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Abstract—Randomized load balancing is a cost efficient policy
for job scheduling in parallel server queueing systems whereby,
with every incoming job, a central dispatcher randomly polls
some servers and selects the one with the smallest queue. By
exactly deriving the jobs’ delay distribution in such systems, in
explicit and closed form, Mitzenmacher [13] proved the so-called
‘power-of-two’ result, which states that the random polling of
only two servers yields an exponential improvement in delay
over randomly selecting a single server. Such a fundamental
result, however, was obtained in an asymptotic regime in the total
number of servers, and does do not necessarily provide accurate
estimates for practical finite regimes with small or moderate
number of servers. In this paper we obtain stochastic lower and
upper bounds on the jobs’ average delay in non-asymptotic/finite
regimes, by extending ideas for analyzing the particular case
of the Join-the-Shortest-Queue (JSQ) policy. Numerical illustra-
tions indicate not only that the (lower) bounds are remarkably
accurate, but also that the asymptotic approximation can be
misleading in scenarios with a small number of servers, and
especially at very high utilizations.

I. INTRODUCTION

Parallel server queueing systems model a wide range of
scenarios related to daily situations, e.g., toll booths, bank
tellers, supermarket cashiers, etc., or to computer and com-
munication systems, e.g., multi-processor systems, data cen-
ters, etc. Scheduling in these complex systems concerns the
assignment of a single server to execute each arriving job.
Existing scheduling policies reveal an interesting tradeoff
between 1) the optimality of some performance metric, e.g.,
jobs’ (average) delay, and 2) cost efficiency, e.g., in terms
of minimizing the amount of overhead. At one extreme, the
policy of (non-)randomly selecting a server has no feedback
cost (as communication from the servers to the dispatcher)
but conceivably lends itself to very large delays, and even
to instabilities when the selection process is not adequately
balanced. At the other extreme, the Join the Shortest Queue
(JSQ) policy, whereby the dispatcher sends each job to the
server with the shortest queue, minimizes delay but has a very
high feedback cost because all servers must report their queue
lengths for every job arrival, and thus raises a valid concern
regarding practical implementations.

In order to reduce the feedback cost, and yet to keep the
delay ‘small’, JSQ has been generalized to SQ(d), whereby the
dispatcher runs JSQ only for a subset of d randomly sampled
servers from the uniform distribution (see Mitzenmacher [13]
and Luczak and McDiarid [11]). Note that SQ(d) reduces
to a simple uniform random selection when d = 1, and
to JSQ when d = N , where N is the total number of
servers. A fundamental qualitative result is that SQ(2) yields

an exponential improvement over SQ(1) in terms of delay, yet
with a conceivably small overhead cost. This result is known as
the ‘power-of-two’ result [13] and was independently obtained
by Vvedenskaya et al. [16].

Despite its apparent simplicity, SQ(d) is very difficult to
analyze in terms of the delay metric, even for a classical
input with Poisson arrivals and exponential job sizes. In fact,
SQ(d) can only be exactly analyzed for d = 1, in which
case the problem reduces to the M/M/1 queue. What makes
the problem particularly difficult, when d > 1, is that the
generator matrix of an underlying N -dimensional Markov
process (representing, for instance, the number of jobs at
each of the servers’ queues) has an irregular structure. For
this reason, solutions have so far been developed either in
asymptotic regimes or in terms of bounds in particular cases.

An exact solution on the delay distribution was obtained
in an asymptotic regime in the total number of servers, i.e.,
for N → ∞ for Poisson arrivals and exponential service
times [16], [13]; this solution was instrumental to showing
the ‘power-of-two’ result. The extension to general service
times was addressed in Bramson et al. [3], [4]. The corre-
sponding case of the randomized longest-queue-first policy
was addressed asymptotically in Alanyali and Dashouk [2] and
Dieker and Suk [5]. The case of heterogenous servers, Poisson
arrivals and general service time distributions was addressed
under an Erlang loss server model by Mukhopadhyay et
al. [14] and also under a light load regime with FCFS servers
by Izagirre and Makowski [7].

As far as non-asymptotic solutions are concerned, upper and
lower bounds on delay were obtained for the particular case
when d = N , i.e., JSQ. The main idea is to transform the
original Markov process with the inherent irregular structure
into Markov chains with some regular structure (see Adan
et al. [1], Lui et al. [12], or Zhao and Grassmann [17]). To
get a lower bound, for instance, the transformation consists
of redirecting some transitions between the states of the
original Markov process in such a way that the new system
is less loaded than the original one. Moreover, the newly
formed generator matrix has a periodic structure such that
its analysis becomes amenable to matrix-geometric techniques
(Neuts [15]).

In this paper we extend such methods for computing upper
and lower delay bounds to the general SQ(d) case. The
extension is not straightforward, but on the contrary, because
of a much more compounded transformation process needed
to produce Markov processes with a regular structure. We
thus provide the first non-asymptotic results for the SQ(d)



policy which can be applied in finite regimes with small to
moderate number of servers. One drawback of the obtained
bounds, however, is that they are obtained in implicit form, as
they are based on matrix-geometric techniques, and are thus
unable to provide qualitative insight alike the ‘power-of-two’
result. In terms of numerical accuracy, the lower bounds are
remarkably tight; in turn, the upper bounds also become tight
but only at an exponential cost in numerical complexity (by
properly adjusting a model parameter).

