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Abstract

Collaboration is a keystone of defense in the field of cybersecurity. A collaborative detection
system allows multiple collaborators or service providers to share their security-incident-
response data, in order to effectively identify and isolate stealthy malicious actors who hide
their traffic under the umbrella of legitimate Internet data transmissions. The fundamental
challenge in the design of a collaborative system is ensuring the privacy of collaborators
in a decentralized setting without incurring substantial computation and communication
overheads. In this paper, we use healthcare as a case study and present Sharing Is Caring
(SIC), a framework that allows multiple healthcare organizations to share their security de-
fense and attack data with other organizations for the collaborative defense against common
attackers without compromising the privacy of their system configurations and user data.
The SIC framework ensures two essential properties: 1) it ensures that no party should learn
how a particular healthcare organization has reacted to suspected IP addresses, attacks or
security incidents; and 2) it performs operations in a decentralized setting, without relying
on a trusted third party. We provide an analysis of the privacy and security properties of
our framework against honest-but-curious as well as malicious players. We prototype the
proposed system and evaluate its performance in terms of computation time and commu-
nication bandwidth. The reasonable computation cost and bandwidth overhead make the
SIC framework a feasible choice for the privacy-preserving exchange of security information
among the collaborating healthcare organizations.

Keywords: Collaborative Security, Privacy, Secure Computation, Privacy-preserving Alert
Sharing

1. Introduction

Today, healthcare providers are relying on the advancement of an Internet-based sys-
tem to provide easy access to patients, provide on-demand services, and improve healthcare
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outcomes. The advancement of technology has enabled patients not to physically visit the
hospital for their routine checkups. Instead, patients can benefit from the use of Intercon-
nected Internet of Medical things (IoMT) for reporting their symptoms and getting medical
advice. The use of IoMT devices in healthcare is rapidly increasing and is expected to reach
a value of 52 billion US dollars by 2022 [1]. These devices generate massive amount of data
related to the health of patients which could be used for personalized recommendations for
the treatment and timely identification of any health problem. This health data is normally
stored in the organization’s centralized data center. The use of health data and Internet-
connected Medical devices have not only brought benefits in terms of better health services,
personalized advice but have also created serious cybersecurity and data privacy risks.

Hackers take advantage of software vulnerabilities in IoMT, open access points, flaws in
the design of the Internet of Medical devices, and a lack of training in using the advanced
technology systems to exploit data breach and security attacks. Cybercriminals not only
attack the system for compromising the integrity and confidentiality of the data but also
make system resources unavailable to legitimate users i.e., they disrupt the facilities of pa-
tient care through distributed denial of service (DDoS) attacks or ransomware attack. These
types of attacks on the services of healthcare providers can bring catastrophic consequences
to healthcare providers. A recent survey by IBM indicates that healthcare providers suffer
a loss of nearly 6.5 million US dollars from these data breaches [2]. During 2019 in the UK,
67% of the healthcare organizations have reported a cybersecurity incident [3], 48% of these
attacks were attributed to viruses or malware spread from the IoT devices e.g. Marai botnet
[4]. In May 2017, WannaCry [5] exploited vulnerabilities in the unpatched Windows-based
systems and launched a ransomware attack on many hospitals across the world. The med-
ical devices running on the Windows operating system were infected with the virus, which
resulted in the cancellation of patients’ appointments and locking of patient-records. The
virus also affected the working of Internet-enabled medical devices. Specifically, National
Health Service (NHS) in the UK has reportedly paid around £92 million as the result of a
ransomware attack to their system [6].

Cyber threats (Dos, DDos, worms, Malware, Trojan, viruses, spam, etc.) are continu-
ously evolving because of the deployment of a large number of IoT devices [7, 8, 9]Cyber
attacks bring serious problems to users and service providers, including disruptions of oper-
ations of organizations and the financial loss in terms of ransomware and regulator’s fines.
Large organizations (public and private) and Internet Service Providers (ISPs) have deployed
standalone intrusion detection solutions (IDS) for protecting their customers, network re-
sources, and data repositories from cyber attacks. A standalone IDS creates the detection
model based on the data and traffic logs collected at a single source (e.g. healthcare orga-
nization or ISP). Sophisticated malicious actors (stealthy and coordinated attackers) could
intelligently manage to circumvent the standalone IDS for a relatively long time, by exhibit-
ing traffic patterns similar to legitimate traffic patterns and a simultaneous low rate attack
traffic in a large number of autonomous networks [10, 11]. Under this attack pattern, the
standalone IDS shows a slow reaction because of a lack of enough information to be used
for efficient and timely decisions.

The convergence of computer networks into the cyberspace, including the use of computer
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systems for various sensitive areas like cyber-physical systems in the healthcare, requires
timely identification of malicious actors because of the severe consequences of the cyber
attack. The collaboration among standalone IDS is the obvious choice to create a collective
defense model against the sophisticated and stealthy cyber attackers. For the effective and
improved cyber defense, the public organizations (CERT-UK and CERT-US [12, 13], Eu-
ropean Union Agency for Network and Information Security (ENISA) [14]) and the private
organizations (Internet Storm Center or ISC [15]) have already been encouraging organi-
zations to collaborate to achieve effective cyber defense. The exchange of cyber incident
information could have the challenge of privacy-preservation that restrains organizations
from implementing collaborative information exchange.

A number of proposals have been proposed for the information sharing among the col-
laborators [16, 17, 18, 19]. These approaches can be grouped into two architectures: a
centralized system – where collaborating organizations submit their data to the centralized
system and a distributed system – where information from the multiple collaborating orga-
nizations is aggregated in a distributed way. The centralized system can be a single point of
failure. Furthermore, the collaborator has to trust the centralized system for the protection
of the shared data. The distributed system has challenges of scalability and the trade-off
between privacy and computational overheads.

Several works have been proposed to ensure the privacy of collaborators. These systems
have adopted semantics of data anonymization [20, 21], data sanitization [22] and crypto-
graphic techniques [23, 24] to address the challenges of privacy in the centralized and de-
centralized settings. The data anonymization-based systems do not provide any meaningful
information to the collaborating healthcare organizations and are prone to de-anonymization
and de-identification attacks [25]. For example, in a collaboration setup like Dshield, the
active adversary can easily learn the blacklisted rules of a particular organization by mak-
ing a controlled active attack towards the targeted organization. The cryptography-based
systems ensure the privacy of collaborators with the use of a trusted set of privacy peers
or semi-trusted systems [23, 24]. Freudier et al. [24] use the secure private set intersection
technique for protecting the exchange of blacklist database information between two collab-
orators, without revealing the size of a blacklist and non-similar data points. The system
requires a semi-trusted third party for finding similar collaborators. However, the system
is not scalable to a large number of collaborators. Locasto et al. [26] use bloom filters to
protect the privacy of collaborators, but it is prone to the simple guessing attack. In our
work, the privacy of the collaborators is ensured in a completely decentralized way, without
relying on the trusted central system for the cryptographic operations and data handling.

