
Spying on the Spy: Security Analysis of Hidden
Cameras

Samuel Herodotou and Feng Hao

Warwick University, Coventry CV4 7AL, United Kingdom
{samuel.herodotou,feng.hao}@warwick.ac.uk

Abstract. Hidden cameras, also called spy cameras, are surveillance
tools commonly used to spy on people without their knowledge. Whilst
previous studies largely focused on investigating the detection of such
a camera and the privacy implications, the security of the camera it-
self has received limited attention. Compared with ordinary IP cameras,
spy cameras are normally sold in bulk at cheap prices and are ubiqui-
tously deployed in hidden places within homes and workplaces. A secu-
rity compromise of these cameras can have severe consequences. In this
paper, we analyse a generic IP camera module, which has been pack-
aged and re-branded for sale by several spy camera vendors. The module
is controlled by mobile phone apps available on iOS and Android. By
analysing the Android app and the traffic data, we reverse-engineered
the security design of the whole system, including the module’s Linux
OS environment, the file structure, the authentication mechanism, the
session management, and the communication with a remote server. Se-
rious vulnerabilities have been identified in every component. Combined
together, these vulnerabilities allow an adversary to take complete con-
trol of a spy camera from anywhere over the Internet, enabling arbitrary
code execution. This is possible even if the camera is behind a firewall.
All that an adversary needs to launch an attack is the camera’s serial
number, which users sometimes unknowingly share in online reviews. We
responsibly disclosed our findings to the manufacturer. Whilst the man-
ufacturer acknowledged our work, they showed no intention to fix the
problems. Patching or recalling the affected cameras is infeasible due to
complexities in the supply chain. However, it is prudent to assume that
bad actors have already been exploiting these flaws. We provide details of
the identified vulnerabilities in order to raise public awareness, especially
on the grave danger of disclosing a spy camera’s serial number.

Keywords: Internet of Things · Security · Vulnerability · IP Camera ·
Spy Camera.

1 Introduction and Motivation

Hidden cameras, also known as spy cameras, are digital cameras hidden or dis-
guised as part of common objects, and are generally deployed with the goal
to conduct surveillance on people without their knowledge [24]. Although there

https://orcid.org/0000-0002-0382-2902
https://orcid.org/0000-0002-8664-5074

2 S. Herodotou et al.

are legitimate use cases for such cameras (e.g., lawful surveillance on suspects),
they can also be misused to spy on people unscrupulously. It has been reported
that many Airbnbs (1 in 19 in Singapore) have hidden cameras installed, but
only 17% of Airbnb providers specify where these cameras are located [9]. Hid-
den cameras are also frequently installed by parents at homes to monitor the
activities of nannies and often the children themselves [10].

The ubiquitous presence of hidden cameras installed in private spaces within
homes and workplaces to monitor people without their knowledge clearly raises
many privacy concerns. This has motivated many researchers to investigate the
detection of such cameras, e.g., via a smartphone’s time-of-flight sensors [21], a
stimulating-and-probing technique [17], the analysis of thermal emissions [24],
the RF (radio frequency) signal characteristics [7, 22], the Wi-Fi data fluctua-
tions [4–6,8, 14,15,20], and the camera’s electromagnetic emanations [18].

However, the security of the hidden camera itself has received limited at-
tention. So far, only a few researchers have investigated this subject. Abdalla
et al. show that many cameras use default passwords and the communications
are unencrypted [2]. Ling et al. reveal that it is possible to perform an online
brute-force attack to uncover the camera’s password when the password is only
four-digits long [16]. They further show that if the MAC address of the camera
is known, it is possible to spoof the camera. Biondi et al. demonstrate that when
an attacker is in the same Wi-Fi network as the IP camera, they can eavesdrop
on the video data [3]. Although these studies provide useful insights, their anal-
ysis is not systematic, and the identified vulnerabilities tend to have a limited
impact. Some of the attacks will not work if the attacker is not in the same
network as the camera or if the user changes the default password.

This paper presents a thorough and systematic analysis of a generic IP cam-
era module, which after repackaging and re-branding, has been built into several
best-selling hidden cameras available on Amazon. The camera modules under
investigation were purchased at around $30 each. Some of these hidden cameras
are integrated into household objects such as alarm clocks, and are typically sold
on Amazon in the range of $50-120. The camera module is controlled by mobile
phone apps that are freely available on iOS and Android. One example is the
LookCam app, which has over half a million downloads on Google Play alone.
However, there are also other apps that work with the same type of module but
are branded by different vendors. Security designs for the camera module and
the app are not officially published.

By decompiling the LookCam Android app and analysing the camera’s traffic
data, we were able to reverse-engineer the entire security design of the camera
system. This includes the Linux operating system (OS) environment on the
module, the file structure in the firmware, the authentication mechanism, the
session management, and the remote communication with servers in the cloud.
Security flaws have been identified in all these areas, and are detailed in Section 3.

Our contributions are summarised below.

– Based on publicly available hardware modules and mobile applications, we
have reverse-engineered the security design of a generic hidden camera sys-

Spying on the Spy: Security Analysis of Hidden Cameras 3

tem. This design does not represent all hidden cameras in the market but is
believed to be fairly common among commercial products.

