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Abstract— Multiplexing gain has been studied extensively in
the context of statistical characterizations of traffic streams with
quality-of-service criteria such as packet loss probability, mean
delay, and delay variance. In this paper, we demonstrate that
multiplexing gain can also arise in the context of deterministic
traffic constraint functions, service curve scheduling, and quality-
of-service requirements based on deterministic delay constraints.
We show how to evaluate this multiplexing gain via the use of
deterministic network calculus for both worst-case and time-
averaged delay constraints. We show that significant multiplexing
gain can be achieved in a deterministic setting using numerical
examples drawn from a number of well-known MPEG video
traces. Our results have application to provisioning services with
tight, real-time constraints on end-to-end delay performance.

I. I NTRODUCTION

Current proposals for supporting network-level determinis-
tic quality-of-service (QoS) guarantees can be distinguished
by scheduling policies, traffic regulation schemes, and the
degree of multiplexing of individual connections or flows.
Some policies, such as IntServ [1], support traffic on a flow by
flow basis, while other policies, including DiffServ [2], require
that traffic from multiple flows be multiplexed together. De-
terministic QoS performance can be analyzed using network
calculus theory (see [3][4]).

An important result of the network calculus theory under
min-plus algebra concerns theend-to-end deterministic gain
[3]: If an input streamAi is relayed throughn network
elements, then the maximum delays incurred at each network
element are not necessarily specific to a particular packet. This
fact is referred to as the “pay bursts only once” phenomenon
[4]. In this theory, deterministic end-to-end delay results are
obtained by convolving service curves associated with nodes
on the end-to-end path.

In the present paper, we develop a new concept ofde-
terministic multiplexing gain, whereby a greater number of
connections can be admitted under a given deterministic delay
constraint if they are multiplexed together in one aggregate
stream. Although statistical multiplexing gain with stochastic
traffic models has been well-studied, it is not obvious that
multiplexing gains can be achieved with respect to determin-
istic QoS constraints. Deterministic multiplexing gain may
be explained intuitively as follows. The maximum delays
encountered by two packets from two input streamsA1,

respectivelyA2, do not necessarily occur during the same
time slot. We show analytically that deterministic multiplexing
gain can be achieved and propose a heuristic to maximize
the achievable gain among a set of connections. We present
numerical examples of MPEG video traces which demon-
strate that substantial gains can be achieved. Unlike statistical
multiplexing gain, the deterministic multiplexing gain applies
directly to the end-to-end case via the end-to-end convolved
service curve result from the network calculus theory.

The paper continues as follows: Section II provides basic
background in network calculus. Section III demonstrates how
to obtain tight traffic constraint functions for multiplexed traf-
fic. Sections IV and V discuss multiplexing gain with respect
to worst case delay and time-averaged delay, respectively.
Section VI shows the results of our numerical experiments
using different MPEG-4 trace files, and Section VII offers
some conclusions and observations.

II. T RAFFIC ENVELOPES AND SERVICE CURVES

Consider a network elementE, for example a switch or
multiplexer, and an input arrival process specified by a non-
negative, non-decreasing functionA(·), whereA(t) denotes
the cumulative arrivals from time0 to time t. The process
A is usually called the arrival process. The output process is
denoted byB and the output capacity ofE is assumed to be
c > 0.

Definition 1: A function f : N → N with the property that

A(t)−A(s) ≤ f(t− s) (∀) 0 ≤ s ≤ t, (1)

is a traffic constraint function or anenvelopeof A [5]. The
relation betweenA andf will be denoted byA ≺ f .
The expression (1) may be also written asA ≤ A ∗ f, where
A ∗ f represents the convolution betweenA andf, and (A ∗
f)(t) = inf

0≤s≤t
(A(s) + f(t− s)) (∀) t ≥ 0.

