Characterizing the Impact of the Workload on
the Value of Dynamic Resizing in Data Centers

Kai Wang*, Minghong Lin, Florin Ciucu!, Adam Wierman' and Chuang Lin}
*Institute of Software, Chinese Academy of Sciences,
fCalifornia Institute of Technology, *T-Labs / TU Berlin, 5Tsinghua University

Abstract—Energy consumption imposes a significant cost for
data centers; yet much of that energy is used to maintain
excess service capacity during periods of predictably low load.
Resultantly, there has recently been interest in developing designs
that allow the service capacity to be dynamically resized to match
the current workload. However, there is still much debate about
the value of such approaches in real settings. In this paper, we
show that the value of dynamic resizing is highly dependent on
statistics of the workload process. In particular, both slow time-
scale non-stationarities of the workload (e.g., the peak-to-mean
ratio) and the fast time-scale stochasticity (e.g., the burstiness of
arrivals) play key roles. To illustrate the impact of these factors,
we combine optimization-based modeling of the slow time-scale
with stochastic modeling of the fast time scale.

I. INTRODUCTION

Energy costs represent a significant, and growing, fraction
of a data center’s budget. Hence there is a push to improve
the energy efficiency of data centers, both in terms of the
components (servers, disks, network [17], [5], [7], [11]) and
the algorithms [3], [9], [8], [16]. One specific aspect of data
center design that is the focus of this paper is dynamically
resizing the service capacity of the data center so that during
periods of low load some servers are allowed to enter a power-
saving mode (e.g., go to sleep or shut down).

The potential benefits of dynamic resizing have been a point
of debate in the community [14], [9], [18]. On one hand, it is
clear that, because data centers are far from perfectly energy
proportional, significant energy is used to maintain excess
capacity during periods of predictably low load when there is a
diurnal workload with a high peak-to-mean ratio. On the other
hand, there are also significant costs to dynamically adjusting
the number of active servers. These costs come in terms of the
engineering challenges in making this possible [10], [19], [4],
as well as the latency, energy, and wear-and-tear costs of the
actual “switching” operations involved [6], [9], [13].

The challenges for dynamic resizing highlighted above have
been the subject of significant research. At this point, many of
the engineering challenges associated with facilitating dynamic
resizing have been resolved, e.g., [10], [19], [4]. Additionally,
the algorithmic challenge of deciding, without knowledge of
the future workload, whether to incur the significant “switching
costs” associated with changing the available service capacity
has been studied in depth and a number of promising algo-
rithms have emerged [16], [2], [9], [12].

However, despite this body of work, the question of char-
acterizing the potential benefits of dynamic resizing has still
not been properly addressed. Providing new insight into this
topic is the goal of the current paper.

The perspective of this paper is that, apart from engineering
challenges, the key determinant of whether dynamic resizing

is valuable is the workload. In particular, a key observation,
which is the starting point for our work, is that there are
two factors of the workload which provide dynamic resizing
potential savings:

(i) Non-stationarities at a slow time-scale, e.g., diurnal

workload variations.
(i1) Stochastic variability at a fast time-scale, e.g., the bursti-
ness of request arrivals.

To this point, we are not aware of any work characterizing
the benefits of dynamic resizing that captures both of these
features. There is one body of literature which provides
algorithms that take advantage of (i), e.g., [9], [8], [16], [2].
This work tends to use an optimization-based approach to
develop dynamic resizing algorithms. There is another body
of literature which provides algorithms that take advantage of
(i), e.g., [12], [13]. This work tends to assume a stationary
queueing model with Poisson arrivals to develop dynamic
resizing algorithms.

The first contribution of this paper is to provide an analytic
framework that captures both effects (i) and (ii). We accom-
plish this by using an optimization framework at the slow
time-scale (see Section II), which is similar to that of [16],
and combining this with stochastic network calculus and large
deviations modeling for the fast time-scale (see Section III),
which allows us to study a wide variety of underlying arrival
processes. We consider both light-tailed models with various
degrees of burstiness and heavy-tailed models that exhibit self-
similarity.

Using this modeling framework, we are able to provide
both analytic and numerical results that yield new insight
into the potential benefits of dynamic resizing (see Section
IV). Specifically, we use trace-driven numerical simulations to
study (i) the role of burstiness for dynamic resizing, (ii) the
role of the peak-to-mean ratio for dynamic resizing, (iii) the
role of the SLA for dynamic resizing, and (iv) the interaction
between (i), (ii), and (iii). The key realization is that each of
these parameters are extremely important for determining the
value of dynamic resizing. In particular, for any fixed choices
of two of these parameters, the third can be chosen so that
dynamic resizing does or does not provide significant cost
savings for the data center. Thus, performing a detailed study
of the interaction of these factors is important.

