + m) mod 1

(N
Yo = (yo + m) mod 1

200 + M N times; starting from the 201-th iteration,
transform every element of the generated sequence by

f(z) = [z -10'*] mod 256 ®)

and set the results into an M x N matrix K in the raster
order.
Encryption procedure:

— Horizontal permutation: for j = 1 ~ N, move the
j-th column of I to the u(j)-th one of B*, namely
B*(:,u(j)) = I(:, j).

— Vertical permutation: for t: = 1 ~ M, move the i-
th row of B* to the v(i) row of B, i.e. B(v(i),:) =
B*(i,:).

— Changing gray distribution with a constant matrix T
forr=1~M,j=1~ N,do

R(i,j) = (B(i,j) + T(i, j)) mod 256,  (9)

where T(i,j) = M - N +i+ j.
— Diffusion encryption: fort =1~ M,j5 =1~ N,
set

C(Za]) = (R('Lv]) +dj : C(Zvj - 1)+
d; -K(i,j) + K(i,d;)) mod 256,  (10)

where C(i, N + 1) = C(i,0) =0,
dj = [HR;)-10"] mod N +1,  (11)
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and R; = {R(i, k) }110 o
o Repeation: Repeat the above four steps one more round.
o Decryption procedure is similar to the encryption one
except the following points: 1) the order of the above
four main steps is reversed; 2) every operation in each

main step is replaced by its inverse version.

The horizontal and vertical permutations on the plain-
image controlled by u and v can be equivalently represented
by a permutation matrix P, namely

B(P(i,7)) = 1(i, ) (12)
as [17], wherei =1~ M,and j =1~ N.

lll. CRYPTANALYSIS

In [27]), various aspects of IEAIE were analyzed to conclude
that it owns superior security performance. However, we try
to demonstrate that all the arguments are groundless.

A. SOME SECURITY DEFECTS OF IEAIE

In 18], [24], some rules and suggestions for designing secure
and efficient image encryption schemes were concluded.
Some concrete steps for evaluating security performances
of a chaotic image encryption schemes were given in [25].
Unfortunately, IEAIE did not follow the lessons summarized
in [18]], [24]], [25]. To attract the attention of designers of
image encryption schemes on cryptanalysis, we check the
security of every aspect of IEAIE and its test given in [27]]
as follows.
« Underlying chaotic map:
In 6], a new two-dimensional chaotic map 2D-LASM
was constructed by ‘adjusting” Logistic map and Sine map
with three strategies: cascading output of the former as
the input of the latter; extending dimension of the phase
plane from 1D to 2D; adopting one more multiplication
variable with a constant delay parameter. It was proved that
2D-LASM can demonstrate much more complex chaotic
behaviors than the two original 1D maps [28[]. As shown
in Fig. [I] any orbit will definitely enter a cycle after a
transient process. Rigorous theoretical analyses given in
[29] prove that the functional graph of any digital chaotic
map is highly correlated with that in a domain with arith-
metic precision as small as 3. As shown in Figs.
the cycle length of the functional graph of 2D-LASM is
very small for either arithmetic format. In [27]], it was
stated that “previously iterated values were discarded to
avoid transient effects”. Actually, the differences between
neighboring states change exponentially along an orbit of
any iterated map, which is different from the case for
chaotic flow. The real purpose of discarding some initial
iterated values is to avoid recovering the control parame-
ters of the corresponding chaotic map from them, which
is demonstrated in [16]. As shown in [29], some cycles
of short period (even self-loop) always exist no matter
which enhancement method is adopted, e.g. increasing the
arithmetic precision, Perturbing states, perturbing the con-
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trol parameters, switching among multiple chaotic maps,
and cascading among multiple chaotic maps. If the initial
state is located in a small-scale connected component or a
cycle of short period in the functional graph of the used
chaotic map, there are not enough available states (200
states specified in [27, Sec. 3.1]) to be discarded. So, an
adaptive threshold should be set to avoid this problem. But,
it will cost additional computation.