– Based on the reverse-engineered security design, we have identified categor-
ical flaws and presented proof-of-concept attacks accordingly. These flaws
allow an adversary to perform remote code execution on a camera from any-
where in the world with the mere knowledge of the camera’s serial number.

– Based on the findings, we propose mitigation measures and good practices
for designing more secure camera systems in the future.

Ethics and responsible disclosure The camera modules being analysed were
purchased and owned by the authors. Proof-of-concept attacks were demon-
strated against these devices only without affecting other IP cameras in use. We
responsibly disclosed the findings to the manufacturer. Whilst the manufacturer
acknowledged our work, they showed no intention to fix the problems, mainly
because patching/recalling these modules is infeasible due to complexities in the
supply chain. On the other hand, the public needs to be informed of the risk
of using hidden cameras, especially since users sometimes share serial numbers
of the purchased cameras in online reviews. One CVE (Common Vulnerabilities
and Exposures) has already been assigned (CVE-2023-30400), and others are
also under review at the time of writing. The following sections will detail the
vulnerabilities with the manufacturer’s name anonymised.

2 Hardware and Supply Chain

The generic camera module under analysis is a portable, thumb-sized device that
can be powered with a battery or micro-USB. It works completely standalone,
supporting live video streaming and Wi-Fi connectivity out-of-the-box. Option-
ally, a Micro SD card can be inserted to enable video recordings. Figure 1 shows
a photograph of the camera module.

The device is designed to connect with a companion app, which is developed
by vendors under different brands. The app analysed in this investigation is
called LookCam. Its features include live streaming, remote configuration, and
downloading previously recorded footage.

The modules in question originate from a prominent firm in the electronics
industry, referred to hereafter as the manufacturer. This manufacturer specialises
in the production of camera modules and CCTV (closed-circuit television) equip-
ment, and according to publicly available information online, exports $5-10 mil-
lion worth of product yearly, with their main markets in Europe, America and
Asia.

In terms of the supply chain, this manufacturer acts as the OEM (original
equipment manufacturer). The modules are sold in bulk to other vendors, which
are then packaged and re-branded. The final products are released to consumers
in online stores such as Amazon. After the generic camera modules are sold in
bulk, even the manufacturer cannot track where these modules are distributed
to third-party sellers at multiple retail levels. The complexities in the supply

4 S. Herodotou et al.

Fig. 1: The Camera Module. (1) Micro camera. (2) Reset button. (3) Power
switch. (4) Micro-USB port. (5) Power pins (battery). (6) Wi-Fi antenna. (7)
Wi-Fi module. (8) Central Processing Unit.

chain have profound security implications since if there is a security flaw in the
generic module, it is virtually impossible to patch or recall the affected products.

This manufacturer also partners with two other companies in producing the
camera modules. One is a leading integrated circuit manufacturer. They produce
the system-on-chip, which is a core component of the camera module, provid-
ing an embedded-Linux operating system and drivers to support an IP camera
product. The other company specialises in providing a peer-to-peer networking
system, which is a software component of the camera module responsible for
facilitating remote connections to the cameras. Serious flaws have been discov-
ered in these components as well. According to public information available on
the company’s website, the peer-to-peer networking system has been adopted by
over 50 million IoT devices.

3 Investigation

This section describes the testbed setup, the reverse-engineering process, and
the vulnerabilities identified with proof-of-concept attacks.

3.1 Pairing the Device

To pair a camera with the mobile app, there are multiple approaches. When no
network is configured (e.g., if reset to factory settings), the device hosts its own
hotspot network which the user can connect to. Once connected, the LookCam
app can automatically pair by listening for packets sent by the device (which
contain its serial number). Alternatively, a user can add a device that is already
connected to the internet by supplying its serial number to the app. It is common
for these devices to include a sticker or QR code which contains the serial. When

Spying on the Spy: Security Analysis of Hidden Cameras 5

connecting via the app, the user will be prompted to enter a password to gain
access. All devices are configured with a default password of 123456.

3.2 Testbed Setup

To facilitate an investigation of the network services running on the device, it
is necessary to construct a network sandbox to intercept all relevant communi-
cations. This was achieved by connecting an external wireless network adapter
(Alfa-Network AWUS036NHA) to a Kali Linux virtual machine. By using the
hostapd tool, a custom Wi-Fi hotspot was created with the adaptor. Configuring
the camera module to connect to this network would then enable all commu-
nications to be intercepted using a packet-sniffing tool such as Wireshark. By
using an additional network adaptor to create the hotspot, the built-in network
adaptor of the Kali machine could be used to bridge an Internet connection to
the hotspot, enabling all external traffic to be intercepted (e.g., communications
with peer-to-peer servers). See Figure 2 for a diagram of the structure. This
testbed was set up only for reverse-engineering the security design of the camera
system. For attacking the system, the adversary does not need to be in the same
Wi-Fi network as the camera; the attack can be launched from anywhere on the
Internet.

Kali VMCamera

Smart Phone

LAN Network

(Optional) Internet
Connection

Wireshark
Listener

Access Point
(Alfa-Network Adapter)

Fig. 2: Architecture of the network sandbox used to intercept traffic

3.3 Mobile Application Analysis

Without knowledge of the camera’s security design, the reverse-engineering pro-
cess started with analysing the controlling app, in particular, the LookCam An-
droid app that is publicly available in Google Play. Decompiling the LookCam
Android application with Jadx enabled its source code to be analysed. From
an initial scan, it was discovered that the core of the networking functionality
is implemented within a C-library named libPPCS_API.so. Investigating this
library required disassembly in Ghidra, and is discussed later in this paper.