In this paper, we propose the SIC (Sharing is Caring) framework where the collaborators,
organizations, and health providers can share their views about the cyber incident, source
host, IP address, or firewall alert to identify the stealthy and zero-day attacks. We achieve
the benefits of collaboration with the inherent properties of privacy preservation and minimal
overheads. The building block of the SIC framework consists of three major players: the
collaborators (i.e., healthcare provider, ISP or any entity using information systems), the
tally server, and the analyst. The collaborator generates a decision about the entity and
reports this to the tally server in an encrypted form. The analyst processes the data from
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the tally server and ranks the severity of each host, IP address, or alert. The adversary or
any party in the system cannot learn anything about the collaborators from the tally server
data. We analyzed the security properties of the SIC framework for the honest-but-curious
and malicious adversarial models. We have developed a prototype to extensively analyze
the computational and bandwidth overheads for the varying number of responses. The
results show that the SIC framework reports encrypted responses with small communication
and computation overheads. Our system has several core properties: privacy-preservation
of collaborators, decentralized operations without the trusted third party, verified result
aggregation, correct operations even under an active adversary model, and small overheads.
We believe that the proposed privacy-preserving collaboration system will bring significant
benefits to collaborators in collaboratively identifying stealthy and zero-day attacks.

The rest of the paper is organized as follows. We first review related work in Section 2.
Then, we present motivation and formalize the problem in Section 3. Section 4 provides an
overview of the designed system. In Section 5, we give security analysis of our framework.
Section 6 provides the prototype implementation and micro-benchmarks for the computation
and bandwidth overheads. Section 7 concludes the paper.

2. Related Works

A great number of research works have been proposed for collaboration in order to
improve intrusion detection and alert correlation. A multistage blacklisting ranking system
is proposed by Zhang et al. [27] that measures how closely related an attack source is to a
blacklisted entity. In the first stage, collaborating organizations provide network logs to the
DShield database [15] to filter false positive and noise. In the second stage, the filtered data
is sent to the two parallel analysis engines, for the relevance ranking of attack sources per
contributor, and to estimate the maliciousness score of the entity. Finally, relevance rankings
and maliciousness scores are combined to generate a final blacklist for each collaborator. The
system has not taken any measures to protect the privacy of participating collaborators.

Fuentes et al. [28] use the format-preserving encryption technique for the information
sharing where only the authorized participants can decrypt the aggregated ranking statis-
tics. The system requires a centralized trusted system for generating the cryptographic
parameters (public and private keys). A controlled data-sharing tool is proposed in [24]
that allows collaborators to estimate the benefits of collaboration before taking part in the
collaboration without disclosing their private data. The system is built on top of a secure
private set intersection technique with the inherent properties of protecting the data set size
and data points of the collaborators. The approach helps to minimize the false positive rate
but is not scalable to support a large number of collaborators. Furthermore, the process of
finding a closely related collaborator depends on the semi-trusted system.

The SEPIA (Security through Private Information Aggregation) [23] library allows par-
ticipants to aggregate the data from multi-domains using the multiparty computation (MPC)
technique. The library also has a function to correlate the events from multiple domains and
compute multi-domain network statistics, i.e., entropy and distinct count. The library is
dependent on a set of privacy peers for ensuring the privacy of data from multiple domains.
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Bye et al. [20] proposed a decentralized intrusion detection system that anonymized IP-
address of data contributors before sharing the data stream. However, anonymization does
not guarantee privacy protection; it is subject to de-anonymization attacks by correlating
information from multiple sources [29, 30, 25].

A number of collaborative distributed systems have been proposed to reduce the intru-
sion detection time. Janakiraman et al. [31] proposed a distributed scheme that enables a
local IDS to share the incident report with trusted nodes through a peer-to-peer network.
The DOMINO system [32] enables collaboration among multiple domains in a distributed
way using the Distributed Hashing Table. The system consists of three participants: the
overlay host, the collaborators providing alert data, and terrestrial contributors. The sys-
tem improved the detection time and accuracy by correlating events from multiple sources,
but it has major issues relating to the privacy protection of the exchanged data. A P2P-
based distributed collaborative intrusion detection system is proposed in [26] that enables
collaborators to exchange compressed information using bloom filters to the selected trusted
peers. Vasilomanolakis et al. [33] present SkipMon, a distributed collaborative system that
ensures the privacy of contributors through data compactness and the utilization of bloom
filters. The system is not scalable to a large number of collaborators. Several privacy-
preserving systems have also been proposed in other domains, for example protecting the
network users from the spamming and worms [34, 35, 36, 37], optimizing the firewall rules
[38], privacy-preserving anomaly detection, and data analytics [39, 40, 41].

A few standards have also been proposed for exchanging cyber incidents. Threat Infor-
mation Expression (STIX) [42] is a machine-readable format that enables organizations to
share their cybersecurity incident reports in order to empower an organization to react in
response to incidents more effectively. Trusted Automated Exchange of Intelligence Infor-
mation (TAXII) [43] is a RESTful API for exchanging the cyber incidents using HTTPS.
These standards have not defined any mechanism to ensure the privacy of the participating
organizations.

To the best of our knowledge, this work is the first attempt towards the design of a
privacy-preserving alert sharing system among multiple collaborators. In our system, the
participating collaborators can collaboratively uncover a certain type of malicious traffic
from a particular source address and then establish the complete threat information without
disclosing how this traffic has been affecting each individual organization. We achieve this
by having the collaborators to exchange only the encrypted information to a decentralized
system in such a manner that only the aggregate result is revealed while the individual input
from each collaborating organization remains private.

3. Background and Motivation

The effectiveness of a security incident detection system can be substantially improved if a
group of stakeholders (organizations, healthcare organizations, or Internet service providers)
exchange their security-related incident for the collective defense against sophisticated at-
tackers.
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Information Accuracy Scalability Complexity Bandwidth Privacy

Raw Data High low High High No

Partial Processed Medium Medium Medium High No

Processed Decision Low High low low Partially

Encrypted Response Low Low High High Yes

Table 1: Comparison in Characteristics among Different Information Sharing Methods.

The information used for the collaboration can be grouped into the following types: 1)
exchanging raw data without filtering and anonymization, 2) exchanging partially processed
data with anonymization (identity anonymization), 3) exchanging the final decision that
the local collaborators have made against the source host or IP-address, and d) exchanging
encrypted data. Each type of shared data provides different levels of privacy protection and
different levels of accuracy. Table 1 presents the comparison between different information-
sharing methods.

The exchanged data may contain information that could reveal sensitive information
about the network users (e.g., IP addresses, the communication connection between IP
addresses, interaction and browsing patterns of users, etc.) and the collaborators (firewall
configurations, firewall rules, etc). The sharing of raw data could result in a threat to the
privacy of the users, collaborators, and also have bandwidth and computation limitations.
The privacy of the user can be protected by stripping off the payload part of the data packet
and anonymizing the source and destination IP addresses. However, it does not guarantee
privacy protection and is subject to deanonymization attacks [44].