Key sensitivity:

In [27], “a small change of 10~'* is shifted in keys
To, Yo, 0, Yo~ to check their influence on the de-
cryption results. Although 107'# is small in itself as
for our daily lives, the shift may cause a dramatic
change of binary presentation of a number. Let’s il-
lustrate this problem with arithmetic format binary32
(single-precision floating-point format), where 10~ =
(1.01101000010010011011100)5 - 2747 (stored as bi-
nary string “00101000001101000010010011011100). As
for number 107'2 = (1.0001100101111001100110
0)2 - 2740 (*00101011100011001011110011001100™),
1072 — 107 =(1.00010110101010010000010) 5 - 2740
(“00101011100010110101010010000010”). It can be cal-
culated that 11 bits among the 23 fraction bits (underlined
parts) of the subtracted number are changed. So, the four
cases given in [27, Fig. 4] are far not enough to convince
us anything. Now, we can see that a small decimal number
should not be used to measure the change degree of initial
condition in a binary computer.

Observing Eq. (I), one can see that (xo,y0) and (1 —
xo, 1 — yo) are equivalent if 2D-LASM is implemented
in a fixed-point arithmetic domain. Due to the modulo
addition and division operation in Eq. (3], there may exist
even much more equivalent secret keys. Besides these,
quantization effects of the digital chaotic map may gener-
ate the same iteration orbit for different initial conditions
(See Figs. [T} 2). So, the sensitivity of encryption results of
IEAIE with respect to the change of its secret key is very
weak.

Key space analysis:

In [27, Sec. 3.2.1], the precision of the secret key of IEAIE
is fixed as 10!, In digital world, the precision can only
be precisely specified by a power of two. If a floating-
point number format (binary32 or binary64) is adopted, the
distances between neighboring representable numbers are
not uniform, which requires setting the length of mantissa
fraction, and that of exponent, elaborately [29]. As shown
in Fig. [I] and [28]], there exists a number of nonchaotic
regions of (g, yo). The initial conditions falling in such
regions may compose invalid or weak secret keys. So,
we can conclude that the specification of IEAIE seriously
violates Rule 5 suggested in [24]], “The key space K, from
which valid keys are to be chosen, should be precisely
specified and avoid nonchaotic regions.” In addition, the
computational complexity of checking each secret key and
the valid time of the protected plain-image are not consid-
ered in [27]]. In all, the statement “the brute-force attack is
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FIGURE 1: The functional graph of 2D-LASM under 3-bit fixed-point precision for different quantization strategies: a) floor; b)
round; c) ceil, where the pair of numbers (4, j) in each node denotes coordinate (i/22, j/2°).
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FIGURE 2: The functional graph of 2D-LASM with 6-bit floating-point precision and round quantlzation, where the length of

mantissa fraction is 3.
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FIGURE 3: Two images with the same flat histogram: a) “Peppers”; b) “Lenna”; c) histogram of the images shown in Fig.), b)

impossible to successfully execute” is unconvincing.

« Histogram:
In [27], it was emphasized that “the histogram of the
cipher-image should be or near uniform and be differ-

ent from that of the plain-image after encryption”. In
fact, what counted for the security of IEAIE should be
the matching degree between secret-key (or plain-image)
and the histogram of the corresponding cipher-image. As
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shown in [[19]], an attacker can recover some statistical
information of the plain-image by changing the counting
objects of the histogram from pixel to bit. In addition, the
spatial information of pixels may play a dominant role for
the visual effect of the composed image. To show this
point, Fig. [3| presents two 512 x 512 images with the
same flat (exactly uniform) histogram, whose number of
pixels for each tonal value is % = 1024. Figure @
gives the encryption results of the two images shown in
Fig. 3] with the position permutation-only scheme HCIE
cryptanalyzed in [17]. Although histograms of the two
encrypted images kept unchanged, the scheme is secure
enough for some application scenario, e.g. surveillance
and protection of pay-TV from illegal users. Anyway, the
three histograms calculated in terms of pixel shown in [27}
Fig. 5] are not far enough to prove “the proposed algorithm
has a good ability to frustrate the attack” based on the
histogram.