In addition to detailed case studies, we provide analytic
results that support many of the insights provided by the
numerics. The theorems provide monotonicity and scaling
results for dynamic resizing in the case of Poisson arrivals
and heavy-tailed, self-similar arrivals. Due to page limitation,
the theorems are omitted in the paper, and the full verion is
available as the technical report [20].



II. SLow TIME-SCALE MODEL

In this section and the one that follows, we introduce our
model. We start with the “slow time-scale model”. This model
is meant to capture what is happening at the time-scale of the
data center control decisions, i.e., at the time-scale which the
data center is willing to adjust its service capacity.

A. The Workload

At this time-scale, our goal is to provide a model which
can capture the impact of diurnal non-stationarities in the
workload. To this end, we consider a discrete-time model such
that there is a time interval of interest which is evenly divided
into “frames” k € {1,...,K}. In practice, the length of a
frame could be on the order of 5-10 minutes, whereas the
time interval of interest could be as long as a month/year. The
mean arrival rate to the data center in frame & is denoted by
Ak, and non-stationarities are captured by allowing different
rates during different frames.

B. The Data Center Cost Model

The model for data center costs focuses on the server costs
of the data center, as minimizing server energy consumption
also reduces cooling and power distribution costs. We model
the cost of a server by the operating costs incurred by an
active server, as well as the switching cost incurred to toggle
a server into and out of a power-saving model (e.g., off/on or
sleeping/waking). Both components can be assumed to include
energy cost, delay cost, and wear-and-tear cost. See [16]
and [15] for further discussion of the model.

The operating costs are modeled by a convex function
f(Xik), which is the same for all the servers, where \;
denotes the average arrival rate to server ¢ during frame k.
The convexity assumption is quite general and captures many
common server models. This cost is often modeled using an
affine function as follows

FXik) =eo+eilig,

where e¢g and e; are constants [1], [5].

The switching cost, denoted by S, models the cost of tog-
gling a server back-and-forth between active and power-saving
models. The switching cost includes the costs of the energy
used toggling a server, the delay in migrating connections/data
when toggling a server, and the increased wear-and-tear cost.

ey

C. The Data Center Optimization

Given the cost model above, the data center has two control
decisions at each time: determining ny, the number of active
servers in every time frame, and assigning arriving jobs to
servers, i.e., determining A; 5 such that X% A, . = A, All
servers are assumed to be homogeneous with constant rate
capacity ¢ > 0. Modeling heterogeneous servers is also
possible, as in [15]; however we limit the discussion in this
paper to the homogeneous setting for clarity.

The goal of the data center is to determine nj and \; ; to
minimize the cost incurred during [0, K]:

K ng K

minz Z Fik) + BZ(W — 1)t

k=11i=1 k=1

@)

0< ik < Ap
s.t. T Xk = Nk 3)
P(Dk > D) <&,

where the final constraint is introduced to capture the SLA of
the data center. We use Dy, to represent the steady-state delay
during frame k, and (D, €) to represent an SLA of the form
“the probability of a delay larger than D must be bounded by
probability £”.

This model generalizes the data center optimization problem
from [16] by accounting for the additional SLA constraint.
The specific values in this constraint are determined by the
stochastic variability at the fast time-scale. In particular, we
derive (for a variety of workload models) a sufficient constraint
ng > % such that
Ck (D € )

I

Here, p is the constant rate capacity of each server and
Ci(D,¢) is to be determined for each considered arrival
model. One should interpret Cj (D, &) as the overall effective
capacity/bandwidth needed in the data center such that the
SLA delay constraint is satisfied within frame k.

Note that the new constraint is only sufficient for the original
SLA constraint. The reason is that Cj (D, &) is computed, in
the next section, from upper bounds on the distribution of the
transient delay within a frame.

With the new constraint, however, the optimization problem
in (2) can be considerably simplified. Indeed, note that ny is
fixed during each time frame k& and the remaining optimization
for A, is convex. Thus, we can simplify the form of the
optimization problem, and Egs. (2)-(3) become:

Data Center Optimization Problem

K K
minz nkf()\k/nk) + 5 Z(nk - nk—l)jL 5
k=1 k=1

7” .

The key difference between the optimization above, and that
of [16], is the SLA constraint, which provides a bridge between
the slow time-scale and fast time-scale models. Specifically,
the fast time-scale model uses large deviations and stochastic
network calculus techniques to calculate Cj (D, &). Deriving
algorithm for this problem is not the goal of the current paper.
We use the Lazy Capacity Provisioning (LCP) [16], and the
algorithm for our setting is described in [20].