Problem Formulation We consider a collaborative network that consists of N col-
laborating organizations. Each collaborating organization has deployed a standalone probe
system that monitors the behavior of incoming and outgoing traffic. The standalone sys-
tem triggers alert for the traffic from the malicious source IP address or the specific port.
The collaborating organizations want to jointly compute the aggregation function on the
generated alerts without disclosing their private data.

Let N = {N1, N2, ..., Nn} be the set of organizations that could provide feedback about
the particular query (a request sent out by the organization to other collaborating orga-
nizations for their view). The objective is to provide a platform that allows collaborating
organizations to have an aggregate view of the result of a query in a privacy-preserving
way. The problem is to compute the aggregate statistics for the query in such a way that
the organization’s response to the query should remain private throughout the aggregation
process. The organization or the analyst should only learn the aggregate statistics, e.g., how
many organizations have seen the same suspicious traffic that is being queried.

4. The SIC Framework

In this section, we describe the system architecture and the technical details behind the
SIC framework.

6



Figure 1: The System Architecture of the Proposed System.

4.1. System Architecture

The system architecture of the SIC framework is shown in Figure 1, which consists of
the following three main components.

The Collaborators: The collaborators monitor all incoming and outgoing traffic and
classify it as malicious or non-malicious. For this purpose, each collaborator uses a stan-
dalone IDS for making any decision about the traffic patterns. The collaborators cooperate
with each other by exchanging encrypted information about the query it received from other
collaborators to compute an aggregate view.

The Tally Server (TS): The TS holds the public key of the collaborator, and the
encrypted feedback provided by the collaborating entities. The TS is an append-only public
database. It ensures the following: 1) all information published on the TS is publicly read-
able; 2) only the authenticated entities, namely collaborators, can write data to the system in
an append-only manner. The TS essentially serves as a public bulletin board, which has been
commonly used in e-voting, privacy-preserving recommendation and statistics aggregation
systems [45, 46, 47].

The Analyst: The analyst serves as an anchor point between the collaborators and
the TS to perform computation over the data from the TS. The analyst performs three
responsibilities: first, it assigns collaborator an address of a suitable tally server; second, it
broadcast a query to the collaborating organizations; and third, it performs aggregation of
information from the TS for the collaborator. The analyst provides the final results for the
query to the collaborating entities. The analyst does not need to be trusted, since all the
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computation tasks performed by the analyst are publicly verifiable.

4.2. Trust Model and Assumptions

We assume honest-but-curious (HBC) and malicious models. In HBC, collaborators per-
form operations honestly but try to learn the private information of other collaborators.
In this model, we assume that collaborators provide the feedback honestly within the pre-
scribed range. We consider this a reasonable assumption since collaborators are officially
registered providers who care about their public reputation. We also assume that the TS is
honest but curious i.e. the TS itself would not modify the previous information published
on the tally server. In a malicious model, collaborators try to disrupt the operation of the
system by providing out-of-range values. This can be addressed by using non-interactive
zero-knowledge proofs to ensure a ciphertext is well-formed.

We make the following assumptions in the design of the SIC framework:

• we assume that each collaborating healthcare organization has a standalone IDS system
for monitoring the behavior of the incoming traffic. The healthcare organizations wish
to have an aggregated view about whether traffics with particular patterns and from
particular sources are malicious.

• We assume there is an analyst that performs two functions: first, it assigns collabo-
rator the address of a suitable tally server for posting the information, and second,
it performs computation in a publicly verifiable manner on behalf of the collaborator
using information from the TS.

• The availability of an append-only tally server (TS) is known to the collaborators and
the analyst.

4.3. Example Scenario

We present an example of having three collaborating healthcare organizations P1, P2, P3.
Each of these collaborators has a unique identity and has access to a tally server TS1 for
sharing information. The collaborator locally generates private and public keys, keeps the
private key to himself and posts the public key to the tally server. Suppose, P1 has classified
a specific host or traffic pattern as malicious and wishes to know whether other hosts have
also considered it malicious. For this purpose, it generates a query (e.g “Is traffic from IP
X.X.X.X, Port=80 malicious?”) to the analyst for the aggregate statistics. The analyst
broadcasts the query to all collaborators. The collaborators in return submit responses to
their TS. The collaborating healthcare organizations (P1, P2, and P3) first generate the
encryption keys using public keys of P1, P2, and P3 from the TS, and secondly, report en-
crypted responses to the TS using the public keys as well as the private keys. Once all three
collaborators have posted their responses, the aggregate statistics can be computed by any
public observer. Finally, each collaborating healthcare organization updates its local black-
list and exchanges detailed information about the threat perception with all collaborators
according to his policies.
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4.4. The Cryptographic Protocol

The cryptographic operations of the SIC framework consist of the following steps.

4.4.1. Joining

To join the collaborative system, a collaborator first sends a joining request to the analyst.
The analyst allocates the collaborator a suitable TS where the collaborator can submit its
responses in an encrypted form. At this stage, it should be noted that the analyst does
not know anything except the address of the TS to which collaborator should be required
to report his encrypted data. The analyst can assign the same TS to the closely related
organizations (e.g SME, hospitals, healthcare organizations within the same countries or
cities).

4.4.2. Protocol Setup:

We assume that there exists a group G of prime order p, in which the Decisional Diffie-
Hellman (DDH) assumption is intractable. Let g be a random generator of G. For providing
the encrypted information for the query, each collaborating entity Pi within the same TS
group has to generate the private key ski (a random number in Zp) and the public key
pki = gski . The private key is kept secret to the collaborator itself, while the public key
is made publicly available via TS to all other collaborating entities. The collaborator then
computes the encryption key that it can use for encrypting the feedback about the query.
The encryption key is generated as follows:

Ei =
∏

j∈N,j<i

pkj

/ ∏
j∈N,j>i

pkj (1)

The computation of the encryption key Ei as above ensures that the following equation
holds within the same TS group. ∏

i∈N

Eski
i = 1. (2)

4.4.3. Encrypting Responses

Once the collaborating entity has computed the encryption key Ei, it then generates the
cryptogram of its response using Ei and the private key ski as follows.

cidii = Eski
i ∗ gvi (3)

Where vi ∈ {0, 1} is the value of the response to the query, and idi is the identifier of the
collaborator providing the feedback value. The id may be the IP address of the collaborator.
The collaborator reports the following information to the TS: a hash of the identity of
the collaborator, the query to which the response has been submitted, and the encrypted
response. Table 2 presents an example of the format of information posted on the tally
server. In Table 2, the collaborator ID is the hash of the identity assigned by the analyst to
the participating collaborator, the query is a particular firewall rule (an IP address, a port
number, or combination of both), and feedback value is the encrypted response.
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collaborator ID Src.IP Src.Port Des.Port Encrypted Response
ABCXYZ1296... 192.168.1.1 200 80 Malicious
ABCXYZ12196... 192.168.1.2 10 22 Legitimate

Table 2: Example of an entry submitted by Collaborators to the tally server.