The rest of the paper is organized as follows. We first de-
scribe the SQ(d) model together with the associated lower and
upper bound models. In Section III we prove the corresponding
stochastic ordering on the lower and upper models, relative to
the base model. In Section IV we present a numerical analysis
of the lower and upper bound models. Concrete numerical
results are illustrated in Section V and brief conclusions are
presented in Section VI.

II. THE MODEL

We consider the general SQ(d) scheduling policy with N
parallel servers. Jobs arrive at a central dispatcher according
to a Poisson process with rate λN , and their service times are
exponentially distributed with unit mean. With every arriving
job, the dispatcher randomly polls d servers according to a
uniform distribution without replacement, out of the N servers.
The d selected servers report the number of jobs in their
systems, and the newly arriving job joins the server with the
smallest number of existing jobs; ties are resolved arbitrarily
(see Figure 1). At every server, jobs are served according to
the FIFO policy. We enforce the stability condition λ < 1.

Fig. 1. The SQ(d) model with N = 6 servers and d = 2 choices; the arriving
job joins server 3 (counted from top to bottom); the departing job from server
5 is arbitrary.

The Poisson/exponential arrivals’ model enables the con-
struction of a continuous-time Markov process to model the
evolution of the SQ(d) policy. The set of states is

M = {m :m = (m1,m2, . . . ,mN )} , (1)

where m1 denotes the largest number of jobs at the N servers,
m2 denotes the second largest number of jobs, and so on, such
that mN denotes the smallest number of jobs.

A. Transition Rates

Consider a generic state m ∈M. We distinguish two cases,
depending on the uniqueness of m’s components. In the first

case, all the servers have distinct numbers of jobs, such that
the elements of m can be written as

m1 > m2 > · · · > mN .

The transition rates are in this case

λ(m,m+ ei) =

(
i−1
d−1
)(

N
d

) λN, ∀d ≤ i ≤ N, and

µ(m,m− ei) = µ ∀1 ≤ i ≤ N ,

where λ(m,m+ ei) and µ(m,m− ei) are the transition
rates from state m to the states m+ ei and m− ei, respec-
tively. Here, ei is defined as the unit vector containing only
zeros, except for the ith element which is set to one.

It is instructive to explain the transition rate λ(m,m+ ei)
corresponding to an arriving job. According to the SQ(d)
policy, there are

(
N
d

)
distinct ways to poll d servers out of

a total of N servers. Moreover, in order for the ith server to
be eventually selected, it must be polled by the dispatcher, and
in addition d−1 other servers with greater number of jobs than
server i must be polled as well; since there are at most i− 1
such servers, we get the binomial factor

(
i−1
d−1
)

from above.
Note that, as expected,

∑N
i=d

(
i−1
d−1
)
=
(
N
d

)
. In turn, the other

transition rate µ(m,m−ei) corresponding to a departing job
follows immediately by the assumption of exponential service
times.

The other slightly more complicated case is when at least
two of the servers have an equal number of jobs. There exists
thus 1 ≤ i ≤ N and j > 1 such that the elements of m can
be written as

m1 ≥ . . . ≥ mi−1 > mi = . . . = mi+j > mi+j+1 ≥ . . . ≥ mN .

Let us now make two important conventions. If a server k
with i ≤ k ≤ i+ j is being polled, and its number of jobs is
smaller than at the other d− 1 servers being polled, then we
reorder the elements of m such that it appears as if server i
had been selected. The other convention is that if a job departs
from the server k, then we reorder the elements of m such
that it appears as if the job had departed from server i + j.
We point out that these two conventions do not change the
system, but they are simply made for imposing a convenient
ordering of the elements of M.

According to the first convention, we have the following
transitions for arrivals

λ(m,m+ ei) =

∑i+j
k=i

(
k−1
d−1
)(

N
d

) λN =

(
i+j
d

)
−
(
i−1
d

)(
N
d

) λN

λ(m,m+ ek) = 0 ∀i+ 1 ≤ k ≤ i+ j .

There are two interpretations for the numerator in the first
transition. One is that any of the servers i ≤ k ≤ i + j must
be polled, and in addition d−1 out of the servers 1 ≤ l ≤ k−1
must be polled as well. The other interpretation is that all d
servers must be polled out of the first i + j servers, and at
least one must be polled out of the servers i ≤ k ≤ i+ j. We
remark that, unlike in the case with distinct number of jobs



across all the servers, the arrival rates do depend now on the
number of servers with equal number of jobs.

Concerning the departure rates, we have according to the
second convention from above

µ(m,m− ei+j) = (j + 1)µ

µ(m,m− ek) = 0 ∀i ≤ k ≤ i+ j − 1 .

The previously defined arrival and departure transition rates
form the generator matrix Q of the underlying Markov process
describing the evolution of the SQ(d) policy. In order to
analyze this policy, e.g., in terms of the jobs’ steady-state
average delay, one should compute the equilibrium probabil-
ities π = (π1, π2, . . .) associated to the states of the Markov
process, by solving for

πQ = 0 and πe = 1 , (2)

where 0 denotes the all 0’s vector and e denotes the all 1’s
vector.