Additionally, a secret logging feature was discovered in the AboutActiv-
ity.java file. This file controls how users can interact with the ‘About’ page in
the app. The code reveals that, if a user holds down the ‘LookCam’ logo for a

6 S. Herodotou et al.

few seconds, a menu is revealed that allows the user to export a debug log. Other
applications were also discovered to include this functionality. This log contains
output from all the components of the application, including the C-libraries that
communicate directly with the camera. This log output provided vital informa-
tion on how the phone communicates with the camera module, and revealed a
JSON (JavaScript Object Notation) command system in use. Listing 1 provides
a portion of the output, revealing the structure of a login command sent to the
camera.

LookCam[28765:1775458] Connect Success!! SessionID=34
LookCam[28765:1775458] will login with session 34
LookCam[28765:1775519] mediaDataRecThread going...
LookCam[28765:1775458] send json {

cmd = LoginDev;
pwd = 123456;

}

Listing 1: Log output revealing a JSON-style command system in use

3.4 Unencrypted Communications

By analysing the network traffic produced during interactions between the cam-
era module and the app, a UDP (User Datagram Protocol) service running on
port 32100 was discovered. Monitoring network traffic whilst using the app re-
vealed that the service provides all of the core functionality of the module, from
configuration to live-streaming video. This was possible since the protocol trans-
mits all data in plaintext, enabling an eavesdropper to read all communications
between the camera and the app. This includes sensitive information such as
login requests (containing the device’s password in plaintext), the contents of
configuration commands, and live video footage. Once the attacker has inter-
cepted the device’s password, they can gain full access to the camera via the
mobile application as if they were a legitimate user. However, exploiting this
flaw is not easy as it requires the adversary to be a man-in-the-middle (MITM)
between the camera and the phone. However, this MITM requirement no longer
becomes a constraint when exploiting vulnerabilities in the camera’s peer-to-peer
and command systems, enabling the camera to be controlled from anywhere on
the Internet. These vulnerabilities are discussed in the following sections.

3.5 Vulnerable Command System

Many flaws were discovered in the JSON command system, used by the app to
interact with the camera. A custom client was developed to mimic the actions
of the mobile phone app, which enabled custom JSON payloads to be sent that
could exploit potential vulnerabilities in the implementation of the command
handlers.

Spying on the Spy: Security Analysis of Hidden Cameras 7

Bypassing Authentication To begin, an analysis of communications between
the camera and the app revealed that the camera’s password is included in every
request made by the app. This is included in plaintext under the pwd field in
the JSON body. Not only does this increase the probability of an eavesdropper
capturing the device’s password, but highlights a lack of session management
in use by the system. Listing 2 demonstrates the standard format used by all
commands sent by the app.

{
"cmd": "[Command name]",
"pwd": "[Device password]",
"...": "...",

}

Listing 2: JSON structure of commands

When sending an incorrect value for the pwd field, one would expect the
camera to reject the command completely. However, using the custom client to
send malformed commands with the pwd field omitted revealed that the camera
makes no attempt to verify the supplied credentials. This shows that the user’s
password authentication is performed client-side in the app, and not on the
camera. Although the LoginDev command is sent to the camera to verify the
supplied password, this command simply verifies the correctness of the password
without updating the state of the system or establishing a session. This makes
it possible for an attacker to gain full access to the camera without knowing
the password by using a custom client, similar to the one developed in this
investigation. Alternatively, using dynamic instrumentation tools such as Frida
makes it possible to disable the code responsible for performing the client-sided
check. The loginDevice function within LuPPCSSession.java was successfully
hooked and overwritten to bypass this check. This eliminates the need for an
adversary to develop a custom app from scratch to bypass the authentication
system. Thus, by adding any known serial number to the LookCam app with
this custom code enabled, an attacker can gain full access to a target camera
without being on the same network or being a MITM.

Reading Configuration Values Given that full access can be granted with-
out knowing the password, an attacker no longer needs to perform a man-in-
the-middle attack and rely on user-interaction for sensitive information to be
obtained. This information can be requested directly, as the device cannot dis-
tinguish an attacker from a legitimate user. The GetDevInfo command can be
sent, which is then responded with sensitive information such as the user’s Wi-
Fi credentials, as shown in Figure 3. The transmission of the Wi-Fi credentials
to the app appears totally unnecessary, which demonstrates a lack of security-
consciousness from the manufacturer in the security design.

8 S. Herodotou et al.

Fig. 3: Extracting Wi-Fi credentials in Wireshark

Live Streaming By imitating the requests the application makes when re-
questing a live-stream, an attacker can access live-footage from a target camera
without the user’s interaction. Many of these cameras also include microphones,
enabling audio to be captured too. Even the installer of the camera may not be
aware that the spy camera can be spied on by random people on the Internet.
This clearly aggravates privacy concerns about these hidden cameras.