4.4.4. Analyst Statistics Aggregation

The analyst or the collaborator can aggregate the encrypted responses for the query by
utilizing information available at the TS as follows.

θf =
N∏
k=1

cidkk = g
∑N

i=1 vi (4)

Here, f is the query. The decrypted value of the query Tf is then found out by performing
brute-force search over the possible set of values for the Tf with respect to the relation
θf = gTf . A brute force search will be feasible since Tf is small. Once the aggregation for
the query has been computed, the collaborator then uses this information to decide whether
to share the complete information or not. The collaborator shares the complete security
threat to all collaborators based on its threshold for the number of collaborators that have
positively confirmed the answer to the query. Further, the collaborator can also use the
aggregated score to decide the behavior of a particular query i.e., malicious or non-malicious
based on the aggregated count.

4.5. Model for Malicious Collaborators

There are a set ofN =
∑t

i=1 ni collaborators grouped into t classes, namely, C1, C2, . . . , Ct,
having n1, n2, . . . , nt collaborators respectively. The jth SP in group i is designated as Pij,
where i ∈ [1, t] and j ∈ [1, nt]. Each SP Pij holds a secret input vij ∈ {0, 1}. Each class
Ci : i ∈ [1, t] has got its own tally server TSi. The tally server fetches encrypted scores
from the collaborators within the same class and calculates the aggregate score vi ∈ {0, 1}
as below.

vi =

{
0 if

∑ni

j=1 vij ≤ bni/2c
1 else

(5)

Then each tally server TSi : i ∈ {0, 1} encrypts vi and sends it to the analyst. The
analyst further aggregates the responses and computes

v =
t∑
i=1

wi · vi

where wi ∈ [1,∆] for i ∈ [1, t] and ∆ is a small integer. wi’s are chosen by the analyst
We devise a protocol that allows the computation of v in a privacy-preserving manner.

We provide two schemes, namely scheme I and scheme II. In the scheme I, we assume that
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wi’s are publicly known, whereas, in scheme II, they are assumed to be secret inputs by the
Analyst.

Here, we assume that the weights assigned to the tally servers by the analyst are all
publicly known. Each of the tally servers initiates a protocol to compute the value of vi,
the local value of the aggregated score within the class Ci. The following 2-round protocol
describes how the local value of the aggregated score is computed by the tally server.

Step I:. The tally server TSi selects random xi ∈R Zp and publishes a public key hi = gxi .
Each SP Pij : j ∈ [1, ni] within class Ci : i ∈ [1, t] chooses a random secret key xij ∈R Zp
and posts on the tally server board of TSi, the public key Xij = gxij . Pij also posts on the
same board a NIZK proof of knowledge PW [xij : Xij = gxij ]. This NIZK proof proves that
Pij knows the value of xij.

Step II:. Each SP Pij : j ∈ [1, ni] within class Ci : i ∈ [1, t] computes a restructured key
Yij = gyij =

∏j−1
k=1Xik/

∏ni

k=j+1Xik. Pij also chooses a random rij ∈R Zp and computes

Rij = h
rij
i . Then Pij computes the encrypted feedback as Fij = (Bij, Rij), where

Bij = grijY
xij
ij gvij .

Pij also computes a NIZK proof of well-formedness of the feedback which is given by

PW
[
xij, rij : Rij = h

rij
i , Xij = gxij , Bij = grijY

xij
ij gvij , vij ∈ {0, 1}

]
.

This NIZK proof proves that given Rij, Xij and Yij, Bij is either grijY
xij
ij or grijY

xij
ij g. Pij

posts Fij along with the NIZK proof to the tally server of TSi.

Step III:. Each tally server TSi : i ∈ [1, t] looks into its own data on the bulletin board and
checks the well-formedness of all feedbacks provided by the collaborators within its purview.
If all the feedbacks are well-formed, TSi computes B̃i =

∏ni

j=1Bij =
∏ni

j=1 g
rijY

xij
ij gvij =

g
∑ni

j=1 rijg
∑ni

j=1 vij
∏ni

j=1 Y
xij
ij = gr̃igṽi . Here, r̃i =

∑ni

j=1 rij and ṽi =
∑ni

j=1 vij. Now, TSi

computes Si = B̃i/(
∏ni

j=1Rij)
1/xi = gṽi . A simple brute force search on Si will yield the

value of ṽi. Brute force search will be feasible since, ṽi =
∑ni

j=1 vij < ni. Once, ṽi is
calculated, vi can be found using Equation 5.

Step IV:. Each tally server TSi : i ∈ [1, t] chooses random x̄i ∈ Zp and computes a public
key X̄i = gx̄i . TSi also computes a NIZK proof of knowledge of x̄i given by PW [x̄i : X̄i =
gx̄i ]. TSi posts X̄i and PW [x̄i : X̄i = gx̄i ] on the tally server.

Step V:. Each tally server TSi : i ∈ [1, t] computes the restructured key Ȳi =
∏i−1

j=1 X̄j/
∏t

j=i+1 X̄j.

Then she computes an encrypted feedback as B̄i = Ȳ x̄i
i gwi·vi . She also computes a NIZK

proof of well-formedness of B̄i, given by

PW
[
xi, x̄i : X̄i = gx̄i , hi = gxi , {Fij : j ∈ [1, ni]}

]
.

TSi posts the feedback along with the NIZK proof on the tally server of the Analyst.
Once all the t participants have posted their feedbacks on the tally server, the Analyst

can compute B̄ =
∏t

i=1 B̄i =
∏t

i=1 Ȳ
x̄i
i gwivi = g

∑t
i=1 wivi = gv. A brute force search on B̄ will

yield the value of v. Brute force search will be feasible since the value of v is small.
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5. Security Analysis

In this section, we show that the SIC framework securely computes the statistics and
hides the secret inputs of collaborators. The framework ensures the privacy of collaborators
under two conditions: a) the number of collaborators on TS should be greater than 2, and b)
a maximum of (n-2) collaborators can collude to target the particular collaborator. Lemma
2 proves that the adversary who can corrupt all but two collaborators, cannot distinguish
between two tally servers that report the same sum but have two different sets of inputs
from at least two honest collaborators. This holds for the condition where the partial sum
of the inputs from both honest collaborators is the same. Let us assume that there are two
honest collaborators: Pj and Pk. The individual values of vj and vk will be known to the
adversary only if vj + vk ∈ {0, 2}, that is, if both the inputs are either 0 or 1. If the inputs
are distinct, then the adversary will learn nothing about the individual values of the inputs.

Assumption 1. (DDH Assumption) Given g, ga, gb ∈ G and a random challenge Ω ∈
{gab, R}, where R

$← G, it is hard to find whether Ω = gab or Ω = R.

Assumption 2. Given g, ga, gb ∈ G and a challenge Ω ∈ {gab, gabg}, it is hard to decide
whether Ω = gab or Ω = gabg.