The tightest envelope ofA is given by the so-calledem-
pirical envelope[6] or minimal envelope process [3] and is
defined asεA(t) = sup

s≥0
(A(s + t) − A(s)). In practice, all

traffic constraint models try to approximateεA through an
envelopef ≥ εA. We will measure the accuracy of such
an approximation through the following metric:Λ(f, εA) =



∫∞
0
|f(t)− εA(t)| dt. Note thatΛ(f, εA) has the properties

of a metric in an appropriate metric space.
In the following, we briefly review two well-known traffic

envelope functions that have been discussed in the literature.
The affine model(σ, ρ) is the simplest among the traffic
constraint functions [5]. It is defined asf(t) = σ + ρt, where
σ ≥ 0 represents the maximal allowable burst of the arrival
processA, whileρ > 0 represents the long term average rate of
A. The (−→σ ,−→ρ )n model [6] has an envelope function defined
by f(t) = min

i=1,n
(σi + ρit) ,where 0 ≤ σ1 < ... < σn and

0 < ρn < ... < ρ1.
Besides the concept of traffic envelope, the concept of

service curve[7] is necessary to derive performance results
in the deterministic network calculus. We will adopt here the
definition from [3]. Specifically,S denotes a service curve for
an input arrival processA if B(t) ≥ (A ∗ S)(t) (∀) t ≥ 0.
In terms of implementation, the SCED (Service Curve-based
Earliest Deadline first) [7] scheduling algorithm is designed to
guarantee service curves for the corresponding traffic flows.

Let us assume now that we have a set ofn connectionsAi,
each with the envelopefi and the service curveSi. The next
theorem gives a sufficient condition that must be held by a
number of traffic flows in order to be accepted by the CAC
(connection admission control) component.

Theorem 1 ([8][3]): If

n∑
i=1

(fi ∗ Si)(t) ≤ ct (∀) t ≥ 0, (2)

then the SCED policy guarantees connectionAi the service
curveSi for any i = 1, n.

Also, a stronger condition than (2), that is

n∑
i=1

Si(t) ≤ ct (∀) t ≥ 0, (3)

is given in [8]. If condition (3) holds, we say that the set of
connections satisfies the conditionMPX.

Suppose that the condition (2) holds and letT ⊆
{1, 2, ..., n}. One may notice that it is not generally true that
the SCED policy can guarantee the service curve

∑
i∈T

Si for the

multiplexed connection
∑
i∈T

Ai. Motivated by this observation,

we need the following definition for the rest of the paper:
Definition 2: Suppose that the condition (2) holds. For a

subsetT ⊆ {1, 2, ..., n}, we say that the connectionsAi, i ∈ T
may be multiplexed under conditionMPXT , if the following
condition holds:((

∑
i∈T

fi) ∗ (
∑
i∈T

Si))(t)+
∑
i/∈T

(fi ∗Si)(t) ≤ ct

(∀) t ≥ 0. Note that the other connectionsAi, i /∈ T are
treated individually.

In other words, if the conditions (2) andMPXT hold for
T ⊆ {1, 2, ..., n}, then the SCED policy guarantees the service
curvesSi for the connectionsAi (∀) i /∈ T , and the service
curve

∑
i∈T

Si(·) for the multiplexed connection
∑
i∈T

Ai.

III. A GGREGATE ENVELOPE CONSTRUCTION

This section demonstrates how to construct an envelope for
a multiplexed stream, and derives some of its properties, which
will be useful later in the paper. As the primary concern of
this section is represented by traffic envelopes, our analysis is
based on projections under min-plus algebra (for more details,
see [3]).

Consider a network element that consists of two arrival
channelsC1, C2 and a schedulerS. EachCi consists of an
input arrival processIi, a traffic regulatorRi, and a regulated
arrival process denoted byAi. The empirical envelopeεIi

of
Ii is given byεIi

(t) = sup
s≥0

(I(s + t) − I(s)) and is usually

determined experimentally. Lastly, the traffic regulatorRi is
specified through an approximation ofεIi

, that is the envelope
functionfi of Ai. Since the actual inputsIi may not conform
to εIi

, they will have to go throughRi in order to yield a
regulated outputAi.

An important property of the envelope functions is ex-
pressed as follows:

Proposition 1: If A1 ≺ f1 andA2 ≺ f2, thenA1 + A2 ≺
f1 + f2.

Proof: Since theinf(·) functional is superadditive, the
following holds: inf

0≤s≤t
(A1(t−s)+f1(s)+A2(t−s)+f2(s)) ≥

inf
0≤s≤t

(A1(t− s) + f1(s)) + inf
0≤s≤t

(A2(t− s) + f2(s)).

In view of the definition of a traffic envelope (1), we will
show how to construct a better traffic envelope forA1 + A2

rather thanf1 + f2. We now give some useful definitions
pertinent to our study.