Variance of histogram:

To further measure the uniformity degree of a cipher-
image, the variance of its histogram was calculated in [27].
Actually, the variance of a histogram cannot measure the
number of different possible histograms generated by a
tested encryption scheme. For example, the variances of
two histograms “2, 2, 3, 4, 77 and “2, 2, 3, 5, 6” are dif-
ferent, but their number of different combinations are the
same. But, the histogram variances of four cipher-images
given in [27, Table 4] are far not sufficient to demonstrate
existence of any rule. In addition, even some insecure
encryption schemes can also make the obtained cipher-
image own very low variance of histogram [30]. Moreover,
visual security indexes of the three cipher-images shown
in Fig. [ are different, but the variances of the histogram
of them are fixed to zero. In all, the statement “a lower
variance represents higher uniformity” in [27] is not right.
Information entropy:

Information entropy is a quantitative metric measuring the
disorder or randomness in a closed system. From Eq. (@),
one can see that the entropy value of a message kept
unchanged with respect to the following two kinds of
changes: 1) permuting the position of every element within
the message; 2) changing the elements of a given value as
another one that does not exist in the message (if there
is) [31]. In each case, the changes compose a bijection
between specific domain and the corresponding codomain
(See Fact E]) In all, there are a huge number of different
images owning the same information entropy as a given
image when its size is relatively large. For example, the
five different images shown in Fig. [3 ] share the same
value of information entropy. Embedding Eq. (I2) into
Eq. (9), one can see that H(R;) is determined by the
two matrixes P and T for a given plain-image I, where
j €{1,2,---,N}. From the definition of R; and T, one
can deduce that every column of T should be of fixed value
to assure that the modulo addition in Eq. (9) has the same
effect on {R; ;-\’:1 for different plain-images. To satisfy
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such condition, N = 0 (mod 256) should hold. Even
this, the statement “the value of the information entropy
is very sensitive to the message” given in [27, Sec. 2.1]
is still baseless. Note that the tiny differences of entropy
given in [27, Table 7] are only bounded by 0.01 and the
cipher-image of “Lenna” encrypted by the analyzed bit-
level permutation-only scheme cryptanalyzed in [5] can
also reach as high as 7.978.

Fact 1: For any function f, entropy function H(X)
(Eq. (@) satisfies that H(f(X)) < H(X) and the equality
holds if and only if f is a bijection.

Plaintext sensitivity:

Plaintext sensitivity is very important for high-strength
image encryption schemes as a plain-image and its slightly
modified version (embedded by a watermark or some
hiding messages) are often encrypted at the same time. If
the used encryption scheme does not satisfy the sensitivity
requirement, leakage of the cipher-image corresponding to
one of the two similar plain-image may disclose the visual
information of the other. In the field of image security, two
metrics UACI (unified averaged changed intensity) and
NPCR (number of pixels changing rate) are widely used
to measure plaintext sensitivity. Unfortunately, the validity
of the two metrics has been questioned in [30]] by statistical
information of the outputs of some insecure encryption
schemes. Here, we emphasize that the internal structure
of IEAIE cannot perform well to achieve the expected
plaintext sensitivity. Observing the encryption procedure
of IEAIE, one can see that all involved operations can
make every operated bit ‘run’ from the least significant bit
(LSB) to the most significant bit (MSB), not the opposite
order. Concretely, the change of a bit in the i-th bit-plane
(counted from the LSB to MSB) can only influence the bits
in the 7 ~ 8-th ones. So, the influence scope of every bit of
the plaintext on the corresponding cipher-text is dramat-
ically different. No matter how many round numbers are
repeated, this problem remains to exist [32]]. The designers
of IEAIE claimed that “the keystreams are different with
respect to different plain-images” based on the assumption
of high sensitivity of information entropy on change of the
plain-image. However, as we have explained above, this
assumption is not correct. In all, the statement “a slight
change in the plain-image leads to a completely different
cipher-image” in [27, Sec. 3.2.2] is incorrect.

Coefficient correlation:

Just like most chaos-based image encryption schemes, [27]]
adopted the coefficient correlation of neighboring pixels
of cipher-images encrypted by IEAIE to demonstrate its
good security performance. As mentioned in [30, Fig. 3],
there is “no clear (statistical) decision criterion for passing
this test”. Furthermore, three insecure encryption schemes
deliberately constructed in [30] can perform very well
in terms of fulfilling the metric. Actually, this metric
can be calculated only from image encryption schemes
working in the spatial domain. Reasonable security index
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2)

b)

o)

FIGURE 4: Three cipher-images encrypted by HCIE: a) “Peppers” with 64 x 64 blocks; b) “Lenna” with 64 x 64 blocks; c) “Lenna”
with 32 x 32 blocks

FIGURE 5: The model of differential attack.

of image data should consider the characteristics of the
human visual system and the distribution of compressing
coefficients of image data [33].