Lemma 1. Assumption 1 implies assumption 2.

Proof 1. (g, ga, gb, gab)
c
≈ (g, ga, gb, R)

c
≈ (g, ga, gb, R ∗ g)

c
≈ (g, ga, gb, gabg)

Lemma 2. Let Pi : i ∈ [n] be the set of collaborators in a same group. Also let, vi ∈ {0, 1}
be the input of Pi for each i ∈ [n]. Let, j, k ∈ [n], j < k and Pj, Pk are honest collaborators.
As such, the adversary will not be able to distinguish between these two cases

1. vj = 1, vk = 0

2. vj = 0, vk = 1

Proof 2. We show that if there exists an adversary A that can distinguish between the two
cases, she could be used to construct another adversary B that can break the assumption 2.
B works as below:
Let us assume the inputs to B are ga, gb and a challenge Ω ∈ {gab, gabg}. B has to find
whether Ω = gab or Ω = gabg. B lets A choose the secret keys Ski and the inputs vi for
all i ∈ [1, n] \ {j, k}. If there is any collaborator Pi : i ∈ [1, n] \ {j, k}, for which the
secret key or the input is not chosen by A, then B chooses the secret key or the input
for that collaborator. B implicitly sets Pkj = gSkj = ga and Pkk = gSkk = gb. Since,
all public keys are now known, B can compute the restructured keys for all collaborators
Pi : i ∈ [1, n] \ {j, k}. So, B can compute the encrypted feedback for all collaborators for
whom she has selected the secret keys and the inputs. Similarly, A can compute the encrypted
feedback for all collaborators for whom she has selected the secret keys and the inputs. B
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now sets Bj = g ∗ L1/Ω and Bk = Ω ∗ L2. Here, L1 = (ga)
∑j−1

i=1 Ski−
∑k−1

i=j+1 Ski−
∑n

i=k+1 Ski and

L2 = (gb)
∑j−1

i=1 Ski+
∑k−1

i=j+1 Ski−
∑n

i=k+1 Ski. Note that, if Ω = gab, we have vj = 1, vk = 0, and if
Ω = gabgw, we will have vj = 0, vk = 1. If A can distinguish between these two cases, B can
find whether Ω = gab or Ω = gabg. Hence, the lemma holds.

The result of Lemma 2 can be trivially extended to show that no adversary can learn any
information about the secret inputs of uncompromised collaborators, other than their arith-
metic sum. Note that, the adversary can learn the arithmetic sum of the inputs of honest
collaborators by subtracting the sum of all inputs by the sum of all inputs of colluding collab-
orators. Hence, the adversary does not learn anything that the output of the protocol does
not allow her to know. Thus, the transcript of the protocol does not provide any additional
advantage to the adversary. We may conclude that as long as there are at least two honest
collaborators that provided different inputs, the privacy of all uncompromised collaborators
will remain preserved. Note that, if all the uncompromised collaborators provide identical
inputs, the output of the protocol will trivially reveal the inputs of all the collaborators, as
in that case the sum of the inputs of all the uncompromised collaborators will be either 0
or equal to the number of uncompromised collaborators.

5.1. Security Analysis for Malicious Model

In this section, we prove that our scheme is secure in the sense that it protects the
privacy of the participating collaborators as well as the tally servers. We also show that if
a particular tally server is corrupted, the adversary will only learn the sum of all inputs of
all collaborators under the particular TS. Also, she will know the input coming from that
particular TS.

Assumption 3. Given g, ga, and a challenge Ω ∈ {ga2 , R}, it is hard to decide whether
Ω = ga

2
or Ω = R.

Assumption 4. Given g, ga, gb, and a challenge Ω ∈ {gab, R}, it is hard to decide whether
Ω = gab or Ω = R.

Lemma 3. Assumption 3 implies assumption 4.

Proof 3. We show that if there exists an adversary A against the assumption 4, it could be
used to construct another adversary A′ that can break assumption 3. A works as follows:
it receives as input g, ga and a challenge Ω ∈ {ga2 , R}. It chooses random α ∈R Zp and
computes gb = (ga)α. It then computes ω = Ωα. Now if Ω = ga

2
, then ω = gab, else if

Ω = R, then ω = R′ ∈R G. Now, A′ invokes A with inputs g, ga, gb and the challenge ω. If
A can identify the correct value of ω, A′ will be able to identify Ω correctly.

Assumption 5. Given g, ga, gb, and a challenge Ω ∈ {gab, gabg}, it is hard to decide whether
Ω = gab or Ω = gabg.

Lemma 4. Assumption 4 implies assumption 5.
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Proof 4. According to assumption 4, (g, ga, gb, gab)
c
≈ (g, ga, gb, R)

c
≈ (g, ga, gb, R ∗ g)

c
≈

(g, ga, gb, gabg).

Lemma 5. Let, Pil and Pis be two honest collaborators such that i ∈ [1, t] and 1 ≤ l < s ≤
ni. Also assume that vil + vis = 1. The adversary who has compromised TSi and all the
collaborators in the set {Pij : j ∈ [1, ni]\{l, s}} cannot distinguish between the two following
cases:

i) vil = 0, vis = 1

ii) vil = 1, vis = 0

Proof 5. We show that if there exists an adversary A, who with the help of the tally server
and all other collaborators can distinguish between the two above cases, then A can be used
to construct another adversary A′, who can break the assumption 5. A′ receives as input the
following items: ga, gb, and a challenge Ω ∈ {gab, gabg}. The goal of A′ is to find whether
Ω = gab or Ω = gabg. A′ works as follows: it chooses a random secret key xi ∈R Zp
and generates the public key hi = gxi. Then, it creates ni − 2 other collaborators Ψi =
{Pij : j ∈ [1, ni] \ {l, s}}. A′ lets A choose all the secret keys xij and the inputs vij for all
collaborators with indices in Ψi. A′ implicitly sets Xil = gxil = ga and Xis = gxis = gb.
Now, A′ can compute the encrypted feedbacks of all collaborators Pij : j ∈ Ψi as Fij =
(Bij, Rij), where Bij = grijY

xij
ij gvij , and Rij = h

rij
i for a randomly selected rij ∈ Zp. Now,

A′ selects random ril, ris ∈ Zp and computes Fil = (Bil, Ril) = (L1 ∗ grilg/Ω, hrili ) and

Fis = (Bis, Ris) = (L2 ∗ grisΩ, hrisi ), where L1 =
∏l−1

k=1 Xik/(
∏s−1

k=l+1 Xik ∗
∏ni

k=s+1 Xik) and

L2 =
∏l−1

k=1Xik ∗
∏s−1

k=l+1Xik/
∏ni

k=s+1Xik. Note that, if Ω = gab, then Bil = grilY xil
il g, and

Bis = grisY xis
is . That is, if Ω = gab, then vil = 1, and vis = 0. Alternatively, if Ω = gabg,

then vil = 0, and vis = 1. If A can distinguish between these two cases, A′ can find whether
Ω = gab or Ω = gabg.