A. Projections under the min-plus algebra

We denote byF the set of envelope functions{f | f ≥ 0}.
Two operations are introduced onF : f ⊕ g = min(f, g) and
(f ∗ g)(t) = min

0≤s≤t
(f(t − s) + g(s)). DefineR+

= {x ∈ R
| x ≥ 0} ∪ {∞}. On this set, two operations are introduced:
α⊕β = min(α, β) andα⊗β = α+β. The elements ofF are
also called vectors while the elements ofR+

are called scalars.
We relate these sets with the operation⊗ such thatα ⊗ f =
α + f (∀) α ∈ R+

, f ∈ F . The setF can be treated now
as a moduloid (a vector space without inverse elements) over
the semiring(R+

,⊕,⊗). For two vectorsf, g ∈ F , the scalar
projection off ontog is defined by〈f, g〉 = sup

t≥0
(f(t)−g(t))+,

where(x)+ = sup{x, 0}. The vector projection off onto g
is denoted by〈f, g〉 ⊗ g.

Consider a generic input arrival processI having the
empirical envelopeεI . As it is usually hard to implement
directly a regulator forεI , we will give an upper(−→σ ,−→ρ )n

approximation of it. Consider a subset{g1, ..., gn} ⊂ F with
gi(t) = ρit and ρ1 > ρ2 > ... > ρn ≥ 0. The (−→σ ,−→ρ )n

envelope ofI is given by f =
n⊕

i=1

(〈εI , gi〉 ⊗ gi) .We call

{g1, ..., gn} a base characterizationset ofI.
Recalling the metricΛ, we introduce anf−pseudo-normon

the moduloidF , wheref ∈ F : ‖εI‖f = Λ(〈εI , f〉 ⊗ f, εI) =∫∞
0
|〈εI , f〉 ⊗ f − εI | dt, εI ∈ F



B. (σ, ρ)-envelopes

Let us suppose that the base characterization sets forI1,
I2 are {g1 = ρ1t} and {g2 = ρ2t} , respectively. Letfi =
〈εIi

, gi〉 ⊗ gi (∀) i = 1, 2, and f = f1 + f2. Let C be the
aggregated arrival channelC1 + C2 and letI = I1 + I2. One
may notice that the simplest way to constrainI is through
f , while an alternative way to do it would be through̃f =
〈εI1 + εI2 , g1 + g2〉 ⊗ (g1 + g2) (see Fig. 1).

Silence of 
the Lambs

εI1
1f1f

εI2

2f 2f

εA=

f

Jurassic 
Park I

f
~
f
~

εI1 +εI2

Fig. 1. Two trace files

The following two results reflect the properties of aggregate
envelopef̃ .

Proposition 2: For f and f̃ defined above, we have that
f̃ ≤ f.

Proof: Since thesup{·}+ functional is subadditive, we
have that〈εI1 + εI2 , g1 + g2〉 ≤ 〈εI1 , g1〉 + 〈εI2 , g2〉. Then,
f̃ = 〈εI1 + εI2 , g1 + g2〉 ⊗ (g1 + g2) ≤ 〈εI1 , g1〉 ⊗ g1 +
〈εI2 , g2〉 ⊗ g2 = f1 + f2 = f .

The intuition behind the fact that̃f ≤ f is that it is possible
that the burst times ofεI1 differ from the burst times ofεI2 .
Hence, by aggregatingC1 and C2, the bursts ofεI1 and εI2

will be interleaved, rather than summed up. As we will see in
the next section, this property leads to possibly tighter bounds
for the worst case delay of the aggregated flowC. That is,
the worst case delay forC may be less than the minimum
between the worst case delays ofC1 andC2.

Theorem 2:‖εI1 + εI2‖g1+g2
≤ ‖εI1‖g1

+ ‖εI2‖g2
.

Proof: We have that:∫ ∞

0

(〈εI1 + εI2 , g1 + g2〉 ⊗ (g1 + g2)− (εI1 + εI2)) dt ≤∫ ∞

0

(〈εI1 , g1〉 ⊗ g1 − εI1) dt +
∫ ∞

0

(〈εI2 , g2〉 ⊗ g2 − εI2) dt

⇐= sup
t≥0

{εI1(t)− g1(t) + εI2(t)− g2(t)}+ ≤

sup
t≥0

{εI1(t)− g1(t)}+ + sup
t≥0

{εI2(t)− g2(t)}+ ,

which is true because thesup{·}+ functional is subadditive.