Efficiency analysis:

The authors of claimed that IEAIE is suitable for
real-time secure communication by comparing it with the
image encryption scheme proposed in [6]. In fact, the
fast running speed of IEAIE comes from less computa-
tion operations, namely the obtained efficiency is built on
sacrificing security instead of better structure. In Eqgs. (§),
(@), (), (I1), IEAIE uses integer conversion functions
following the general form

Jul@) = f (107 - 2) mod D, (13)

where m and D are positive integers, f(x) is a quantiza-
tion function, e.g. ceil and round. In processors, multipli-
cation by a constant is implemented using a sequence of
bit-wise shift and addition operations, e.g.

gz)=(rx2)+2) K1,

where
L—s—1
<K s= Z (wi . 2”“9) ,
i=0
xr = Ef:_ol z; - 2%, and L is the arithmetic precision. So

the computational complexity of the conversion (I3) is

proportional to m [19]. In Egs. (8), (6), (8), (I1), m is set

as 7 or 14. Only [log, D] bits are useful for IEAIE, the
computation spent on generating the other m[log,(10)] —
[log, D1 bits are wasted. Taking Eq. (8) as an example, the
utilization percentage of the computation cost on iterating
2D-LASM (I) is only el = (982200 — L n
addition, the test on speed analysis in was performed
in the idea laboratory environment instead of resource-
limiting real environments.

B. DIFFERENTIAL CRYPTANALYSIS

As shown in Fig. 3] an attacker can arbitrarily choose some
plaintexts, Py, P, --- , P,_1, and the corresponding cipher-
texts, C1, Ca, - - - , Cp,—1, encrypted by the same secret key K
in the scenario of chosen-plaintext attack. As for differences
between plaintexts P; and P; i, DP1, DPy,--- ,DP,_1,
one can observe the corresponding differences between ci-
phertexts C; and C;41, DC1,DCy, -, DC,_1. The dif-
ferences are defined in terms of an invertible operation
used in the encryption scheme, e.g. bitwise OR and modulo
subtraction. So differential cryptanalysis can be considered
as a chosen-plaintext attack on a weakened version of the
analyzed encryption scheme for some differences selected
from (%) n(n — 1)/2 possible ones. In the broadest
sense, differential cryptanalysis is a cryptanalytic method
studying how particular differences in plaintext pairs affect
the resultant differences, which is also called differential, of
the corresponding ciphertext pairs. Considering the public

VOLUME 4, 2018



C. Li et al.: Cryptanalysis of an Image Encryption Algorithm

IEEE Access

structure of the analyzed encryption scheme, some basic parts
can be deliberately canceled and the remaining part can be
broken with much less resources. By repeating the process,
the equivalent secret key of the whole encryption scheme
K can be recovered, which is then used to decrypt another
ciphertext C,,, encrypted by the same secret key.

From the above introduction of the chosen-plaintext at-
tack, one can see that the attack model relies on repeating
usage of the secret key. So the designers of IEAIE use the
information entropy of the plain-image to “affect the usage of
the keystream and frustrate the chosen-plaintext and known-
plaintext attacks” in [27, Sec. 2.2]. However, based on the
analysis on the insensitivity of information entropy in above
sub-section, it is very easy to construct some plain-images
possessing the same keystream during the encryption process
of IEAIE. Observing the encryption procedure of IEAIE,
one can see that its real operations are solely determined
by N + 1 parameters, s and {d;}7_,. Note that even when
two plain-images generate different entropy values in the
encryption process, their corresponding key steams are still
maybe the same due to the following reasons: 1) the modulo
addition and division in Eq. (Z) may make different sets of
(20, Yo, (), Yh, $) result in the same value of (Zo, Fo); 2) the
quantization error of calculating log,(-) in computer may
make different combinations of {¢;}7_,' generate the same
value of H(X); 3) Eq. (TT) only extract [log, ()] bits of in-
termediate computing result of R ;, and may output the same
value of d; for different inputs of R ;. Once the dependability
mechanism of the key stream of IEAIE on the plain-image
is concealed, the structure of Eq. (I0) becomes the same as
that of the main function of the image encryption scheme
cryptanalyzed in [[19]. Then, the differential cryptanalysis on
IEAIE can be performed similarly.