Arbitrary File Downloading The camera module offers a file-downloading
command to facilitate the remote retrieval of historic footage. A vulnerability
was discovered in the file-download command handler that enables attackers to
download arbitrary files present on the system. See Listing 3 for an example
file-download request.

{
"cmd": "DownloadFile",
"pwd": "123456",
"patch": "/mnt/CYC_DV/20220708@111673.mp4",
"pos": 0

}

Listing 3: Example file download request

By sending modified requests with a custom client that was designed to mimic
the LookCam app, it was possible to send any file path under the patch param-
eter. The camera immediately responds with a series of UDP packets containing
the contents of the file. No attempt was made by the manufacturer to sandbox
the file system or ensure file paths are within the recording directory. This makes
it possible to download any file on the device, as long as the path is known. Re-
calling that this can be performed without the user’s password, the scope in
which an attacker can extract data is no longer limited by what information the
network service is designed to share. For example, the file /etc/jffs2/.devpsd
was discovered, which stores the user’s password in plaintext.1 The lack of en-
cryption in this file makes it possible for an attacker to effortlessly obtain this
1 In some newer devices, this is stored in /etc/config/.devpsd.

Spying on the Spy: Security Analysis of Hidden Cameras 9

information. This breach of confidentiality could pave the way for further mali-
cious activities, as the password may be reused on other systems.

Shadow File Extraction It was possible to download the shadow file located
in /etc/shadow using the file-downloading vulnerability. The shadow file is a
protected file that stores the password hashes for Linux users.2 Not only does
the ability to read this file indicate that the user running the server daemon
has superuser privileges; it also makes it possible to attempt a hash-cracking
attack on the root password set by the manufacturer. The password was hashed
using the insecure MD5 Crypt algorithm, making it more vulnerable to crack-
ing attacks compared to modern hashing algorithms [19]. Despite this, it was
not feasible to crack the password after an aggressive combination of dictionary
and brute-force attacks lasting over a month. This shows that the root pass-
word set by the manufacturer is a long and complex string. However, taking
control of the device does not require knowing the root password, as this can be
achieved by exploiting command-injection vulnerabilities. Furthermore, through
the command-injection attack, the root password can be modified to an arbi-
trary one, hence effectively bypassing the root password authentication. Details
of this are discussed later in this paper.

3.6 Firmware Extraction

The existence of the file-downloading vulnerability made it possible for the
entire file system to be extracted for further examination. By analysing the
/proc/mounts file, three files were discovered which, if downloaded, could be
used to rebuild the entire file system. This solved the blind file-downloading
limitation, as all files could be downloaded at once without having to know (or
fuzz) specific paths. Table 1 provides further details of these files.

Table 1: File systems mounted by the device
Path Type Contents
/dev/mtdblock5 jffs2 Stores user data, such as configuration values. Mounted at

/etc/jffs21.
/dev/mtdblock6 Squashfs Read-only partition for the /usr directory. Stores vendor-

specific binaries and scripts, such as startup scripts and the
core server application.

/dev/root Squashfs Stores remaining files that belong in the root folder (/).
Includes the Linux kernel and built-in executables.

1 In some newer devices, this area is mounted at /etc/config.

Having access to the file system made it possible to discover and analyse addi-
tional files on the device. This included custom programs such as /usr/bin/anyka_-
ipc, the daemon responsible for the UDP service.

2 We note that these hashes are unrelated to the device password used by the app to
authenticate users. They are instead part of the internal Linux environment.

10 S. Herodotou et al.

3.7 Remote Code Execution

Analysis of the file system and start-up procedure revealed a chain of bash
scripts that are executed on boot, as seen in Figure 4. Some of these scripts
contain command-injection vulnerabilities that enable an attacker to perform
remote code execution on a target device with superuser privileges.

/etc/init.d/rcS

/etc/init.d/rc.local

sysinit (Startup)

/usr/sbin/camera.sh /usr/sbin/service.sh

/usr/sbin/net_manage.sh

/usr/sbin/wifi_manage.sh

/usr/sbin/wifi_run.sh

/usr/sbin/wifi_station.sh

/usr/sbin/station_connect.sh

/usr/sbin/ap.sh

anyka_ipc service

Fig. 4: Chain of processes and scripts called on startup

Vulnerable code has been discovered in modules with software versions as
recent as November 2022. A lack of remote updating functionality found in
these modules means that it is impossible for patches to be pushed by the man-
ufacturer. An example includes station_connect.sh, a script responsible for
connecting the camera to a user-configured Wi-Fi network. Listing 4 contains a
vulnerable excerpt from the script.