C. Generalization

A key feature of(−→σ ,−→ρ )n envelopes is the ability to capture
the property that the arrival rate of a traffic stream decreases

as function of time. Since the(σ, ρ) model cannot capture
this property, we will generalize the previous results to the
(−→σ ,−→ρ )n model.

Consider two arrival channelsC1 andC2 with the base char-
acterization sets{g1, ..., gn} and {h1, ..., hn}, respectively,
with n > 1. The envelopesg and h corresponding toC1

andC2, respectively, are constructed as before. The envelope
for the aggregated channelC = C1 + C2 is given by f̃ =
n⊕

i=1

(〈εI1 + εI2 , gi + hi〉 ⊗ (gi + hi)) .

We now extend the definition of the norm‖·‖· in the follow-
ing way. For anyg1, ..., gn ∈ F , we define‖εI‖(g1,...,gn) =∫∞
0

[
n⊕

i=1

(〈εI , gi〉 ⊗ gi)− εI

]
dt. The generalization of Propo-

sition 2 is the following:
Proposition 3:

f̃ ,
n⊕

i=1

(〈εI1 + εI2 , gi + hi〉 ⊗ (gi + hi)) ≤
n⊕

i=1

(〈εI1 , gi〉 ⊗ gi + 〈εI2 , hi〉 ⊗ hi) , f.

The proof is based on the following lemma:
Lemma 1:Let g1, ..., gn ∈ F and h1, ..., hn ∈ F two

sequences of non-decreasing real functions such thatgi ≤ hi

(∀) i. Then,
n⊕

i=1

gi ≤
n⊕

i=1

hi.

Proof: Let t ≥ 0, ig = sup{j | gj(t) ≤ gl(t) (∀) l =
1, n} and ih = sup{j | hj(t) ≤ hl(t) (∀) l = 1, n}. We

have the following:
n⊕

i=1

gi(t) = gig
(t) ≤ gih

(t) ≤ hih
(t) =

n⊕
i=1

hi(t).

Theorem 2 can be generalized as follows:
Theorem 3:If ‖εI1 + εI2‖gn+hn

< ‖εI1‖gn
+ ‖εI2‖hn

,
then

‖εI1 + εI2‖(g1+h1,...,gn+hn) < ‖εI1‖(g1,...,gn)+‖εI2‖(h1,...,hn) .

The proof is omitted here. Note that the theorem’s condition
‖εI1 + εI2‖gn+hn

< ‖εI1‖gn
+ ‖εI2‖hn

gives a sufficient
condition in order to consider the envelope multiplexing of
C1 andC2 for the general case.

IV. M ULTIPLEXING GAIN UNDER WORST-CASE DELAY

Consider two regulated arrival processesA1, A2 with Ai ≺
fi and worst case delaydi for any i = 1, 2. Without loss of
generality, suppose thatd1 ≤ d2 and assume that the condition
(2) holds. The minimum service curve corresponding toAi

such that the server guarantees the delaysdi is Si(t) = fi((t−
di)+) (∀) i = 1, 2. [3]

Let us suppose that the conditionMPX{1,2} holds,
that is S1 + S2 is a service curve forA := A1 +
A2. Also, let f̃ , constructed as in the previous section,
be the envelope ofA. The worst case delay correspond-
ing to the multiplexed connectionA is simply: d =
inf

{
d ≥ 0 | f̃(t) ≤ S1(t + d) + S2(t + d) (∀) t ≥ 0

}
.



Proposition 4: In the current context, we have thatd ≤ d2.
Proof: From Propositions 2 and 3 we have thatf̃(t) ≤

f1(t) + f2(t) ≤ S1(t + d2) + S2(t + d2) (∀) t ≥ 0. The result
then follows immediately.

Informally, the above result states the following: Suppose
that we have a server that guarantees the worst case delay
d1 for an inputA1. Although it may be impossible to accept
a new inputA2 requiring a worst case delayd2, it may be
possible to acceptA2, but at the expense of a possibly higher
worst case delay forA1, if the inputsA1 andA2 are treated
as the multiplexed inputA := A1 + A2. Also, note the fact
that the delayd for the multiplexed connectionA may be less
thand1!