Assumption 6. Given g, S = {gai : i ∈ [1, n]} and a challenge Ω ∈ {U, V }, it is hard to
distinguish whether Ω = U or Ω = V , where

U = {gaiaj : 1 ≤ i < j ≤ n}

V = {Rij : Rij ∈R G, 1 ≤ i < j ≤ n}

Lemma 6. Assumption 3 implies assumption 6.

Proof 6. We show that if there exists an adversary A against assumption 6, the same can
be used in the construction of another adversary A′ that can break the assumption 3. A′
works as under:
it receives as input g, ga, and a challenge Ω ∈ {ga2 , R}, where R ∈R G. A′ selects n integers
α1, α2, . . . , αn ∈R Zp, and computes gai = (ga)αi : i ∈ [1, n]. Now, A′ computes ωij = Ωαi∗αj

for all i, j ∈ [1, n], i < j. Let, Ψ = {ωij : 1 ≤ i < j ≤ n}. Note that, if Ω = ga
2
, then

ωij = gaiaj , else if Ω = R ∈R G, then ωij = R′ ∈R G. Now A′ sends {gai : i ∈ [1, n]} and Ψ
to A. If A can identify the correct value of Ψ, then A′ can identify Ω correctly. Hence, the
result.
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Assumption 7. Given β ∈ Zp, Xi = gxi : i ∈ [1, n], Yi =
∏i−1

j=1Xi/
∏n

j=i+1Xi, the following
items are indistinguishable.

U = (Y x1
1 , Y x2

2 , . . . , Y
xn−1

n−1 )

V = (R1, R2, . . . , Rn−1)

where Ri ∈R G,∀i ∈ [1, n− 1].

Lemma 7. Assumption 6 implies assumption 7.

Proof 7. We show, that if there exists an adversary A against assumption 7, then it could
be used to construct another adversary A′ against the assumption 6. A′ works as below:
It receives X = {gxi : i ∈ [1, n]} and a challenge Ω = {Ωij : 1 ≤ i, j ≤ n}, such that either
of the two following assertions holds:

i) Ωij = gxixj ,∀i, j ∈ [1, n], i < j

ii) Ωij ∈R G,∀i, j ∈ [1, n], i < j

A′ implicitly sets Xi = gxi ,∀i ∈ [1, n]. It then computes ωi =
∏

j<i Ωij/
∏

j>i Ωij. It
is easy to see that if Ωij = gxixj ,∀i, j ∈ [1, n], i < j, then ωi = Y xi

i , else ωi ∈R G for
all i ∈ [1, n − 1]. Let, ω = (ω1, ω2, . . . , ωn−1). Thus, ω is either (Y x1

1 , Y x2
2 , . . . , Y

xn−1

n−1 ) or
(R1, R2, . . . , Rn−1). If A can identify the correct value of ω, then A′ can identify the correct
value of Ω. Hence, the result.

Assumption 8. Given xi ∈R Zp, Xi = gxi : i ∈ [1, n], Yi =
∏i−1

j=1Xi/
∏n

j=i+1Xi, the
following items are indistinguishable.

U = (Y x1
1 gw1s1 , Y x2

2 gw2s2 , . . . , Y xn
n gwnsn)

V = (Y x1
1 gw1s′1 , Y x2

2 gw2s′2 , . . . , Y xn
n gwns′n)

where
∑n

i=1wisi =
∑n

i=1wis
′
i

Lemma 8. Assumption 7 implies assumption 8.

Proof 8. U = (Y x1
1 gw1s1 , Y x2

2 gw2s2 , . . . , Y xn
n gwnsn)

c
≈ (Y x1

1 gw1s1 , Y x2
2 gw2s2 , . . . ,

Y
xn−1

n−1 gwn−1sn−1 , g
∑n

j=1 wisi∏n−1
i=1 Y

xi
i gwisi

)
c
≈ (R1g

w1s1 , R2g
w2s2 , . . . , Rn−1g

wn−1sn−1 ,

g
∑n

j=1 wisi∏n−1
i=1 Rigwisi

)
c
≈ (R1, R2, . . . , Rn−1,

g
∑n

j=1 wisi∏n−1
i=1 Ri

)
c
≈ (R1g

w1s′1 , R2g
w2s′2 , . . . ,

Rn−1g
wn−1s′n−1 , g

∑n
j=1 wis

′
i∏n−1

i=1 Rig
wis
′
i
)
c
≈ (Y x1

1 gw1s′1 , Y x2
2 gw2s′2 , . . . , Y

xn−1

n−1 gwn−1s′n−1 ,

g
∑n

j=1 wis
′
i∏n−1

i=1 Y
xi
i gwis

′
i
)
c
≈ (Y x1

1 gw1s′1 , Y x2
2 gw2s′2 , . . . , Y xn

n gwns′n) = V .
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Metric/No.of Responses 1000 10000 20000 40000 50000
Computation Time (sec) 6.03 63 130 260 304
Bandwidth Overhead (kbs) 14 1400 2800 5600 7000
Aggregation Time (6 organization) (sec) 2.4 25 49 97 120

Table 3: Computational and Bandwidth Overheads.

Lemma 9. Let us assume φ ⊆ [1, t]. If there exists a group of tally servers τ = {TSi : i ∈
φ}, such that there are two distinct sets of inputs V = {v̄i : i ∈ τ} and Ṽ = {ṽi : i ∈ τ}
such that

∑
i∈τ v̄iwi =

∑
i∈τ ṽiwi, then the adversary will not be able to distinguish between

the two following cases:

i) vi = v̄i;∀i ∈ φ
ii) vi = ṽi;∀i ∈ φ

Proof 9. Let us first assume that |φ| = n. Also assume that Ω = (Ω1,Ω2, . . . ,Ωn). We show
that if there exists an adversary A, that can make the above distinction, then it can be used
to construct another adversary A′ that can break assumption 8. Without loss of generality,
we may assume that the honest tally servers are TS1, TS2, . . . , TSn and the colluding tally
servers are TSn+1, TSn+2, . . . , TSt. The adversary A′ receives as input g,Xi = gxi , wi : i ∈
[1, n] and a challenge Ω ∈ {U, V }, where

∑n
i=1wisi =

∑n
i=1wis

′
i, si, si ∈ {0, 1}, ∀i ∈ [1, n],

and
U = (Y x1

1 gw1s1 , Y x2
2 gw2s2 , . . . , Y xn

n gwnsn)

V = (Y x1
1 gw1s′1 , Y x2

2 gw2s′2 , . . . , Y xn
n gwns′n)

A′ lets A choose the secret keys x̄i for all tally servers TSi : i ∈ [n + 1, t]. Then A′ sets
X̄i = gx̄i for i ∈ [n + 1, t]. A′ also sets X̄i = Xi, for i ∈ [1, n]. Now, A′ can compute
the restructured key Ȳi for all i ∈ [1, t]. A′ can compute the encrypted feedbacks for all
i ∈ [n+ 1, t] with the help of A. Then A′ computes the encrypted feedbacks for all the honest
tally servers TSi : i ∈ [1, n] as follows:

B̄i = Ωi/
t∏

j=i+1

X̄
xj
i : i = 1, 2, . . . , n

Note that, if Ω = U , then B̄i = Ȳ x̄i
i gwisi, else if Ω = U , then B̄i = Ȳ x̄i

i gwis
′
i. Now, A′ can

send all these feedbacks to A. If A can distinguish between the two sets of feedbacks, A′ can
identify Ω correctly.