Although the existence of a steady-state distribution π
is guaranteed by the fact that all states of the underlying
irreducible Markov process are positive recurrent, its explicit
computation is hampered by the irregular structure of the
generator matrix Q. By ‘irregular’ we mean that there is no
apparent periodic or recursive generic representation for the
infinite sized matrix Q which would allow for solving the
system of equations from Eq. (2). To illustrate the irregularity
of Q, we next show a finite chunk of the transition flow
diagram of the SQ(d) model with N = 3 servers and d = 2
choices (see Figure 2).
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Fig. 2. A chunk of the transition flow diagram of the SQ(2) policy, with
N = 3 servers

B. SQ(d) Lower and Upper Bound Models

In order to circumvent the irregularity structure of Q, for
our purpose of computing the jobs’ average delay, we extend
the ideas from the JSQ analysis (see Adan et al. [1]), which is

a particular case of SQ(d). Concretely, we are going to make
two transformations of the original Markov process by suitably
redirecting its transitions such that the new generator matrices
have some regular structure, and whose analysis can be tackled
with matrix analytic methods. The transformations are such
that the average delays in the first and second transformed
models are lower and upper bounds, respectively, for the
average delay in the original model.

Both transformations have in common a threshold parameter
T and the following condition

m1 −mN ≤ T , (3)

which must hold for the elements of m defined in Eq. (1)
for both transformed Markov processes (one for getting lower
bounds and the other for getting upper bounds). For con-
venience, we refer to the two transformed models as the
lower and upper bound models, respectively. As expected, the
parameter T adjusts the accuracy of the models; in particular,
higher values yield tighter bounds, at the expense however of
an increasing numerical complexity.

Next we show the constructions of these models by suitably
redirecting some of the transitions of the original Markov
process in order to enforce the condition from Eq. (3).

1) Lower Bound: The transitions are redirected according
to the following two rules, one for arrivals, and the other for
departures.

1) When an arrival causes the violation of Eq. (3), then the
arrival is sent to (one of) the shortest queue(s) instead
of the longest queue.

2) When a departure causes the violation of Eq. (3), then
the departure occurs from (one of) the longest queue(s)
instead of the shortest queue.

Exceedance 
of threshold 

T=3

Fig. 3. Arrival redirection for the lower bound model; SQ(2), N = 6 servers,
and threshold T = 3

Figure 3 illustrates a redirected arrival from either server 1
or 6 (counted in the figure from top to bottom), which would
cause the condition from Eq. (3) to fail, to server 2 (which is
one of the two with the smallest number of jobs).

Exceedance 
of threshold 

T=3

Fig. 4. Departure redirection for the lower bound model; SQ(2), N = 6
servers, and threshold T = 3



Figure 4 illustrates a redirected departure from server 5,
which would cause the condition from Eq. (3) to fail, to server
1 (which is one of the two with the biggest number of jobs).

2) Upper bound: The transitions are redirected according
to the following two rules:

1) When an arrival causes the violation of Eq. (3), then the
arrival is accompanied by the addition of one extra job
at each of the shortest queues.

2) When a departure causes the violation of Eq. (3), then
the departure may not occur.

Exceedance 
of threshold 

T=3

Fig. 5. Arrival(s) addition for the upper bound model; SQ(2), N = 6 servers,
and threshold T = 3

In Figure 5, the selection of server 1 and 6 would cause
Eq. (3) to fail; therefore, the arbitrary selection of server 1 is
accompanied by the (artificial) addition of two more jobs at
servers 2 and 5, which have the smallest number of jobs.

Exceedance 
of threshold 

T=3

Fig. 6. Departure cancellation for the upper bound model; SQ(2), N = 6
servers, and threshold T = 3

Figure 6 illustrates that a departure from server 5, which
would cause Eq. (3) to fail, is cancelled.

3) Achieving regularity: The key advantage of the previous
model transformations is that they eliminate the irregular
structure of the original generator matrix Q, and they lend
themselves to new generator matrices with some regular
structures.

To provide some intuition on this fact, let us refer to Figure 7
displaying (a chunk of) the transition flow diagram for the
SQ(d) lower bound model with N = 3 servers, d = 2
choices, and threshold T = 2. The states with the same
number of jobs are positioned on the same imaginary vertical
line. An example of a modified transition is 3λ from (2, 2, 0)
to (2, 2, 1). Note that, in the original model, there is a 2λ
(rate) transition to (2, 2, 1) and a λ transition to (3, 2, 0);
because the state (3, 2, 0) violates the threshold condition,
the λ transition is redirected to (2, 2, 1), and thus the 3λ
transition. Another example of a modified transition is 3µ
from (3, 1, 1) to (2, 1, 1), which is formed from a single µ
from (3, 1, 1) to (2, 1, 1) (in the original model) and 2µ by
redirecting departures from the two servers with only one job
to the server with 3 jobs.

What is important to remark is that, after some initial stage,
the structure of the transition flow diagram repeats itself.