Definition 3 (Deterministic Multiplexing Gain):Assume
that we have a server andn input connectionsAi, each
requiring a worst case delay. LetN be the maximum number
of connections accepted by a given CAC (see for example
Equation (2)) when no multiplexing is done. LetM be the
maximum number of connections accepted by the CAC when
multiplexing is done according to a partition{Tk} on a subset
T of the connections as follows. The connectionsAj ∈ Tk

are multiplexed together and treated by the CAC as a single
aggregate connection with a worst case delay requirement
less than or equal to the minimum of the worst case delays
for the connectionsAj ∈ Tk. Multiplexing according to the
partition {Tk} is called “good multiplexing” since the worst
case delay requirements of all connections inT are satisfied.
Then, thedeterministic multiplexing gainis defined as:

G =
M

N
. (4)

The previous definition is similar to the definition for statistical
multiplexing gain given in [9].

In general, the problem of finding a partition of the set of
connections to maximize the deterministic multiplexing gainG
belongs to the class of NP-complete problems. We now give
a heuristic, calledHMG, for this problem:

Algorithm 1 (HMG): Loop among the connectionsAi, i =
1, · · · , n. Assume that before each stepi, there is a partition
{Tk} of the set{A1, ..., Ai−1}. At step i, the connectionAi

is multiplexed sequentially with each setTk in the partition,
and it is checked if this multiplexing is “good”. If yes, add
Ai to the current setTk and proceed to the algorithm’s next
step. If Ai cannot be multiplexed in a “good” way with any
of the setsTk, create a new set consisting just ofAi, add this
set to the partition{Tk}, and then proceed to the next step.

One may deduce that the computational complexity for this
algorithm isO(n2). The main intuition behind this algorithm
can be expressed as follows: IfAi cannot be multiplexed in
a “good” way with eitherTk1 or Tk2 , it is less likely that a
“good multiplexing” can be realized with the setTk1 ∪ Tk2 .

The following example shows a case when the worst case
delay forA is less than the minimum between the worst case
delay for the independent connectionsA1 and A2. In other
words, a multiplexed gain ofG > 1 can be obtained.

Example 1:Let c = 4, εA1 = {0, 12, 12, 12} (εA1(0) =
0, ..., εA1(3) = 12), and εA2 = {0, 8, 12, 16}. Also, let

S1(t) = 2t, S2(t) = 2t and the base characterization sets for
A1 and A2 be {g1(t) = 2t}, respectively{g2(t) = 2t}. We
simply obtain the expressions for the corresponding envelopes
of A1 andA2 asf1(t) = 2t+10, respectivelyf2(t) = 2t+10.
We obtain that the worst case delaysd1 and d2 that can
be guaranteed for the connectionsA1, respectivelyA2, are
d1 = 5 and d2 = 5, respectively. Observe now that the
conditionMPX holds. Hence, the multiplexed inputA1 +A2

is guaranteed the service curveS(t) = 4t (∀) t ≥ 0. On the
other hand, the envelope for the multiplexed inputA1 + A2

is f̃(t) = 4t + 16. Now, sincef̃(t) ≤ S(t + 4) (∀) t ≥ 0, a
worst case delay of4 for packets from bothA1 and A2 can
be guaranteed!

V. M ULTIPLEXING GAIN UNDER TIME-AVERAGED DELAY

For various network traffic, such as data transfer, one may
request the required QoS parameter to be the time-averaged
delay, instead of the worst case delay. Motivated by this, we
extend the results from the previous section to time-averaged
deterministic multiplexing gain.

Let us denote the average arrival rate of the processA
by λ = lim

t→∞
1
t A(t),and the average delay bydf

avg =

limt→∞
1
t

∫ t

0
df (s)ds. One can show that

df
avg ≤ lim

t→∞

1
t

∫ t

0

(f(s)− (A ∗ S)(s))ds (5)

Let us defineH(f,A, S) = lim
t→∞

1
t

∫ t

0
(f(s)−(A∗S)(s))ds.

A simple analysis of(5) shows that if
∫∞
0

(f(t) − (A ∗
S)(t))dt < ∞, then λdf

avg = 0; this is the intuitive case
when the arrival envelope and the output curve tend to each
other asymptotically. If this is not the case, then we obtain
that λdf

avg ≤ lim
t→∞

(f(t)− (A ∗ S)(t)) .