6. Evaluation and Deployment

In this section, we present the prototype implementation of the proposed SIC framework
and analyze the system for computational and bandwidth overheads. Finally, we discuss
how the system can be deployed in a real scenario.
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6.1. Prototype Implementation

We evaluate the performance of the cryptographic operations of the SIC framework in
terms of computational cost and bandwidth overheads. We programmed the functionalities
of the collaborator, analyst, and TS in Java using the bouncy castle cryptographic library.
We implemented the collaborator as a Java client, the TS as a web server, and the analysts
as the aggregation system. For encrypting the feedback values we used the standard NIST
Curve P-256 [48] for 128-bit security. We obtained the measurements over a single core on
the Intel i-7 system (3.47GHz), with 8GB of RAM, and Windows 8 operating system. The
system can be easily parallelized over multiple cores. In the proof-of-concept implementation,
we focus on the honest-but-curious model in which participants provide encrypted responses
within a prescribed range. This is realistic in a healthcare application where healthcare
organizations are reputed entities and they want to collaboratively find out if a traffic pattern
is malicious or not while preserving the privacy of their input. In Section 4, we presented
solutions for the malicious adversarial model by using the non-interactive zero-knowledge
proof (ZKP) to enforce that every participant follows the protocol honestly. The most
expensive operations in ZKP are those involved to verify the proofs instead of to compute the
proofs [36]. However, these verification operations will be performed by the analyst. Hence,
the effect on each participant is limited. One possible way to implement the analyst in a
malicious adversary model is to employ a blockchain, leveraging the underlying consensus
mechanism in a blockchain to verify the ZKPs and compute the tally in a publicly verifiable
manner. We leave this for future work.

6.2. Microbenchmarks

We present experimental results for three phases: 1) generating the public, private, and
encryption keys, 2) generating the encrypted responses, and 3) performing the aggregation.
The key generation process is not computationally expensive. Each collaborating collabo-
rator generates public and private keys in around 100 msec and posts the public key to TS.
The collaborating collaborator computes the encryption key from the public keys provided
by 100 collaborators in less than 10 msec. The number of collaborators at the TS may vary,
however, the size should be small for efficient computation. The expensive operation on the
collaborator side is the creation of the cryptogram of the feedback values. Table 3 presents
the computation time required for creating the encrypted response when the number of re-
sponses varies from 1000 to 50000. The results reveal that the computation time is not very
high even for a high number of responses i.e. the collaborator can encrypt 50,000 responses
in 304 sec on a single core. However, with the parallelization, this time would decrease to
around 40 seconds (using 8 cores in parallel).

Table 3 presents the bandwidth overheads required for submitting feedback to the TS.
A single encrypted response requires 140 bytes and the bandwidth usage increase linearly
with the number of responses. The computation cost for aggregating the responses from
6 collaborators in a single TS is provided in table 3. The system takes around 50 seconds
(using 8 cores) to process 1 million responses from the TS, and the cost increases linearly
with the number of responses.
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6.3. Practical Deployment

We now discuss the practical deployment of the proposed system i.e. the role of the
analyst, how to set the size of the tally server, and how to set the duration of submitting the
feedback to the tally server. The analyst can be any entity with the condition that it is able to
performs computation. It could be either a private or government entity providing a platform
for the collaboration. The analyst does not need to be trusted since its computational result
is publicly verifiable. For the number of collaborators in an intermediate tally server, we used
the statistics based on the study presented in [10]. In [10], Katti et al. perform the study
on data collected from the 1,700 standalone intrusion detection systems (IDSes) and find
out that collaboration with only a few IDSes would achieve the same detection accuracy as
it achieves with the collaboration among all the IDSes. We recommend that the number of
collaborators in the tally server should be at least 3 (as in the case of two the collaborators’
privacy cannot been protected at all), and should not exceed 10 as a higher number of
collaborators would increase the load on the analyst. The participating collaborators should
neither present feedback frequently as it would increase the overheads, but it would detect
the malicious actor in real-time. On the other hand, less frequent updates would minimize
the overhead but would not detect the malicious actor in real-time. There should be a
trade-off between the frequency of updates and the overheads. In [10], Kati et al. identify
that more than 75% of the time, a common attacker sends malicious traffic to other IDSes
within 10 minutes of its first attack. Based on these statistics, we suggest that collaborators
should exchange information regularly with an interval not longer than 10 minutes.

7. Conclusions

Standalone intrusion detection systems have been widely deployed by healthcare orga-
nizations at the edge of their network in order to protect their resources and users from
cybersecurity threats. A standalone detection system considers the traffic patterns from a
single source to decide whether certain traffic is malicious or legitimate. A stealthy and
sophisticated attacker can bypass a standalone IDS by making a coordinated attack against
several organizations at the same time, which could bring catastrophic damage to the health-
care organizations in terms of financial loss and the public reputation. Collaboration among
standalone systems with the exchange of information related to cyber incidents can enable
healthcare organizations to collectively use the knowledge from the community for the early
identification of malicious actors. In this paper, we proposed a privacy-preserving collabo-
rative system, which enables a healthcare organization to have aggregate statistics without
revealing their sensitive information to other collaborators. The protocol ensures the pri-
vacy and correctness of computation under honest-but-curious and malicious models. We
implemented our protocol and conducted extensive experiments to evaluate the performance
of the system in terms of computation time and bandwidth consumption. The lightweight
cryptographic operations, inherent properties of decentralization, and privacy preservation
along with reasonable overhead make SIC a suitable choice for privacy-preserving collabo-
rations and alert sharing.
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Appendix

NIZK proof systems used in this paper

PW [xij : Xij = gxij ]: This NIZK proof proves that the prover knows the value of xij, given
g and Xij = gxij . This proof is generated by Pij for all i ∈ [1, t] and j ∈ [1, nt]. The prover
can construct this NIZK proof as follows:
The prover chooses a random t ∈R Zp, and computes a commitment com = gt. Let the
challenge be ch. The prover computes a response res = t− xijch. The verification equation
is as follows:

gres
?
=
com

Xch
ij

The prover needs to do one exponentiation for generating the proof, whereas the verifier
needs to do two exponentiations. Also, the communication cost of the proof is 3.