Indeed, by observing the set of states with 5, 6, and 7 number
of jobs in the system, we remark the same pattern of transition
rates as in the set of states with 8, 9, and 10 number of jobs in
the system; in fact, this patterns repeats indefinitely. A similar
regularity pattern can be observed for the transformed upper
bound model (see Figure 8).

The regularity of the constructed generator matrices, in
both the lower and upper bound models, will enable the
computation of lower and upper bounds on the jobs’ average
delay by relying on matrix analytical methods (see Section
IV). Before doing that, however, we prove that the delays in
the transformed models are indeed lower and upper bounds
for the original one.

III. STOCHASTIC ORDERING

In this section we prove that the previous modified models
do lend themselves to lower and upper bound models for
the original SQ(d) model. In particular, we will show the
underlying stochastic ordering with respect to first moments on
delays (stronger stochastic ordering results can also be shown
to hold). Due to similarity, we only prove the upper bound.

The proof extends the one from Adan et al. [1] from JSQ
to SQ(d), and is based on the idea of using cost functions,
which are set such that the shorter/longer a job has to wait
for its service completion, the lower/higher the costs are.
Moreover, in our constructed lower and upper bound models,
transitions are redirected such that the expected costs are
always decreased or increased, respectively.

We now define the cost functions for the original, lower
bound, and upper SQ(d) models. For the original SQ(d) model,
we define vn(m) as the expected n-period costs, at the
embedded transition points in the underlying Markov process,
when starting in a state m ∈ M (see Eq. (1)). Similarly,
we define un(m) and wn(m) as the expected n-period costs
starting in state m for the SQ(d) lower and upper bound
model, respectively. We assume for all three models and for
all states m that u0(m) = v0(m) = w0(m) = 0.

The cost in a given state m is

c(m) =
∑
i

mi ,

i.e., the total number of jobs in the system, which suffices
for our purpose of proving the stochastic ordering in terms of
average delays (as an application of Little’s Law).

The key to the proof is to show that for all (relevant) states
m and for all periods n

un(m) ≤ vn(m) ≤ wn(m) . (4)

Let us next focus on the upper bound (as mentioned, the
proof for the lower bound is similar). We will proceed by
induction on n. The case n = 0 holds by definition. Assuming
that Eq. (4) holds for some n ≥ 0 we will prove that it also
holds for n+ 1.

First we need a simplifying ordering result on prece-
dence pairs of states from M, ordered in a suitable manner.
Using the notation m = (m1,m2, . . . ,mN ) and m′ =



Fig. 7. Lower bound model; achieving regularity in the transition flow diagram (SQ(2), N = 3, and T = 2)

Fig. 8. Upper bound model; achieving regularity in the transition flow diagram (SQ(2), N = 3, and T = 2)

(m′1,m
′
2, . . . ,m

′
N ) for some states from M, we define the

set of precedence pairs

P =

{
(m,m′) :

j∑
i=1

mi ≤
j∑
i=1

m′i ∀j = 1, . . . , N

}
. (5)

Intuitively, the previous inequalities can be interpreted as being
‘more preferable’ to have less jobs in the longest j queues in
the system. On one hand, when there are fewer jobs in the
system, the costs are expected to be lower (by the definition
of the cost function). On the other hand, in a more balanced
system, the efficiency of the servers is improved and hence
the costs are expected to decrease.

Let us next define Pm as the subset of precedence pairs
(m,m′) from P for which m′ is equal to either m+eN ,m+
e1 − e2,m+ e2 − e3, . . ., or m+ eN−1 − eN .

For some precedence pair (m,m′) let us observe that by
defining

di = m′i −mi ∀1 ≤ i ≤ N ,

and the associated partial sums

sj =

j∑
i=1

di ∀1 ≤ j ≤ N ,

then one can write

m′ =m+ sNeN + sN−1(eN−1 − eN )

+ · · ·+ s1(e1 − e2) . (6)

In other words, any precedence pair (m,m′) from P can be
recursively obtained using precedence pairs from Pml , for
some states ml, l = 1, . . . , L, with m1 =m and mL =m′.

Next we state without proof that for any precedence pair
(m,m′) in Pm it holds that

vn(m) ≤ vn(m′), ∀n ≥ 0 . (7)

The proof is very tedious and similar to the one from [1]
(constructed for the JSQ model), for which reason we omit
it here. Note that the construction from Eq. (6) implies that
Eq. (7) extends to the whole set of precedence pairs P .

Provided the modified chain has been constructed by redi-
recting transitions to less attractive states (i.e., a transition to
m′ is redirected to m̃′ with vn(m′) ≤ vn(m̃′)), we have

vn+1(m) = c(m) +
∑
m′

p(m,m′)vn(m
′)

≤ c(m) +
∑
m̃′

p(m, m̃′)vn(m̃
′)

≤ c(m) +
∑
m̃′

p(m, m̃′)wn(m̃
′)

= wn+1(m) ,

where the second inequality follows from the induction hy-
pothesis, and thus completing the induction proof.