Assume two plain-images I and I’ own the same set of
s and {d;}_, in the encryption process of IEAIE. As for
their difference in terms of modulo subtraction AI, IEAIE is
degenerated to

AC(i,j) = (AR(i,j) + d; - AC(4, 5 — 1)) mod 256,
(14
where i = 1 ~ M, j =1 ~ N, AC is the difference of
the corresponding cipher-images of I and I’ in terms of the
operator (some components in Eq. (I0) are eliminated by the
modulo subtraction), and AC(7,0) = 0. Observing Eq. ,
one can assure that

P(*, ") = (@,57) (15)

if AT has only one non-zero element at entry (¢*, 7*), where
(4**, 7**) is the entry of the first non-zero element in differ-
ential A (counted in the scan order).

Based on the above analysis, the differential cryptanalysis
on one round version of IEAIE can be described as follows.

o Step I: Choose two plain-images of size M x N, I and
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T', satisfying

I(Z*7 ]*) = a?

(i) = b,

I(Z’j) =

I.j) =
where a, b, ¢ are non-negative integers and #{a, b, c} =
3, (lv.]) € {(lv 1)7 (1’2)7 e (Mv N)} \ (i*aj*)’ and
#{-} denotes the cardinality of a set. Note that (:*, j*)
is initialized as (1, 1).

o Step 2: Let I and I’ pass through the encryption process
of IEAIE with an unknown secret key and obtain the
corresponding cipher-images, C and C'.

o Step 3: Get the value of P(¢*, j*) via Eq. .

o Step 4: Repeat the above procedure for (i*,;*) =
(1,2),(1,3) ~ (M, N—1) (selected in the scan order of
a matrix of size M x N) and get the value of P(¢*, j*).
The value of P(M, N) can be identified as the sole
unused location.

« Step 5: Recover R by Eq. (12) and calculate

fort=1~Mandj=1~ N.

Observing Eq. (I0), one can see that D =
{D(i, j)}f\i ’112-:1 can work as the equivalent version of the
secret key for decryption on the diffusion encryption part. In
all, two matrixes P and D can work as the equivalent secret
key of IEAIE.

A number of experiment were performed to verify per-
formance of the above attacking steps. A concrete case of
revealing the permutation relationship of IEAIE on a plain-
image of size 8 x 8 is shown in Fig.[6] where o = 0.0056,
yo = 0.3678, x, = 0.6229, and y;, = 0.7676, and
= 0.8116. In this case, the same set of s and {d;}}_, are
generated for the two toy plain-images due to the quantiza-
tion effect. From Fig. [6] we can see that the new permuted
location of the sole non-zero element at entry (1,1) in the
differential plain-image can be observed by searching for the
first different elements of the two cipher-images.

In [27]], two rounds of the basic operations are suggested.
Here, we skip the cryptanalysis of the full version of IEAIE
based on the following considerations: 1) existence of the
security defects presented in the above sub-section is not
related with the round number; 2) cryptanalysis of the two
rounds of IEAIE involves very complex deduction and pre-
sentation; 3) the reported security defects of IEAIE are far
enough to demonstrate that it cannot be fixed by simple
modifications.

IV. CONCLUSION

This paper analyzed the security of a chaotic image encryp-
tion algorithm based on information entropy, IEAIE. The
claimed superiorities of its structure are analyzed in detail
and are found incorrect. Furthermore, every used security
metric is incapable to testify real security performance. To
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FIGURE 6: The process of revealing the permutation procedure of IEAIE with a differential attack.

design a secure and efficient multimedia encryption scheme,
the related critical factors, e.g. the special properties of mul-
timedia data, the concrete application scenario with specified
constraints, computation load, should be considered com-
prehensively. Much cryptanalytic works need to be done to
bridge the gap between the field of nonlinear dynamics and
that of modern cryptography.
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