SSID=\'\"$GSSID\"\'
PSK=\'\"$GPSK\"\'
...
sh -c "wpa_cli -iwlan0 set_network $NET_ID ssid $SSID"
...
sh -c "wpa_cli -iwlan0 set_network $NET_ID psk $PSK"

Listing 4: Vulnerable code in station_connect.sh

Spying on the Spy: Security Analysis of Hidden Cameras 11

The script makes multiple calls to the command ‘sh -c’, which instructs
the shell to interpret any following string as a shell command. The variables
$GSSID and $GPSK originate from the camera’s configuration settings (the net-
work name and password), making them directly modifiable by the user, and
also an attacker. The danger present is that the user-supplied values are being
passed directly into the command, making it possible for a crafted payload to
execute arbitrary commands. A weak attempt was made by the manufacturer to
prevent this from occurring, however. These values are initially read and parsed
in another script, wifi_station.sh, before being sent to station_connect.sh.
The inputs are weakly sanitised with an awk script (see Listing 5) that performs
the following operations, according to the awk reference [12]:

– Removes all double quotes
– Removes leading whitespace
– Removes any occurrences of the semicolon (;) character, and any following

characters on the same line

BEGIN {FS="="}/[wireless]/{a=1} a==1 &&
$1~/^ssid/{

gsub(/\"/,"",$2);
gsub(/\;.*/, "", $2);
gsub(/^[[:blank:]]*/,"",$2);
print $2

}

Listing 5: Script to read and sanitise the configuration value for the Wi-Fi SSID

The removal of the semicolon character (and anything after) is a clear attempt
to prevent command-chaining. However, not all cases were considered, since ad-
ditional chaining operators using the ampersand (&&) and pipe (||) symbols are
never filtered out, which can be used to achieve a similar result. Additionally,
the inputs are surrounded with pairs of single and double quotes (see lines 1
and 2 in Listing 4), in an attempt to ensure the input is interpreted as a string
instead of being executed. These techniques, although potentially thwarting a
naive command-injection attempt, proved futile since the source code could be
viewed. By surrounding the payload with a pair of single quotes, it was possible
to break out of the string and achieve code execution.

To perform the attack, an OpenWifi command is sent to the device to update
the Wi-Fi settings with the embedded payload. When this is sent, the camera
updates its configuration file with the inputs and reboots. On boot, station_-
connect.sh is executed, triggering the attacker’s code via the call to ‘sh -c’.
A slight barrier to the attack is that the OpenWifi command only supports a
maximum length of 32 characters for the SSID and password fields. Recall that
the file /etc/jffs2/.devpsd was previously discovered to store the device’s
password in plaintext. By updating the password to be the contents of a desired
script, the password file can be used as a temporary storage mechanism for the

12 S. Herodotou et al.

payload. The input in the OpenWifi command can then be shortened to execute
the contents of this file with the command ‘source /etc/jffs2/.devpsd’.

Thus, a more sophisticated attack involves sending two commands. The first
updates the camera’s password to a payload of choice (Listing 6), whilst the
second updates the Wi-Fi configuration so that the payload is executed on the
next boot (Listing 7). It should be noted that no user interaction is required to
perform this attack.

{
"cmd": "ModifyPwd",
"newpwd": $payload, // desired payload
"pwd": ""

}

Listing 6: Command to update the device’s password

{
"cmd": "OpenWifi",
"sid": $ssid, // user's SSID
"wifiPwd": "'&&source /etc/jffs2/.devpsd '",
"state": 1

}

Listing 7: Payload sent to exploit the command-injection vulnerability in sta-
tion_connect.sh

Since the exploit requires an attacker to update the camera’s network con-
figuration, this attack has the side-effect of disconnecting the camera from the
Internet, preventing an attacker from sending further commands. This can be
resolved by rolling back the credentials after code execution is established. The
shell code in Listing 8 can be added to the payload to restore the original con-
figuration and reconnect to the Internet. Additionally, the password file can be
reinstated to its original value to make the attack much harder to detect. By
ignoring this step, however, a denial-of-service attack is achieved, since updat-
ing the password file is equivalent to changing the password. With the device’s
password being set to the contents of an arbitrary script, the user will no longer
be able to connect to their device via the LookCam app.

sed -i 's/^password.*=.*/password = [OLD PASSWORD]/'
/etc/jffs2/anyka_cfg.ini↪→

reboot

Listing 8: Shell code to reinstate the previous Wi-Fi password

Searching for the vulnerable code segments discovered viaGithub Code Search
[11] and Sourcegraph [23] revealed that the scripts originate from the AK3918

Spying on the Spy: Security Analysis of Hidden Cameras 13

microcontroller software development kit (SDK). Consequently, the command-
execution vulnerability is not restricted to the specific modules in this investi-
gation, but potentially to many other products that incorporate the same SDK
(or derivatives).

3.8 Persistent Access

With the ability to perform code execution, an adversary can perform more
sophisticated attacks to persist this access, such as installing a malicious start-
up script that exposes a reverse shell. These attacks are immune to the device’s
‘reset’ button, as resetting the device only restores the factory configuration file
whilst leaving the rest of the filesystem unaffected. In a large-scale attack, this
could lead to the formation of a botnet, enabling considerable attacks such as
distributed denial of service, botnet mining and mass surveillance. A vulnerable
section of code located in service.sh (see Listing 9) exposes debug functionality
left behind by the manufacturer, making it possible to install a custom start-up
script. The code looks for a script located in /mnt/usbnet/product_test, and
if present, executes it on every boot. Additionally, Telnet and FTP (File Transfer
Protocol) daemons are started, exposing additional entry points to the camera.

if test -d /mnt/usbnet ;then # Checks if the directory exists
FACTORY_TEST=1

...
if [$FACTORY_TEST = 1]; then

/usr/bin/tcpsvd 0 21 ftpd -w / -t 600 & # Start FTP
telnetd & # Start Telnet
echo "start product test."
/mnt/usbnet/product_test & # Execute the start-up script

...