IV. NUMERICAL ANALYSIS

In this section we numerically analyze the SQ(d) upper
and lower bound models, which provide stochastic bounds
for the original SQ(d) model. We first present a numerical
method to compute the mean waiting time of jobs for the
SQ(d) upper bound model. While this method applies for the
SQ(d) lower bound model as well, we will later present an
improved method for the latter (see Section IV-B).



A. Upper and Lower Bounds

As we have seen in Section II, the transition flow diagrams
of the SQ(d) lower and upper bound models are, in contrast to
the transition flow diagram of SQ(d), well structured. The key
advantage of these transformed models is that we can partition
the newly constructed state spaces (for the lower/upper bounds
systems) into blocks of states with a periodic structure between
adjacent blocks. Moreover, each block has a finite number
of states which can be further ordered according to the total
number of jobs in the system; ties are broken according to a
lexicographical ordering. Concretely, the first block of states
is defined as

B≤(N−1)T = {m ∈ S | #m ≤ (N − 1)T} , (8)

and corresponds to the boundary states. Here #m is defined
as the number of jobs in state m. Observe that all states for
which mN = 0 are included in the boundary states. All the
states with the same number of jobs are grouped together.
Moreover, all boundary states are those states m′ for which
there is a state m with #m = #m′ and mN = 0. The state
with the most number of jobs in the system and with mN = 0
is the state (T, T, . . . , T, 0). As there are N servers, the total
number of jobs in this state is (N − 1)T . Therefore, Eq. (8)
corresponds to the set of boundary states.

For the rest of the state space we define the blocks

Bq = {m ∈ S|(N − 1)T + qN < #m ≤ (N − 1)T

+(q + 1)N}, ∀q = 0, 1, 2, . . .

Note that we expect a regular pattern as we have seen in the
transition flow diagrams from Figures 7 and 8. In particular,
except for boundary states,

pm,m′ = pm+1,m′+1 . (9)

(see the ‘Useful Properties’ in the Appendix.) The difference
between these two transition probabilities stems from the states
which are involved. Furthermore, the difference between the
corresponding states is the number of jobs at each server,
which is one. The difference in the total number of jobs in
the system is therefore N . We thus expect that every state in
set Bq will correspond to exactly one state in set Bq+1 for all
nonnegative integers q. Moreover, every state in set Bq will
correspond to exactly one state in set Bq+l for all nonnegative
integers q and all nonnegative integers l.

Having partitioned the state space into blocks of states, i.e.,

S = B≤(N−1)T ∪ (∪∞q=0Bq) ,

we are now ready to construct the newly generator matrices Q
of the upper and lower bound models. They have the following
structured form

Q =


R00 R01 0 0 0 . . .
R10 A1 A0 0 0 . . .
0 A2 A1 A0 0 . . .
0 0 A2 A1 A0 . . .
...

...
...

. . . . . . . . .

 .

Here, R00, R01 and R10 correspond to the matrices created
by transition rates within the boundary blocks, transitions
from a non-boundary block to a boundary block and from
a boundary block to a non-boundary block, respectively. The
non-boundary blocks, i.e., A0, A1 and A2, are of order m×m,
where m is the number of states in such a block, i.e.,

m =

(
N + T − 1

T

)
.

Given the property from Eq. (9), all submatrices on the main
diagonal are, except for R00, identical. We call this submatrix
A1. Also, all submatrices on the subdiagonal on the left and all
submatrices on the right of the main diagonal are, except for
R10 and R01, identical, respectively. We call these matrices A2

and A0, respectively. Because of this structure of the generator
matrix Q, the stationary equations are given by

(π≤(N−1)T ,π0,πq)Q = 0 ,

where π≤(N−1)T is the limiting probability of the boundary
block and πq is the limiting probability of block Bq for all q ∈
{0, 1, 2, . . .}. On blocks, we can write the balance equations
for the equilibrium probabilities as

0 = π≤(N−1)TR00 + π0R10 (10)
0 = π≤(N−1)TR01 + π0A1 + π1A2 (11)
0 = πq−1A0 + πqA1 + πq+1A2, q = 1, 2, . . . (12)

Eqs. (10) and (11) are called the boundary equations, and
Eqs. (12) are called the queue equations.

For the analysis of the SQ(d) upper and lower bound
models, we construct a matrix R whose elements Rij are the
expected number of visits to state j in block B1, starting from
state i in block B0. This matrix R is called the rate matrix
and is characterized by

0 =

∞∑
k=0

RkAk

= A0 +RA1 +R2A2

Note that R is an m × m matrix as the number of states
in both B0 and B1 is

(
N+T−1

T

)
. In order to use matrix-

geometric techniques, we observe that the generator matrix Q
is irreducible, since the matrices B0 and A1 are non-singular
(their determinant is not zero). Also, assuming a stability
condition, all states are positive recurrent and, consequently,
the generator matrix Q is positive recurrent. Therefore, we
can use Theorem 1.7.1 from Neuts [15], which states that the
solutions of the stationary probabilities of the SQ(d) lower and
upper bound model can be obtained by solving the balance
equations

(π≤(N−1)T ,π0,π1)

R00 R01 0
R10 A1 A0

0 A2 A1 +RA2

 = 0 (13)

with the normalization condition

π≤(N−1)Te+ (π0 + π1)(I −R)−1e = 1 ,



where e is the all one vector of proper dimensions.
For the lower bound model, the stability condition is λ < 1.