S.t. ngp >

III. FAST TIME-SCALE MODEL

Given the model of the slow time-scale in the previous
section, we now zoom in to give a description for the fast
time-scale model. By “fast” time-scale, we mean the time-scale
at which requests arrive, as opposed to the “slow” time-scale
at which dynamic resizing decisions are made by the data
center. To model the fast time-scale, we evenly break each
frame from the slow time-scale into “slots” ¢t € {1,...,U},
such that frame_length = U - slot_length.

We consider a variety of models for the workload process
at this fast time-scale, including both light-tailed models with
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various degrees of burstiness, as well as heavy-tailed models
that exhibit self-similarity. In all cases, our assumption is that
the workload is stationary over the slots that make up each
time frame.

The goal of this section is to derive the value of Cy(D,£)
in the constraint n; > CeD5)  from Eq. (4), and thus
enable an interface between the fast and slow time-scales by
parameterizing the Data Center Optimization Problem from
Eq. (5) for a broad range of workloads. Note that throughout
this section we suppress frame’s subscript k& for ng, Ag, Ck,
and Dy, and focus on a generic frame.

A. An Aggregation Property

We denote the cumulative arrival (workload) process at the
data center’s dispatcher by A(t). For each slot t = 1,...,U,
A(t) counts the total number of jobs arrived in the time
interval [0,¢]. Depending on the total number n of active
servers, the arrival process is dispatched into the sub-arrival
processes A;(t) with ¢ = 1,...,n. The cumulative response
processes from the servers are denoted by R;(t), whereas
the total cumulative response process from the data center
is denoted by R(t) = ), R;(t). All arrival and response
processes are assumed to be non-negative, non-decreasing,
and left-continuous, and satisfy the initial condition A(0) =
R(0) = 0. For convenience we use the bivariate extensions
A(s,t) .= A(t) — A(s) and R(s,t) := R(t) — R(s).

The service provided by a server is modeled in terms of
probabilistic lower bounds using the concept of a stochastic
service process. This is a bivariate random process S(s,t)
which is non-negative, non-decreasing, and left-continuous.
Formally, a server is said to guarantee a (stochastic) service
process S(s,t) if for any arrival process A(t) the correspond-
ing response process R(t) from the server satisfies for all ¢ > 0

R(t) > A*S(t) ©)

where ‘x’ denotes the min-plus convolution operator, i.e., for
two (random) processes A(t) and S(s,t),
A t):= inf {A t)} . 7
wS(t) = inf {A(s) + 5(s,1)} (M)
We are now ready to state the aggregation property. The
proof is deferred to the technical report [20].

Lemma 1. Consider an arrival process A(t) which is dis-
patched to n servers. Each server i is work-conserving with
constant rate capacity p > 0. Arrivals are dispatched deter-
ministically across the servers such that each server i receives
a fraction % of the arrivals. Then, the system has service

process S(s,t) = nu(t — s), i.e., R(t) > AxS(t).
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B. Arrival Processes

The next step in deriving the SLA constraint n > %
is to derive a bound on the distribution of the delay at the
virtual server with arrival process A(t) and service process
S(s,t) =C(D,&)(t —s), ie, P(D(t) > D) <e

It is importation to observe that the violation probability &
holds for the fransient delay process D(t), which is defined
as D(t) :=inf{d: A(t —d) < R(t)}, and which models the
delay spent in the system by the job leaving the system, if
any, at time ¢. However, the violation probability € is derived
so that it is time invariant, which implies that it bounds the
distribution of the stead-state delay D = lim;_,, D(t) as well.
Therefore, the value of C'(D, &) can be finally computed by
solving the equation € = €.

We follow the outline above to compute C(D, £) for light-
and heavy-tailed arrival processes; interested readers may refer
to the technical report [20] for details.

IV. CASE STUDIES

Given the model described in the previous two sections, we
are now ready to explore the potential of dynamic resizing
in data centers, and how this potential depends on the inter-
action between non-stationarities at the slow time-scale and
burstiness/self-similarity at the fast time-scale.

A. Setup

The time frame for adapting the number of servers nj is
assumed to be 10 min, and each time slot is assumed to be
1 s, i.e., U = 600. When not otherwise specified, we assume
the following parameters for the data center SLA agreement:
the delay upper bound D = 200ms, and the delay violation
probability & = 1073, We choose units such that the fixed
energy cost is ey = 1. The load-dependent energy consumption
is set to e; = 0. Unless otherwise specified, we use the
normalized switching cost 8 = 6, and fix the burst parameters
T =1 and a = 1.5. Here, T (the average time for a 2-state
Markov-modulated (MM) process to change states twice) and
alpha (the tail index of a Pareto r.v.) can be tuned to achieve
various degrees of burstiness for the light- and heavy-tailed
arrival processes. In addition, we consider a Poisson process
with normalized mean; see Figure 1 from [20] for synthetic
sample paths of the three arrival processes.