Listing 9: Vulnerable debug functionality left behind in service.sh

An adversary can insert an additional command into the start-up script to change
the vendor-set root password to an arbitrary one, as shown in Listing 10. This
effectively bypasses the root password originally set by the vendor and enables
the adversary to authenticate themselves to the Telnet and FTP services which
were previously protected by this root password.

echo -e "1234\n1234" | passwd root

Listing 10: Changing the vendor-set root password to ‘1234’ by exploiting the
exposed start-up script

14 S. Herodotou et al.

Device

P2P Server

Client

(2) Send outgoing packets to 1.2.3.4:PORT

(1) Contact me at 5.6.7.8:PORT(1) Contact me at 1.2.3.4:PORT

(3) Direct connection
established

Fig. 5: UDP hole punching procedure

3.9 Insecure Peer-to-Peer System

To facilitate remote connections to the cameras outside of the user’s local net-
work, the peer-to-peer (P2P) system is utilised. Although it offers convenience
by enabling users to access their cameras from anywhere in the world, expos-
ing devices to the Internet creates the opportunity for the previously discussed
vulnerabilities to be exploited remotely.

The P2P system uses a proprietary security protocol and is inherently inse-
cure. The main role of this P2P network is to provide clients with a direct IP
connection to the requested device without requiring complex network config-
uration changes. To achieve this, a technique called UDP hole-punching [13] is
employed. This method makes it possible for the camera to traverse the NAT
(Network Address Translation) system in place within the user’s network, essen-
tially performing a port-forward operation without requiring manual changes to
the router’s settings. It abuses the fact that in many networks, when an outgo-
ing request to a server is made, a temporary NAT rule is created to enable the
response to be received. By constantly firing out packets to the client, a ‘hole’ in
the NAT table is left open, allowing the app to connect directly to the camera.
Figure 5 shows the steps involved in UDP hole punching. The procedure works
as follows:

1. Both the app and the camera inform centralised peer-to-peer server(s) of
their IP addresses and listener ports.

2. Given that both the phone app and the camera are online, the camera sends
outgoing packets to the phone’s IP and port to open a NAT hole.

3. Once the NAT hole is open, the app can connect directly to the camera.

Each camera is assigned a unique serial number for identification. When an
app wishes to connect to a camera, it sends a request to the peer-to-peer server

Spying on the Spy: Security Analysis of Hidden Cameras 15

ABCD?000123?XXXXX
Prefix Device ID Check Code

Fig. 6: Format of the serial numbers used to identify devices

with the respective serial number. Figure 6 depicts the serial number format
in further detail. Each serial consists of a vendor prefix, an ID number, and a
check code (there are 1 million IDs for each prefix; a vendor can license multiple
prefixes to support more devices). The check code is used as an attempt to
prevent serial numbers from being enumerated, making it difficult for attackers
to guess the serials of other devices. Since serial verification checks have been
found to be performed on the server side, it has not been possible to locate the
check-code algorithm.

A proprietary encryption method was implemented in the P2P network to
protect packets between the apps and the P2P servers. By disassembling the
code responsible for this encryption in the anyka_ipc program using Ghidra (a
reverse-engineering tool), it was found possible to extract the encryption key and
the algorithm used to decrypt packets. A function was found within the disas-
sembled program called cs2p2p_P2P_Proprietary_Decrypt, which was reverse-
engineered and rewritten in C to decrypt packets captured in Wireshark. Multi-
ple keys were located by probing the binary for encryption parameters. Namely,
the string ‘SSDXXXXXXXXXXXk.’ (part of this string is marked out with ‘X’) is
used as a global symmetric key to encrypt and decrypt packets. An additional
256-byte key was discovered that is incorporated as an additional parameter to
the encryption/decryption functions. These keys are hard-coded into the binary
and are the same for all cameras of the same type. They are also present in the
libPPCS_API.so library included in the mobile app, as it also communicates
with the peer-to-peer system.

With the ability to communicate with the P2P servers, an attacker can re-
quest the IP addresses of cameras, enabling a direct connection to be made. It
is important to note that this vulnerability does not only apply to the cameras
in question, but to any IoT device using this network to facilitate P2P con-
nections. This makes it possible for vulnerabilities present in the spy cameras
and also other IoT devices to be exploited remotely, since no authentication is
required to gain a direct IP connection. This raises concerns surrounding poten-
tially many more products in the IoT space.

To sum up, these generic hidden camera modules have exhibited consider-
able defects in their various components, involving multiple companies in the
supply chain. The network service running on each camera to support the mo-
bile apps contains several vulnerabilities that enable attackers to bypass the
authentication system and extract sensitive information. The insecure configu-
ration scripts included as part of the microcontroller SDK make the cameras
vulnerable to command-injection attacks. Poor system configuration enables the
command injection attacks to be performed with superuser privileges. A flawed

16 S. Herodotou et al.

encryption system in use by the peer-to-peer system enables attackers to im-
personate legitimate users, exposing IoT devices to the Internet and allowing
attacks to be performed on an international scale, to potentially many millions
of devices.