However, for the SQ(d) upper bound model, this stability
condition is no longer sufficient as the service capacity is
reduced by the redirected transitions to less preferable states.
Therefore, the balance equations from (13) only have a solu-
tion if and only if (see again Theorem 1.7.1 of Neuts [15])

πA0e < πA2e ,

where π is given by πA = 0, πe = 1, and where A = A0 +
A1 +A2.

What remains to show is the construction of the rate matrix
R, for which we use the technique described in Latouche and
Ramaswami [9], [10]. Therein it is shown how to derive a
matrix G, whose elements Gij represent the probability that
starting from a state i in block B1 the chain eventually visits
block B0 and does so by visiting state j. As for the rate matrix
R, the matrix G can be characterized by the following equation

0 = A2 +A1G+A0G
2 .

The matrix G for a generator matrix Q is then explicitly given
by

G = −
∞∑
k=1

(

k∏
i=1

B1,i)B2,k ,

where

B1,1 = (−A1)
−1A0

B2,1 = (−A1)
−1A2

B1,i = (I −B1,i−1B2,i−1 −B2,i−1B1,i−1)
−1B2

1,i−1

B2,i = (I −B1,i−1B2,i−1 −B2,i−1B1,i−1)
−1B2

2,i−1 .

As a side remark, Latouche and Ramaswami [10] claim that
the algorithm to compute G needs only few iterations k. We
confirm this to hold for our system configurations, for which
the number of iterations is within k = 6.

Finally, the rate matrix R can be computed from the matrix
G by (see Latouche and Ramaswami [9])

R = −A0(A1 +A0G)
−1 .

Having the numerical algorithm to compute the rate matrix
R, we are able to obtain the steady-state probabilities by
solving the balance equations from (13) with the normalization
condition. These lend themselves to stochastic lower and
upper bound on the mean waiting time for the SQ(d) model.
Concretely, for each state we know how many waiting jobs
there are at each server, i.e., server i has max{(mi − 1), 0}
waiting jobs, and we can multiply this number by the equi-
librium probability of the corresponding state. By doing so
for all states, we can compute the jobs’ average delay in a
numerically tractable manner.

The above results are summarized in the following theorem.

Theorem 1. The solutions of the stationary probabilities of the
SQ(d) lower and upper bound model have a modified vector-
geometric form. Specifically,

πq+1 = Rπq, q = 1, 2, . . .

and (π≤(N−1)T ,π0,π1) can be obtained by solving the
balance equations

(π≤(N−1)T ,π0,π1)

R00 R01 0
R10 A1 A0

0 A2 A1 +RA2


= (π≤(N−1)T ,π0,π1) .

B. Improved Lower Bound

In the previous subsection we have obtained a numerically
tractable method to compute the steady-state probabilities for
the SQ(d) lower and upper bound models. Here we simplify
this method dramatically, in terms of the numerical complexity,
by demonstrating an important relation between steady-state
probabilities, in the case of the lower bound model. Concretely,
we will show that for non-boundary states πq+1 = ρNπq , for
all q = 1, 2, . . .. Next we present this fundamental result for
some arbitrary arrival process A(t), and after we give a more
explicit solution when A(t) is a Poisson process.

Theorem 2. The solutions of the stationary probabilities of the
SQ(d) lower bound model have a modified vector-geometric
form. Specifically,

πq+1 = σNπq, q = 1, 2, . . .

and (π≤(N−1)T ,π0,π1) can be obtained by solving the
balance equations

(π≤(N−1)T ,π0,π1)

R00 R01 0
R10 A1 A0

0 A2 A1 + σNA2


= (π≤(N−1)T ,π0,π1) . (14)

Here σ is the unique solution for x, inside the unit circle, of
the equation

x =
∑
k≥0

xkβk , (15)

and where

βk =

∫ ∞
0

(µt)k

k!
e−µtdA(t) .

For the proof see Godtschalk [6].

As our arrivals are assumed to be Poisson, we can give a
stronger result for the SQ(d) lower bound model, in the sense
that we can compute the solution σ for x.

Theorem 3. In the case of Poisson arrivals, the solutions of
the stationary probabilities of the SQ(d) lower bound model
have the modified vector-geometric form

πq+1 = ρNπq , q = 1, 2, . . .

where ρ is the traffic intensity and the rest is as in Theorem 2.

The proof follows using calculus methods and is deferred
to the Appendix.



V. NUMERICAL RESULTS

We first numerically motivate the need for addressing the
problem of randomized load balancing in finite regimes.
Consider the exact, but asymptotic result on the average delay
in a SQ(d) system ([13]):

E[Delay] =
∞∑
i=1

λ
di−d
d−1 . (16)

Note in particular that the expression is invariant to the number
of servers n.
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Fig. 9. Relative error of the predicted asymptotic delays vs. simulations

The accuracy of this approximation is illustrated in [13]
for several values of n. Figure 9 herein provides further
numerical results on the relative error (in %) of the asymptotic
results from Eq. (16) relative to simulation results (obtained by
simulating 108 jobs, out of which the first 107 were discarded).
We consider two utilization levels ρ = 0.75, 0.95, several
number of choices d = 2, 5, 10, 25, 50, and a broad range
of number of servers n. The results clearly indicate that the
approximation can be misleading in a regime with a small
number of servers, and especially at very high utilizations.
Another interesting observation is that the relative error is not
necessarily monotonous in d, as shown in the moderately-high
utilization case.