PW
[
xij, rij : Rij = h

rij
i , Xij = gxij , Bij = grijY

xij
ij gvij , vij ∈ {0, 1}

]
: This NIZK proof proves

the well-formedness of the encrypted feedbackBij submitted by Pij, given hi, Rij = h
rij
i , Xij =

gxij and for vij ∈ {0, 1}. That is, this NIZK proof shows that Bij is either grijY
xij
ij g or

grijY
xij
ij . The prover (Pij) can construct NIZK arguments for this statement as follows:

Let us assume that Bij = grijY
xij
ij g. The prover chooses random t1, t2 ∈R Zp and computes

com1 = ht1i , com2 = gt2 , com3 = gt1Y t2
ij . The prover also chooses random res′1, res

′
2, res

′
3, ch2 ∈R

Zp and computes three commitments:
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com′1 = h
res′1
i Rch2

ij , com
′
2 = gres

′
2Xch2

ij , com′3 = gres
′
1Y

res′2
ij Bch2

ij . Let, the grand challenge of
the NIZK proof be ch. The prover computes ch1 = ch − ch2. The prover calculates two
responses as follows: res1 = t1 − rij ∗ ch1, res2 = t2 − xij ∗ ch1. The verification equations
are as follows:

1. hres1i
?
= com1

R
ch1
ij

2. gres2
?
= com2

X
ch1
ij

3. gres1Y res2
ij

?
= com3

(Bij/g)ch1

4. h
res′1
i

?
=

com′1
R

ch2
ij

5. gres
′
2

?
=

com′2
X

ch2
ij

6. gres
′
1Y

res′2
ij

?
=

com′3
B

ch2
ij

If the 6 above equations are satisfied, the NIZK proof is correct. The prover needs to
perform 11 exponentiations for generating the proof, whereas the verifier needs to perform
15 exponentiations for verifying the same. The NIZK proof consists of 6 commitments, 2
challenges and 4 responses, hence, the communication cost of this NIZK proof is 12. Simi-
larly, the prover can generate a NIZK proof when Bij = grijY

xij
ij , i.e. when vij = 0.

PW [x̄i : X̄i = gx̄i ]: The construction of this NIZK proof is same as the proof PW [xij :
Xij = gxij ], described above.

PW
[
xi, x̄i : X̄i = gx̄i , hi = gxi , {Xij, Fij : j ∈ [1, ni]}

]
: This NIZK proof proves that the en-

crypted feedback submitted by the Tally Server TSi is well-formed in the sense that it
represents the correct cryptogram which reflects the correct feedback computed from the
SPs within the purview of TSi. The Tally Server TSi needs to show that the encrypted
feedback B̄i correctly reflects the feedbacks submitted to TSi by the SPs. The statement
the Tally Server needs to show is given below:

σ ≡ (B̄i = Ȳ x̄i
i gwivi) ∧ (X̄i = gx̄i) ∧ (B̃i = gr̃igṽi) ∧ (hi = gxi) ∧ (R̃i = hr̃ii ) Here,

R̃i =
∏ni

j=1Rij =
∏ni

j=1 h
rij
i = h

∑ni
j=1 rij

i = hr̃ii = (gxi)ri .

So, the above statement can be rewritten as σ ≡ (B̄i = Ȳ x̄i
i gwivi) ∧ (X̄i = gx̄i) ∧ (B̃i =

gr̃igṽi) ∧ (hi = gxi) ∧ (R̃i = hr̃ii ) or

σ ≡
(

(B̄i = Ȳ x̄i
i gwi) ∧ (X̄i = gx̄i) ∧ (B̃i = gr̃igd

n
2
e) ∧ (hi = gxi) ∧ (R̃i = hr̃ii )

)
∨(

(B̄i = Ȳ x̄i
i gwi) ∧ (X̄i = gx̄i) ∧ (B̃i = gr̃igd

n
2
e+1) ∧ (hi = gxi) ∧ (R̃i = hr̃ii )

)
∨

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(

(B̄i = Ȳ x̄i
i gwi) ∧ (X̄i = gx̄i) ∧ (B̃i = gr̃ign) ∧ (hi = gxi) ∧ (R̃i = hr̃ii )

)
∨
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(
(B̄i = Ȳ x̄i

i ) ∧ (X̄i = gx̄i) ∧ (B̃i = gr̃i) ∧ (hi = gxi) ∧ (R̃i = hr̃ii )
)
∨(

(B̄i = Ȳ x̄i
i ) ∧ (X̄i = gx̄i) ∧ (B̃i = gr̃ig) ∧ (hi = gxi) ∧ (R̃i = hr̃ii )

)
∨

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(

(B̄i = Ȳ x̄i
i ) ∧ (X̄i = gx̄i) ∧ (B̃i = gr̃igd

n
2
e−1) ∧ (hi = gxi) ∧ (R̃i = hr̃ii )

)
This is a 1-out-of-n OR statement. Exactly one of the constituent sub-statements is true.

The prover needs to provide a real proof for the correct sub-statement. This can be done as
follows:
Let us assume the first sub-statement is true, i.e. the following statement is true:(

(B̄i = Ȳ x̄i
i gwi) ∧ (X̄i = gx̄i) ∧ (B̃i = gr̃igd

n
2
e) ∧ (hi = gxi) ∧ (R̃i = hr̃ii )

)
The prover selects random r11, r12 ∈R Zp, and compute commitments com11 = gr11 , com′11 =
Y r11
i , com12 = gr12 , com′12 = hr12i

The prover also selects resj1, resj2, chj ∈R Zp, for j ∈ [2, n] and computes comj1 =

gresj1X̄
chj
i , com′j1 = Ȳ

resj1
i (B̄i/g

wiIj)chj , comj2 = gresj2h
chj
i , com′j2 = (B̃i/g

−→v j)resj2R̃
chj
i . Here

Ij = 1 for j ∈ [1, n − dn
2
e + 1] and Ij = 0 for j ≥ n − dn

2
e + 1. Also, −→v j = dn

2
e + j − 1

mod (n+ 1) for all j ∈ [1, n+ 1].
Let the grand challenge of the NIZK proof be ch. The prover computes ch1 = ch −∑n+1
j=2 chj. The prover generates two responses as follows: res11 = r11 − x̄i ∗ ch1, res12 =

r12 − xi ∗ ch1.
∀j ∈ [1, n+ 1], the verification equations are as below:

1. gresj1
?
=

comj1

X̄
chj
i

2. Ȳ
resj1
i

?
=

com′j1

(B̄i/g
wiIj )chj

3. gresj2
?
=

comj2

h
chj
i

4. (B̃i/g
−→v j)resj2

?
=

com′j2

R̃
chj
i

The prover needs to perform 8n+4 exponentiations for generating the entire NIZK proof.
The verifier needs to do 8n+ 8 exponentiations for verifying all the NIZK arguments. This
NIZK proof consists of 4n+ 4 commitments, n+ 1 challenges, and 2n+ 2 responses. Thus,
the communication overhead of the NIZK proof is 7n+ 7, which is O(n).
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