4 Mitigation measures

To protect these cameras, a complete overhaul of the system would be necessary.
This is due to the numerous vulnerabilities present in all of their components.
Despite several attempts to bring these issues to the attention of the respon-
sible parties, many refused to respond or cooperate whilst others expressed no
interest. The lack of success in identifying remote updating functionality in the
system suggests that any mitigation attempt through patching would be infea-
sible nevertheless. A list of remedial actions has been compiled below to address
each of the identified vulnerabilities for the future development of IP cameras:

1. Verbose debug logging – Strip out debug messages in the production
build of the controlling app.

2. Unencrypted communications – Implement Transport Layer Security
(TLS) to protect traffic in-transit.

3. Authentication loophole – Issue a token on successful login and verify
the presence of a valid token in the subsequent requests.

4. Unencrypted password storage – Store a salted hash of the user’s pass-
word instead of storing it in plaintext.

5. Arbitrary file downloading – Associate each video file with an identifier
and have an internal database mapping identifiers to file paths. With this
method, a user only inputs an identifier instead of a path. Thus, the input
is not directly incorporated into the path, avoiding directory traversal.

6. Unnecessary exposure of sensitive information – Avoid printing sen-
sitive information such as Wi-Fi credentials in command responses, e.g.,
GetDevInfo.

7. Poor access control – Create a non-privileged Linux user to run the ap-
plication server. Modify file/directory permissions to protect privileged in-
formation.

8. Outdated password hashing algorithm – Ensure password hashes for
all users are using a modern algorithm such as bcrypt [19].

9. Command injection – Modify shell scripts to correctly sanitise user input.
Alternatively, rewrite the functionality in another language such as C to
mitigate the risk of command injection.

10. Flawed encryption in P2P network – Implement a TLS layer to protect
traffic in-transit.

11. Device impersonation – Adopt a secure enrolment process to register a
camera with the app, e.g., based on Thread [1], to create end-to-end secure
channels between the camera and the controlling app without having to trust
any peer-to-peer servers.

Spying on the Spy: Security Analysis of Hidden Cameras 17

5 Future Work

It has been demonstrated how attackers can perform remote code execution
on an arbitrary spy camera with only the knowledge of its serial number. The
proprietary check-code algorithm used to verify serial numbers serves as the
sole defence against device enumeration, which could lead to the formation of a
botnet of potentially millions of vulnerable devices. Serial enumeration does not
only impact the hidden cameras investigated in this paper, but also any type
of IoT device connected to the P2P network. Recalling that over 50 million IoT
devices are estimated to be using this system, the possible impact here can be
much greater. Flaws in the design of the network and its encryption protocol
make it possible to gain a direct IP connection to arbitrary devices without
supplying any credentials. Further exploits could be possible based on the designs
of these devices. A possible route to cracking the check-code algorithm would
be to purchase a copy of the P2P server software from the manufacturer (which
costs around $1,000), so one has access to the source code of the server software
including the implementation of the check-code algorithm. With the knowledge
of the check-code algorithm, an attacker may extend the reported attacks to an
arbitrary IoT device with a valid device ID in the P2P network, including not
only IP cameras but also IP-based smart locks, doorbells, bulbs, light switches,
speakers and so on. We leave this to future study.

6 Conclusion

A systematic investigation of the security of IP-based hidden cameras has been
conducted, revealing a broad range of vulnerabilities. These vulnerabilities allow
a remote attacker, with the mere knowledge of the camera’s serial number, to
take complete control of the camera even if the camera is within an internal
network behind a firewall. Proof-of-concept attacks have been demonstrated to
eavesdrop on the audio and video streams, retrieve any recorded video stored on
the camera module along with other sensitive information (such as the Wi-Fi
passwords of the user’s home network), and run a reverse shell script on the
camera device (by abusing the password update function and specifying the re-
verse shell as part of the input to that function), thus turning the camera into a
platform to attack other nodes in the home network or as part of a botnet. These
attacks are not just limited to hidden cameras; they are generally applicable to
IoT devices that follow a similar security design. Countermeasures are proposed
to contain these attacks. However, patching or recalling the affected cameras is
infeasible given the existing designs of these products and the complexities of the
supply chain. Manufacturers are urged to pay more attention to security and get
it right at the start, as failures can cause unintended, severe, and long-lasting
consequences, especially when retrospective fixes are impossible. In the mean-
time, the public should be informed of the security issues of a hidden camera,
especially about the danger of sharing a camera’s serial number with others.
Even if a user diligently does not share the serial number, we caution that an

18 S. Herodotou et al.

attacker may already know it, e.g., by enumeration, or reading the product infor-
mation in the supply chain. To ultimately address the vulnerabilities identified
in this paper, we call for open, peer-reviewed and standardised security designs,
which are currently lacking for hidden cameras and similar IoT products.

Acknowledgements

The second author is supported by Royal Society (ICA\R1\180226) and EPSRC
(EP/T014784/1).