Next we illustrate the accuracy of our lower and upper
bounds in the SQ(d) model. In Figure 10.(a-d) we show the
average delay as a function of utilization for SQ(2). The first
observation is that there is a tradeoff between the accuracy of
the upper bounds and the computational complexity. Indeed,
(a) and (b) indicate that the upper bounds are quite loose
by letting T = 2, and are getting significantly tighter by
letting T = 3. However, the numerical complexity increases
significantly with T because the sizes of the (non-)boundary
blocks in the generator matrix Q are exponential in T . As
a related remark, different values of T change the stability
condition for the SQ(d) upper bound (recall the last two
rules for redirecting transitions from the previous section).
The second observation is that the lower bounds are accurate
over all three values of N , i.e., 3, 6, and 12. Finally, as
also partially illustrated in Figure 9, the asymptotic results
significantly underestimate the ‘true’ results for small values
of N , and especially at high utilizations.
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(c) N = 6, T = 3
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Fig. 10. Average delay as a function of utilization for SQ(2); various number
of servers N = 3, 6, 12 and threshold parameter T = 2, 3

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have considered the SQ(d) scheduling
policy whose analysis has so far been restricted to asymptotic
regimes in the number of servers. Our central idea was to
artificially construct two scheduling models which provide
stochastic upper and lower bounds for the average delay in
the original SQ(d) model. The merit of the obtained bounds
is that they hold in non-asymptotic/finite regimes, and thus
complement the existing exact but asymptotic results. Numer-
ical evaluations revealed that there is an interesting tradeoff
between the accuracy of the obtained upper bounds and the
dimension of the computational complexity. Moreover, the
lower bounds are remarkably tight, whereas existing asymp-
totic approximations may be misleading in finite regimes,
especially at very high utilizations.

A major constraint of our results, alike existing asymptotic
ones, is the Poisson assumption on the arrivals which may
conceivably provide poor estimates in the context of fitting real
traces. For this reason, a potential and significant advantage
of the matrix-geometric methodology employed in this paper
is that it can be extended to the broad class of Markov Arrival
Processes (MAP) and Phase-Type (PH) service distributions
(see, e.g., Lakatos et al. [8]). Another valuable extension is the
analytical understanding of the tradeoff between computational
complexity and the accuracy of the bounds, in particular the
upper ones.
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APPENDIX

USEFUL PROPERTIES
Here we give two useful properties amongst the transition
probabilities pm,m′ , over the state space

S = {m = (m1, . . . ,mN ) | m1 ≥ m2 . . . ≥ mN

and |m1 −mN | ≤ T} .

Define tl as the time just before the lth arrival and consider
{ ~Xl = (X1(tl), X2(tl), . . . , XN (tl)); l = 1, 2, . . .}, which is,
alike ~Xt = (X1(t), X2(t), . . . , XN (t)), a Markovian process.
Now we are able to express the transition probabilities by
conditioning on the interarrival time Ul, i.e.,

pm,m′ =

∫ ∞
0

P ( ~Xl+1 =m′|Ul = t, ~Xl =m)dA(t) .

For a state m, recall that #m denotes the total number of
corresponding jobs, including both the jobs in service and the
waiting jobs. We see that pm,m′ = 0 if #m′ > #m + 1,

because we only consider single arrivals. The next two lemmas
are useful for the proving the main results in the paper.

Lemma 1. Let m,m′ ∈ S. If #m′ = #m+1 and mN > 0
or if #m′ < #m+ 1 and m1 > T , then

pm,m′ = pm+1,m′+1 , (17)

where 1 = (1, 1, . . . , 1).

Proof. Define ~X ′l to be the state immediately after the arrival
of the lth job. The proof considers two cases, i.e., #m′ =
#m+ 1,mN > 0 and #m′ < #m+ 1,m1 > T .

For the first case we can write

pm,m′ =

∫ ∞
0

P ( ~Xl+1 =m′|Ul = t, ~Xl =m)dA(t)

=

∫ ∞
0

P ( ~X ′l =m
′| ~Xl =m)

P ( ~Xl+1 =m′|Ul = t, ~X ′l =m
′)dA(t)

=

∫ ∞
0

P ( ~X ′l =m
′| ~Xl =m)

P (no job served|Ul = t, all servers busy at tl)dA(t)

=

∫ ∞
0

P ( ~X ′l =m
′ + 1| ~Xl =m+ 1)e−µtdA(t)

= pm+1,m′+1

Note that ~X ′l = ~Xl + 1 and also ~Xl+1 = ~Xl + 1 as in this
case there is only one arrival and no departure.