Let us consider now two input connectionsA1 andA2 with
average arrival rates ofλ1 andλ2, respectively. Also, assume
that Ai ≺ fi and that the service curveSi are given fori =
1, 2. As in the previous section, the conditionMPX{1,2} must
hold, whileA represents the multiplexed connectionA1 +A2.
Let f̃ be the envelope ofA constructed as in Section III and
let S := S1 + S2 be the service curve forA. Assume thatfi

belongs to the(σ, ρ)-envelope model.
Proposition 5: In the current context, we have that

H(f̃ ,A,S)
λ1+λ2

≤ max
(

H(f1,A1,S1)
λ1

,
H(f2,A2,S2)

λ2

)
.

The proof is omitted. Note that a similar result may be
obtained if fi belong to the(−→σ ,−→ρ )n-envelope model. The
consequence of the last result is exactly that of Proposition 4.
That is, by aggregating two connections, one likely obtains
a smaller time-averaged delay than the smallest between the
time-averaged delays of the two flows, if those were obtained
without aggregation.

VI. EXPERIMENTAL RESULTS

In this section, we consider several trace files for MPEG-4
encoded videos with a duration of 1 hour and a rate of 25
frames/sec (see [10]). The time unit in our analysis isτ =
40ms, and the data unit is 1 byte.



We conducted the experiments as follows. First, we tookn
tracesAi and computed the empirical envelopesεAi

. Second,
for a givenn, we built a (−→σi ,

−→ρi )n envelope forAi, denoted
by fi, as discussed in Section III. Third, we assigned various
service curvesSi(t) = cit for the connectionsAi and set
the server capacity to bec =

∑
ci. Then, we computed the

delays di that could be guaranteed by the server for each
Ai. Finally, we aggregated all the connectionsAi into one
connectionA and computed the(−→σ ,−→ρ )n envelopef̃ of A.
Note that the conditionMPX holds. We then computed the
guaranteed delayd for A and compared it with the guaranteed
delaysdi.

Recall Fig. 1 which shows the corresponding empirical
envelopes and the(σ, ρ) envelopes for two video traces. Fig. 2
presents an experiment involving the results obtained for three
trace files.
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Fig. 2. Three trace files

Observe that the last row represents the actual multiplexed
stream. The most notable fact is that the bound for the
worst case delay under the multiplexed analysis dramatically
improves upon the bound for the worst case delay for the
independent connections. The same is true for the bound for
the time-averaged delay. An interesting observation is that the
time-averaged delay for the first trace file is larger than the
worst case delay for the same trace, which indicates that the
bound (5) may be very loose. We observed that this fact stems
from the backlog bound, used in the derivation of (5), which
may be loose. Another observation to be specified here is
that the heuristicHMG presented in Section IV generated the
partition {{SLM, JPM, SOH}}.

The same conclusion can be drawn from Fig. 3, with the
observation that no gain is obtained with respect to the time-
averaged delay. Note that the heuristicHMG generated, as
expected, the partition{{SLM,MBM,DHH, V V M}}.

We also point out that for some sets of streams we analyzed,
less dramatic multiplexed gains than shown in these examples
have been observed. This was the case for the streams that
lacked a sufficient degree of burstiness such as “Silence of the
Lambs” (see Fig. 1). Moreover, no multiplexing gain occurs
when identical streams are multiplexed together. Since the
bursts for two identical streams occur at the same moments
of time, the envelopẽf for the multiplexed stream does not
differ from the sumf, of the envelopes corresponding to the
considered streams.
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Fig. 3. Four trace files

VII. C ONCLUSIONS

We have shown that multiplexing gain can be achieved
in a deterministic network framework which involves traffic
envelope functions, service curves, and the SCED scheduling
algorithm. Our analysis is based on min-plus algebra. In partic-
ular, multiplexing gain arises when projections are done after
multiplexing. In addition to worst-case delay as a deterministic
QoS parameter, we showed analytically that multiplexing gain
can also be achieved with respect to time-averaged delay. We
point out that the results for deterministic multiplexing gain
obtained in this paper apply directly to the end-to-end case via
the end-to-end service curve convolution results from network
calculus theory.

Using MPEG video traces, we presented numerical results
demonstrating that multiplexing gains could be achieved under
the worst-case delay criteria. We found that the (averaged)
delay bounds obtained for the multiplexed streams were signif-
icantly smaller than those obtained for the individual streams
when no multiplexing was done.
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