References

1. Thread specification. https://www.threadgroup.org/support#specifications, ac-
cessed: 2023-03-09

2. Abdalla, P.A., Varol, C.: Testing iot security: The case study of an ip camera.
In: 2020 8th International Symposium on Digital Forensics and Security (ISDFS).
pp. 1–5. IEEE (2020)

3. Biondi, P., Bognanni, S., Bella, G.: Vulnerability assessment and penetration test-
ing on ip camera. In: 8th International Conference on Internet of Things: Systems,
Management and Security (IOTSMS). pp. 1–8. IEEE (2021)

4. Chaudhary, P.R., Narasimhan, A., Maiti, R.R.: Demystifying video traffic from iot
(spy) camera using undecrypted network traffic. In: Proceedings of the Twelfth
ACM Conference on Data and Application Security and Privacy. pp. 361–363
(2022)

5. Cheng, Y., Ji, X., Lu, T., Xu, W.: Dewicam: Detecting hidden wireless cameras via
smartphones. In: Proceedings of the 2018 on Asia Conference on Computer and
Communications Security. pp. 1–13 (2018)

6. Cheng, Y., Ji, X., Lu, T., Xu, W.: On detecting hidden wireless cameras: A traffic
pattern-based approach. IEEE Transactions on Mobile Computing 19(4), 907–921
(2019)

7. Cunningham, R., Tan, W.L.: Detection and localization of hidden wi-fi cameras.
In: 2022 27th Asia Pacific Conference on Communications (APCC). pp. 12–17.
IEEE (2022)

8. Dao, D., Salman, M., Noh, Y.: Deepdespy: A deep learning-based wireless spy
camera detection system. IEEE Access 9, 145486–145497 (2021)

9. David Janssen: Many Airbnbs have cameras installed, especially
in the US, Canada and Singapore. https://vpnoverview.com/news/
camera-presence-airbnb-accommodations/, accessed: 2023-03-09

10. Faisal Laljee: Using a nanny cam in the home. https://www.kidsitter.co.uk/blog/
using-nanny-cam-in-the-home/, accessed: 2023-03-09

11. Github: Github Code Search. https://github.com/features/code-search, accessed:
2023-03-04

12. GNU: The GNU Awk User’s Guide. https://www.gnu.org/software/gawk/manual/
gawk.html, accessed: 2023-03-04

13. Halkes, G., Pouwelse, J.: Udp nat and firewall puncturing in the wild. In: 10th
IFIP Networking Conference (NETWORKING). pp. 1–12. No. Part II, Springer
(2011)

https://www.threadgroup.org/support#specifications
https://vpnoverview.com/news/camera-presence-airbnb-accommodations/
https://vpnoverview.com/news/camera-presence-airbnb-accommodations/
https://www.kidsitter.co.uk/blog/using-nanny-cam-in-the-home/
https://www.kidsitter.co.uk/blog/using-nanny-cam-in-the-home/
https://github.com/features/code-search
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html

Spying on the Spy: Security Analysis of Hidden Cameras 19

14. Heo, J., Gil, S., Jung, Y., Kim, J., Kim, D., Park, W., Kim, Y., Shin, K.G., Lee,
C.H.: Are there wireless hidden cameras spying on me? In: Proceedings of the 38th
Annual Computer Security Applications Conference. pp. 714–726 (2022)

15. Lee, J., Seo, S., Yang, T., Park, S.: Ai-aided hidden camera detection and local-
ization based on raw iot network traffic. In: 2022 IEEE 47th Conference on Local
Computer Networks (LCN). pp. 315–318. IEEE (2022)

16. Ling, Z., Liu, K., Xu, Y., Jin, Y., Fu, X.: An end-to-end view of iot security and
privacy. In: IEEE Global Communications Conference (GLOBECOM). pp. 1–7.
IEEE (2017)

17. Liu, T., Liu, Z., Huang, J., Tan, R., Tan, Z.: Detecting wireless spy cameras via
stimulating and probing. In: Proceedings of the 16th Annual International Confer-
ence on Mobile Systems, Applications, and Services. pp. 243–255 (2018)

18. Liu, Z., Lin, F., Wang, C., Shen, Y., Ba, Z., Lu, L., Xu, W., Ren, K.: Camradar:
Hidden camera detection leveraging amplitude-modulated sensor images embedded
in electromagnetic emanations. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 6(4), 1–25 (2023)

19. Provos, N., Mazieres, D.: A future-adaptable password scheme. In: USENIX An-
nual Technical Conference, FREENIX Track. vol. 1999, pp. 81–91 (1999)

20. Salman, M., Dao, N., Lee, U., Noh, Y.: Csi: Despy: Enabling effortless spy camera
detection via passive sensing of user activities and bitrate variations. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6(2),
1–27 (2022)

21. Sami, S., Tan, S.R.X., Sun, B., Han, J.: Lapd: Hidden spy camera detection using
smartphone time-of-flight sensors. In: Proceedings of the 19th ACM Conference on
Embedded Networked Sensor Systems. pp. 288–301 (2021)

22. Sindhu, K., Subhashini, R., Gowri, S., Vimali, J.: A women safety portable hidden
camera detector and jammer. In: 2018 3rd International Conference on Communi-
cation and Electronics Systems (ICCES). pp. 1187–1189. IEEE (2018)

23. Sourcegraph: Sourcegraph. https://sourcegraph.com, accessed: 2023-03-04
24. Yu, Z., Li, Z., Chang, Y., Fong, S., Liu, J., Zhang, N.: Heatdecam: Detecting hidden

spy cameras via thermal emissions. In: Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. pp. 3107–3120 (2022)

https://sourcegraph.com

	Spying on the Spy: Security Analysis of Hidden Cameras