The workloads for these experiments are drawn from two
real-world data center traces, i.e., 48-hour traces from Hotmail
servers, and 1 week traces from MSR Cambridge. Loads were
averaged over disjoint 10 minutes frames. We contrast three
designs: (i) the optimal dynamic resizing, (ii) dynamic resizing
via LCP, and (iii) the optimal ‘static’ provisioning. The readers
may refer to the technical report [20] for details.
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B. Results

Our experiments are organized to illustrate the impact of a
wide variety of parameters on the cost savings attainable via
dynamic resizing.

The Role of Burstiness: A priori, one may expect that
burstiness can be beneficial for dynamic resizing, since it
indicates that there are periods of low load during which
energy may be saved. However, this is not actually true since
resizing decisions must be made at the slow time-scale while
burstiness is a characteristic of the fast time-scale. Thus,
burstiness is actually detrimental for dynamic resizing, since it
means that the provisioning decisions made on the slow time-
scale must be made with the bursts in mind, which results in
a larger number of servers needed to be provisioned for the
same average workload. This effect can be seen in Figure 1.

The larger provisioning created by increased burstiness
manifests itself in the cost savings attainable through dynamic
capacity provisioning as well. This is illustrated in Figure
2, which shows the cost savings of the optimal dynamic
provisioning as compared to the optimal static provisioning
for varying o and T as a function of the switching cost 5.

Interestingly, though Figure 2 shows that the potential of
dynamic resizing is limited by increased burstiness, it turns out
that the relative performance of LCP is not hurt by burstiness.
This is illustrated in Figure 3, which shows the percent of
the optimal cost savings that LCP achieves. Importantly, it is
nearly perfectly flat as the burstiness is varied.

The Role of the Peak-to-Mean Ratio: The impact of the
peak-to-mean ratio on the potential benefits of dynamic re-
sizing is quite intuitive: if the peak-to-mean ratio is high,
then there is more opportunity to benefit from dynamically
changing capacity. Figure 4 illustrates this well-known effect.
The workload for the figure is generated from the traces by
scaling Ap as A\ = ¢(\g)?, varying ~ and adjusting ¢ to
keep the mean constant. Figure 4 also highlights that there
is a strong interaction between burstiness and the peak-to-
mean ratio, where if there is significant burstiness the benefits
that come from a high peak-to-mean ratio may be diminished
considerably.
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Fig. 4. Impact of peak-to-mean ratio on the cost savings of the optimal
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The Role of the SLA: Figures 5 and 6 highlight the role the
violation probability & has on the provisioning of nj under
the optimal dynamic resizing in the cases of heavy-tailed and
MM arrivals. Interestingly, we see that there is a significant
difference in the impact of £ depending on the arrival process.
As ¢ gets smaller in the heavy-tailed case the provisioning gets
significantly flatter, until there is almost no change in ny over
time. In contrast, no such behavior occurs in the MM case
and, in fact, the impact of & is quite small. This difference
is a fundamental effect of the “heaviness” of the tail of the
arrivals, i.e., a heavy tail requires significantly more capacity
in order to counter a drop in €.

This contrast between heavy- and light-tailed arrivals is
also evident in Figure 7, which highlights the cost savings
from dynamic resizing in each case as a function of &.
Interestingly, the cost savings under light-tailed arrivals is
largely independent of £, while under heavy-tailed arrivals the
cost savings is monotonically increasing with €.

When is Dynamic Resizing Valuable?: Our goal is to
provide a concrete understanding of for which (peak-to-mean,
burstiness, SLA) settings the potential savings from dynamic
resizing is large enough to warrant implementation. Figure 8
focuses on this question. Our hope is that the figure highlights
that a precursor to any debate about the value of dynamic
resizing must be a joint understanding of the expected work-
load characteristics and the desired SLA, since for any fixed
choices of two of these parameters (peak-to-mean, burstiness,
SLA), the third can be chosen so that dynamic resizing does or
does not provide significant cost savings for the data center. Of
course, many of the settings of the data center will effect the
conclusions illustrated in Figure 8. Two of the most important
factors are the switching cost, 3, and the SLA, particularly &,
which are presented in [20].

2 3 4 5 6 7 8 9 10

V. CONCLUSION

Our goal in this paper is to provide new insight into the
debate about the potential of dynamic resizing in data centers.
Clearly, there are many facets of this issue relating to the
engineering, algorithmic, and reliability challenges involved in
dynamic resizing which we have ignored in this paper. These
are all important issues when trying to realize the potential of
dynamic resizing. But, the point we have made in this paper is
that when quantifying the potential of dynamic resizing it is of
primary importance to understand the joint impact of workload
and SLA characteristics.

To make this point, we have presented a new model that
captures the impact of SLA characteristics in addition to
both slow time-scale non-stationarities and fast time-scale
burstiness in the workload. This model allows us to provide the
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