For the second case, we define the variable k to be (#m+
1)−#m′. Also define →m1 →m2 . . .→mk as the event
that the system is in state m1 after the first job is served, in
state m2 after the second job is served, . . ., and in state mk

after the kth job is served. We can write

pm,m′ =

∫ ∞
0

∑
m1,...,mk:E

P (→m1 . . .→mk = ~Xl+1

=m′|Ul = t, ~Xl =m)dA(t)

=

∫ ∞
0

∑
m1,...,mk:E

P (→m1 + 1 . . .→mk + 1

= ~Xl+1 =m′ + 1|Ul = t, ~Xl =m+ 1)dA(t)

= pm+1,m′+1 ,

where E denotes the event {#m1 = #m,#m2 = #m −
1, . . . ,#mk = #m− k = #m′}. �

Lemma 2. Let m,m′ ∈ S. If #m′ = #m+1 and mN > 0,
then ∑

m′:
#m′=#m+1

pm,m′ = β0 ,

where

β0 =

∫ ∞
0

e−µtdA(t) .



If #m′ < #m + 1 with m1 > T , define k to be (#m +
1)−#m′. Then ∑

m′:
#m′=#m+1−k

pm,m′ = βk , (18)

where

βk =

∫ ∞
0

(µt)k

k!
e−µtdA(t) . (19)

Proof. As in the previous proof, we start with the case #m′ =
#m+ 1. From Eq. (17) and∑

m
P ( ~X ′l =m

′| ~Xl =m) = 1

it follows that∑
m′:

#m′=#m+1

pm,m′ =
∑
m′:

#m′=#m+1∫ ∞
0

P ( ~X ′l =m| ~Xl =m)e−µtdA(t)

=

∫ ∞
0

∑
m′:

#m′=#m+1

P ( ~X ′l =m| ~Xl =m)e−µtdA(t)

=

∫ ∞
0

e−µtdA(t) = β0

For the second case #m′ < #m + 1,m1 > T , we have
from Eq. (17)∑

m′:
#m′=#m+1−k

pm,m′ =
∑

m1,...,mk:E∫ ∞
0

P (→m1 . . .→mk|Ul = t, ~Xl =m)dA(t)

=

∫ ∞
0

∑
m1,...,mk:E

P (→m1 . . .→mk|Ul = t, ~Xl =m)dA(t)

=

∫ ∞
0

P (k jobs served |Ul = t, all servers busy at tl)dA(t)

=

∫ ∞
0

(µt)k

k!
e−µtdA(t)

= βk .

�
PROOF of Theorem 3

The proof is similar to the one of Theorem 2. What we
additionally need is to explicitly solve for the solution σ for
x. Recall that σ is the unique solution for x, inside the unit
circle, of the equation

x =
∑
k≥0

xkβk . (20)

We start by computing the βk’s in the case of Poisson
arrivals. To make the analysis more insightful, we consider

µ in our derivations (i.e., the service rate which by convention
has an unitary value).

βk =

∫ ∞
0

(µt)k

k!
e−µtdA(t) =

∫ ∞
0

(µt)k

k!
e−µtλe−λtdt

= λ

∫ ∞
0

(µt)k

k!
e−(λ+µ)tdt

Next, using induction and partial integration we will prove
that

βk =
λ

µ

µk+1

(λ+ µ)k+1
(21)

To start the induction we consider k = 0, in which case we
have

β0 = λ

∫ ∞
0

e−(λ+µ)t = − λ

λ+ µ
e−(λ+µ)t

∣∣∣∣t=∞
t=0

=
λ

λ+ µ
.

Next we assume that Eq. (21) holds for k ∈ N and we prove
that it also holds for k + 1. We see that

βk+1 = λ

∫ ∞
0

(µt)k+1

(k + 1)!
e−(λ+µ)tdt

= λµk+1

[
− t

k+1

k!

1

λ+ µ
e−(λ+µ)t

∣∣∣∣t=∞
t=0

+

∫ ∞
t=0

tk

k!

1

λ+ µ
e−(λ+µ)tdt

]

=
µ

λ+ µ
λ

∫ ∞
t=0

(µt)k

k!
e−(λ+µ)tdt

=
µ

λ+ µ

λ

µ

µk+1

(λ+ µ)k+1
(22)

=
λ

µ

µk+2

(λ+ µ)k+2
.

Eq. (22) follows from the induction hypothesis, and the
induction is thus complete.

Next we solve Eq. (20). For convenience, we first express
βk in terms of the traffic intensity ρ, i.e.,

βk =
λ

µ

µk+1

(λ+ µ)k+1
= ρ

1

(ρ+ 1)k+1
.

Next we can write

x =
∑
k≥0

xkβk =
∑
k≥0

xkρ
1

(ρ+ 1)k+1

=
∑
k≥0

(
x

1 + ρ

)k
ρ

1 + ρ
=

ρ

1 + ρ

∑
k≥0

(
x

1 + ρ

)k
=

ρ

1 + ρ

1

1− x
1+ρ

, |x| < 1 + ρ

=
ρ

1 + ρ− x
.

The two solutions of the quadratic equation in x are 1 and
ρ, of which x = ρ is the non-trivial one. The proof is thus
complete. �


