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Abstract—This paper analyzes queueing behavior subject to
multiplexing a stochastic process M (n) of flows, and not a
constant as conventionally assumed. By first considering the case
when M (n) is iid, it is shown that flows’ multiplexing ‘hurts’
the queue size (i.e., the queue size increases in distribution). The
simplicity of the iid case enables the quantification of the ‘best’
and ‘worst’ distributions of A (n), i.e., minimizing/maximizing
the queue size. The more general, and also realistic, case when
M (n) is Markov-modulated reveals an interesting behavior:
flows’ multiplexing ‘hurts’ but only when the multiplexed flows
are sufficiently long. An important caveat raised by such ob-
servations is that the conventional approximation of M (n) by a
constant can be very misleading for queueing analysis.

I. INTRODUCTION

Resource allocation is an old problem which perpetually
reincarnates itself in resource sharing systems such as the
telephone network, the Internet, or data centers. The first
influential related treatment was performed by Erlang who
essentially looked at the problem of dimensioning the tele-
phone network. One of Erlang’s main results was a formula
for the computation of the blocking probability that some
shared resource is occupied [20]; remarkably, amongst many
applications, this formula has been used for nearly a century
to dimension telephone networks.

Erlang’s seminal work triggered the development of queue-
ing theory, which has become an indispensable mathematical
framework for the performance analysis of resource sharing
based systems. Over almost a century, the exact approach to
queueing theory (a.k.a. the classical approach) has been gener-
alized to cover a broad class of networks, largely known by the
product-form property (Baskett et al. [6], Kelly [25]). Besides
its large scope, the class of product-form queueing networks is
numerically tractable using convolution (Buzen [14]) or mean
value analysis algorithms (Reiser and Lavenberg [34]).

Several alternative theories to queueing have been developed
to avoid the general limitation of Poisson arrivals of product-
form networks. One is the theory of effective bandwidth
(Kelly [26], Mazumdar [33]), which relies on large deviation
techniques and provides a rather straightforward analysis of
multiplexing regimes for a broad class of arrival processes.
An extension of the effective bandwidth theory, which can
additionally deal with many scheduling algorithms and espe-
cially multi-queue scenarios, is the stochastic network calcu-
lus (Chang [15], Jiang and Liu [24], Ciucu and Schmitt [18]).
These conceivably attractive theories provide, however, queue-
ing metric results in terms of either exact asymptotics or
probabilistic bounds. While the relevance of asymptotics and
(conceivably loose) bounds is often questioned (Abate et
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al. [1], Choudhury et al. [17], Shroff and Schwartz [40]), other
advanced techniques yield much refined results (Duffield [19],
Liu er al. [30], Chang [15], Mazumdar [33]) at the expense
however of a more involved analysis.

The common challenge faced by queueing approaches,
when modelling some unpredictable resource sharing based
system, is capturing the system’s inherent randomness. For
instance, in the context of a network router, the high variability
inherent to packet flows is captured by conventional queueing
models with probability distributions (e.g., of the packets’
inter-arrival times and sizes). Network calculus models use
instead envelope functions, which enforce either deterministic
or probabilistic bounds on the amounts of packets over time
intervals. A very recent alternative to classical queueing the-
ory uses deterministic models satisfying the implications of
probability laws characteristic to the packets flows (e.g., the
Law of the Iterated Logarithm, see Bertismas et al. [8]).

While capturing randomness is essential in modelling, dif-
ferent randomness models can lead to very different (and
possibly bogus) insights on actual system behavior. Consider
for instance a simple example of a router with capacity C
which is being modelled by the classic M/M/1 queue: packets
arrive as a Poisson process with rate A, and their sizes are
exponentially distributed with average 1/u. Under the stability
condition \/(uC') < 1, the packets’ average delay is

E [delay} = (D
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Consider next the much simpler averaged-out D/D/1 model, in
which the interarrival times are constant (i.e., equal to 1/)) and
packet sizes are constant as well (i.e., equal to 1/4). Under the
same stability condition, the packets’ average delay becomes
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Note the different quantitative results predicted by the two
models, with the observation that the ‘more-random’ one
predicts higher delays. Such stochastic ordering properties,
formalizing the manifestation of the folk principle that “deter-
minism minimizes the queue”, have been studied in the context
of queueing systems (see the related work section) and even
for risk management (see, e.g., Asmussen et al. [3]).

Let us consider a more complex queueing model subject
to flows’ multiplexing and which explicitly accounts for the
number of parallel flows, denoted throughout by M (n). While
there is an overwhelming work on static queues whereby
M (n) is a constant, much less is known on dynamic queues
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whereby M (n) is a stochastic process'. Moreover, since

communication networks are more accurately modelled by
dynamic queues (e.g., the number of parallel flows traversing
an Internet router is a stochastic process) the goal of this
paper is to provide an analytical understanding on the role of
randomness in M (n) on the queue size (e.g., How fast does
it grow?). In particular, the paper attempts to provide insights
into the illustrative question ‘“Multiplexing Flows: Does it Hurt
or Not?”, rephrased as “What is the joint impact of stochastic
models, for both M(n) and the flows’ themselves, on the
queue size?”.

To answer such a fundamental question we consider two
randomness models. One is subject to strong iid (independent
and identically distributed) assumptions, enabling a tractable
analytical study on the impact of various distributions of M (n)
on the queue size. The second more realistic case is when
M(n), and also the flows, have a Markov structure. While
stochastic bounds on the queue size can also be derived, as in
the iid case, they are expressed in terms of eigen-values/vectors
hampering an explicit analytical investigation; for this reason,
numerical evaluations will be invoked.

By using convexity arguments, the simplicity of the iid
case enables showing that the best-case distribution from the
perspective of the queue size is the intuitively obvious constant
distribution, extending thus the folk principle that “determin-
ism minimizes the queues” from static to dynamic queues. The
second extremal property concerns the corresponding worst-
case distribution, i.e., which law of M (n) maximizes the
queue size? It is shown that this is a bimodal distribution, with
mass on the extremes of M (n)’s range and therefore maxi-
mizing all the moments. This result also agrees with parallel
results from static queues concerning extremal properties of
bimodal distributions (see Section II-C). Another immediate
result is that strong conditions on ordering distributions are
needed, in contrast to parallel results from M/G/k queues.
The perhaps most fundamental insight is that the above folk
principle can fail, in the more realistic case when M (n) is
Markov-modulated. Concretely, we find that there is a phase
transition in the flows’ average lifetimes at which dynamic
queue models yield (stochastically) larger queues than the
corresponding (normalized) static queue models.

These overall insights raise the important caveat that ap-
proximating (realistic) dynamic queues by static queues (i.e.,
replacing the stochastic process M (n) by its mean E[M (n)])
can yield very misleading results, which can either overesti-
mate or underestimate the ‘true’ results.

The rest of the paper is structured as follows. First we
overview related work. In Section III we treat dynamic queues
under iid multiplexing, and in Section IV under more realistic
Markovian assumptions. Section V summarizes the paper.

'We use the terminologies static queue when the number of parallel flows
is deterministic and dynamic queue when the number of flows is random.
While not standard and perhaps confusing, the terminology is preferred as a
convenient shorthand.

II. RELATED WORK

Here we overview previous work related to the main topics
of this paper, i.e., 1) the relevance of studying dynamic queues,
2) stochastic orderings concerning queueing metrics, and 3)
extremal distributions for minimizing/maximizing queues.

A. Dynamic Queues and Analytical Approaches

The importance of accounting for the elastic nature of
Internet traffic, determined by a dynamic or random number of
parallel flows, has been recognized in the context of bandwidth
sharing. Massouli¢ and Roberts showed that randomness in the
number of parallel flows can have unpredictable consequences
on the throughput of long-lived flows, irrespective of the
assigned weights to the parallel flows [32]. In a similar setting,
Bonald and Massoulié demonstrated that network stability is
insensitive to a broad range of fair allocations [10], gener-
alizing a result of de Veciana ef al. for weighted max-min
fairness [43]. A more recent study of Liu et al. showed that
stability is actually sensitive to the settings of a-fairness, in
networks with non-convex and time-varying rate regions [29],
generalizing an earlier result of Bonald and Proutiere [11]. An-
other notable insensitivity result is that in dynamic scenarios
with flows arriving as a Poisson process, the first moments of
the number of flows and the flows’ throughput do not depend
on the flow size distribution or on the properties of the flows’
arrivals (Fred et al. [20]).

A general way to model randomness in the number of flows
is through a queue with bulk arrivals, i.e., the GM] /G/1
queue, whereby customers arrive in batches of random size
M according to a renewal process, and customers have some
service time distribution. In the case of Poisson renewals, exact
solutions exist for various queueing metrics (e.g., Laplace
transforms for waiting times) and various scheduling of the
batches: FIFO (Burke [12]), with priorities (Takagi and Taka-
hashi [42]), or PS (Bansal [5]); for more general renewals
solutions are given numerically (Schleyer [38]) or in terms
of bounds (Yao et al. [47]). For an excellent treatment of
queues with bulk arrivals see Chaudhry and Templeton [16].
Our contribution herein is to analyze very general distributions
(subject to a finite moment generating function (MGF)).

Other analytical approaches address queueing models with
fluid arrivals. For instance, the classical Anick-Mitra-Sondhi
model [2], with a fixed number of flows producing arrivals
at some rates according to the states of Markov On-Off
processes, can be regarded as a queue with a binomial number
of flows. Queueing in related fluid models can be analyzed
exactly in terms of spectral representations, at a cost of high
computational complexity due to a combinatorial explosion in
the number of states [41]. The advantage of our approach is
that it provides simple (convex) upper and lower bounds on
queueing metrics, which further permit the immediate analysis
of extremal properties.

B. Stochastic Orderings

Stochastic orderings, setting partial orders for queueing
metrics, were previously addressed in static scenarios. An



elementary example on the role of the variability of underlying
distributions was just illustrated in Egs. (1) and (2). More
generally, in M/G/k queues, the average delay was shown
to be an increasing function of the variance of the service
time distribution (see Whitt [44], [45]). Extensions of this
monotonicity property were considered by Asmussen and
O’Cinneide in [4] for Markov-modulated M/G/1 queues. For
single queues with Markov-modulated Poisson processes, and
under some monotonicity assumptions on the generator of a
Markov chain modulating the intensity, Bduerle and Rolski [7]
proved that the queues increase by scaling down the generator.
In the case of networks with Poisson arrivals, it was shown that
exponential packet sizes yield smaller delays than averaged-
out sizes but not in full generality (for a counterexample see
Harchol-Balter and Wolfe [22]). When the arrivals are not
Poisson however, the monotonicity property fails in some cases
even for single queues (see, e.g., Ross [37]).

This paper shows that the monotonicity of the variance
alone of the number of flows M (n) is not sufficient to infer
stochastic orderings on the queue size; instead, a sufficient
condition is given by the monotonicity of the MGF. In the light
of related work, our result thus indicates that queuing metrics
are much more sensitive to the variability of the number
of flows than of the flows themselves; this claim is further
supported by the emphasized sensitivity of dynamic queues to
peak rather than average-values.

C. Extremal Distributions

A “folk theorem” in queueing theory states that, when
the average inter-arrival (service) time is fixed, the constant
inter-arrival (service) time distribution minimizes queueing
metrics such as average waiting time. This result was proven
for renewal processes (see Rogozin [35]) and also for more
general arrival processes with exponential service times (see
Hajek [21] and Humblet [23]). A related variant of the
underlying intuitive principle that “determinism minimizes the
waiting” is that round-robin server assignment outperforms
random server assignment (see Makowski and Philips [31]).

In turn, bimodal distributions maximize queue lengths in
GI/M/1 queues (Whitt [46]), in G/M/1 queues with bulk
arrivals (Lee and Tsitsiklis [28]), and more recently in queues
with bulk arrivals and finite buffers (Busi¢ et al. [13]). We
will show that these extremal properties characteristic to static
queues extend to dynamic queues as well.

III. IID MULTIPLEXING

We first consider multiplexing under strong iid assumptions
of the flows. This simplified case enables an analytical study
on the impact of the distribution of the number of parallel
flows on the queue size. For the more realistic Markov-
modulated multiplexing case, which is only amenable to a
numerical study, see the next section.

We consider the single-queue scenario from Figure 1. The
queue has an infinite sized buffer, whereas the server has
a constant capacity C' and serves the arrivals in a work-
conserving manner.
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Fig. 1. A server with constant rate C' serving a single queue with input A(n)
consisting of M (n) parallel flows.

After introducing the arrival model, we will derive upper
and lower bounds on the queue size, and then discuss on
extremal distributions of M (n) relative to achievable queue
sizes; the obtained analytical insights will be finally comple-
mented by some illustrative numerical results.

A. Arrival Model

The time model is discrete. The number of parallel flows
active at time n is represented by a stationary stochastic
process M (n). The cumulative arrival process A(n), counting
the number of data units (e.g., packets) over the time interval
[0, n] is defined recursively as

M(n)
An)=An-1)+ a;(n) , 3)

1=

—

with the initial condition A(0) = 0. The instantaneous arrival
process at time n is represented by the random vector a(n) =
(a1(n),az(n),...). When clear from the context, we will refer
to the elements of M (n) by M, and to the elements of a(n)
simply by a.

For some 6§ > 0, we assume that the moment generating
functions (MGFs)

9a(0) == B[] and ¢ (6) := E [¢V]

are finite. Moreover, for the sake of simplicity we assume that
the elements of a(n) and M (n) are each iid (independent and
identically distributed), and jointly independent.

B. The Queue Distribution

Since the increment process A(n) — A(n — 1) is reversible,
the stationary queue length () can be written as

Q= igpo {A(n) — Cn} .

The next theorem provides upper and lower bounds for the
distribution of @) .

Theorem 1. (()’S DISTRIBUTION, IID-CASE) Consider the
arrival process from Eq. (3) and assume that the elements of
A are iid with MGF ¢, (0), and the elements of M are iid with
MGF ¢p(0); also, A and M are independent. Consider a
queue with service rate C and let

0 :=sup{0 >0: ¢ (logpa(0)) = dc(0)} . D

Then we have the upper bound for all x > 0

IE”(Q > 33) < et (5)



If in addition there exists the constants Qmq; and Nya. such
that a1 (1) < apayx almost surely (a.s.), M (1) < Ny a.s., and
NipaxOmax > C, then we have the lower bound for all x > 0

P(Q > Jj) > efe(lexamm—C)e,ez )

The upper and lower bounds are asymptotically exact (i.e.,
the following limit lim,_, %logIP’ (@ > x) = 0 holds) since
the two exponential bounds have the same decay rate 6. We
remark that the theorem immediately extends to the case of a
queue with random instantaneous capacities (C(1),C(2),...),
if these are iid; the only modification is that ¢ (6) in Eq. (4)
is to be replaced by ¢¢(1)(f). In the theorem, we do not
explicitly impose the stability condition ¢/,(0)¢),(0) < C.
Unless this is true then § = 0 in Eq. (4). Also, for the lower
bound, the condition Np,xamax > C avoids the trivial situation
of no queueing.

To prove the upper bound we apply Kingman’s technique
for GI/GI/1 queues based on an exponential martingale [27].
To prove the lower bound we rely on some additional ideas
from Ross [36] and Chang [15].

Proof. Let x > 0. With € > 0 as in the theorem we construct
the random process

X, = eQ(A(n) —Cn)

for all n > 0. Let also the associated filtration of o-algebras
Fn=o(a(l),...,a(n),M(1),...,M(n)), where a(n)’s de-
note the vectors (ai(n) az(n)

The key to the proof is to show that X,, is a martingale.
For some n > 1 we can write for the conditional expectation

M(n) n)—
E[X, | F.1 = E [anee(zm ai(n)=C) |]—'n1}
= e [HEE )]

using that X,,_; is JF,_j-measurable and the independence
assumptions on A and M. Further conditioning on M (n) we
can compute the last expectation

B [ o] > 6a(0)"P (M (n) = m)
m>0

= ¢um (logga(0)) ,

after using the independence properties again. With this we
can continue above

E [Xn | -anl] - anlgbC(_a)d)J\l (IOg ¢a(0)) = anl )

using the definition of 6. Therefore the sequence X, is a
martingale (relative to F,,).

The second part of the proof (for the upper bound) roughly
reproduces Doob’s inequality; let us define

T=inf{n>0:A(n) — Cn >z}

as the first passage time to exit [0, z]. Note that 7" is a stopping
time relative to JF,,, i.e., {w: T, <n} € F, for all n > 0.

Let n > 0. Then T'An := min{T, n} is a bounded stopping
time and according to the optional sampling theorem (see
Billingsley [9], p. 466) applied to the martingale X,, we have

E[Xo] = E[Xranl 2 E [ Xrandir<n})
> P(T <n) , (6)

where [ ) denotes the indicator function; in the last line we
used the definition of 7'. Letting n — co we obtain

E[Xo] > "P(T <) .
Finally, using
P(T<oo)=P (sup {A(n) — Cn} > x) (7
n>0

and E[Xy] = 1, we immediately get the upper bound from
the theorem.
To prove the lower bound we further let y > 0 and denote
Ty =min{T,inf {n > 0: A(n) — Cn < —y}}

as the first time to exit the interval [—y, ]. Note that T}, is a
finite stopping time relative to F,,. By the optional stopping
theorem, the process (X7,an)n is a martingale, which is
bounded and hence uniformly integrable. Thus, X7 A, —
XTy a.s. and in L', and we have
B X)) = B [Xs,n0] = B [X7,)
= E[Xr, | A(T)) > CT, + 2] P(A(T,) > CT, + x)
+E [XTy | A(Ty) < CT, - y] P(A(T,)) <CT, —vy) .
(®)
Note further the implications of events
{A(Ty) >CTy+z} = {T,=T}
={A(T,-1)<C(Ty,—1)+x}
= {A (Ty) < CTy + NinaxOmax — C + {E} ,
where we used the definition of 7" and the bounding constants
from the theorem. We can thus bound the previous sum as

E[Xo] < !Wnntnn=CH+2) p (A (T)) > CT, + z) + e .
Letting y — oo yields
E [Xo] < e/ PNmtna=CHa) p(T < o0) .

The lower bound from the theorem follows immediately from
Eq. (7) and E [X] = 1, which completes the proof. O

C. Extremal Distributions

Given the bounds from Theorem 1, we can identify
the best/worst-case distributions for M (n) which mini-
mize/maximize the queue size. Then we discuss on conditions
under which a particular distribution is ‘better’ or ‘worse’ than
another.

To formalize the underlying stochastic ordering, and thus
the meaning of ‘better’ and ‘worse’, we say that a queue Q1
is smaller than another queue ()5 if the corresponding decay
rates 0 and 6 (e.g., defined in Eq. (4)) satisfy

01 <0 .



1) Best-Case Distribution: First we briefly show the intu-
itive result that the best-case distribution of M is the constant
one. What is more interesting is that neither of the distributions
of M and a dominates the other, when jointly accounting for
both.

Given the iid assumption, Jensen’s inequality applied to the
exponential function (i.e., e?ZIX] < E [e?X] for some r.v. X)
yields that

¢ (log 9a(0)) < dar (log ¢ (0)) -

The left-hand side corresponds to the composition of MGFs
from the definition of 6 from Eq. (4) when there is no
randomness in the number of parallel flows, i.e., when the
elements of M (n) are equal to a single constant. In turn, the
right-hand side accounts for randomness in M (n). Because of
the inequality above, it follows that the value of 8 from Eq. (4)
decreases when accounting for randomness, which further
means that the queue increases correspondingly. The best-
distribution is thus the constant, which in particular minimizes
all the moments.

Finally, we point out the interesting fact that none of the
randomness in the number of parallel flows, or at the flow
level, dominates the other. That is because there is no general
ordering between the terms

Ppi) (log ¢a(6)) and ¢ar (log ¢pa)(6)) -

Indeed, using Jensen’s inequality, the left term is the smallest
when a is non-random (i.e., a = E[a]) and M is random.
In turn, the left term is the largest when M is non-random
(i.e., M = E[M]) and a is random. This fundamental lack of
monotonicity suggests that, even for the purpose of deriving
bounds on the queue size distribution, both the randomness
in the number of flows and at the flow level must be jointly
accounted for. In other words, simplifying the queueing model
by averaging-out either M or a can lend itself to bogus results.

2) Worst-Case Distribution: According to Theorem 1, the
problem of determining the distribution of M which maxi-
mizes the queue reduces to solving for

argmax E[eeM] ) ©))

M, fixed E[M)]

for all & > 0. The next Lemma gives the solution.

Lemma 1. (WORST-CASE DISTRIBUTION) Assuming that M
has the support {0,1,. .., Mya}, the solution of Eq. (9) is the
bimodal distribution with

E[M] E[M]

MTLLUC Mmax .

PROOF. Assume that there exists 0 < 7 < My, such that

T =1— and Ty, =

m; = P(M =14) > 0. Denoting x = Lﬁ}“‘*fiwi, let us observe
that
o + 7Ti€9i + WmeeM"”x <mo+z+ (7p,, +m—x) e Mmax

(10)
Indeed, showing this inequality reduces to showing that the

function
eaMmax _ eQi

f(i) = m

is monotonically increasing over i € {0,1,..., My — 1}.
This can be shown immediately by extending f(-) to continu-
ous time, differentiating, and using the inequality e* > z 4+ 1
for z > 0.

Therefore, Eq. (10) shows that a ‘worse’ distribution can be
obtained by appropriately spreading the distribution mass to
the extremes. Note that the new distribution retains the average
value E[M] since

T+ MT My — M nax (7T1wmx + T — .’E) .
The proof is complete by repeatedly spreading the mass, as in
Eq. (10), for all 0 < ¢ < My« for which m; > 0. O

We note that the bimodal distribution was found to attain the
maximum over a partial order set according to convex ordering
(see Shaked and Shanthikumar [39], Theorem 3.A.24, p. 125);
in our case, the ordering is restricted to MGFs only.

D. Ordering Distributions

The constant best-case distribution and the bimodal worst-
case distribution identified earlier are clearly unrealistic from
a practical point of view. It is thus of interest to analyze the
relationship between different (and more realistic) distributions
from the point of view of being ‘better’ or ‘worse’.

Following the presented arguments, an immediate sufficient
condition for a distribution M7 to be ‘better’ than a distribution
M (subject to the condition E[M;] = E[Ms]) is an ordering
on the MGFs, i.e.,

B[] < B [efM2]

(1)

for all & > 0. This can be seen from the construction of the
optimal # from, e.g., Eq. (4) in Theorem 1.

The condition from Eq. (11) is clearly strong as it implicitly
involves all the moments of M; and M. In the light of the
discussion from Section II-B that an ordering on the variance
(of packet distributions) is sufficient for ordering the queue
sizes in M/G/k queues, we point out that a similar condition on
the variance is not sufficient in the current context (mainly due
to non-Poisson input). To quickly illustrate this negative fact,
by counterexamples, let C' = 3, M; the Uniform distribution
with support {0, 1,2, 3,4} and Ms having the same support,
the same average E[M;] = E[Ms] = 2, and the mass
m = 0.5, my = 0.25, and w4 = 0.25. One can show that
Var[Mi] > Var[Ms] and

sup {9 /¢ = F [eeMl]} > sup {9 ¢ = F [eeMﬂ} ,
(12)
i.e., My is ‘better’ than M.

In turn, by changing the mass of Ms to m; = 0.5 and 74 =
0.5, one can show that Var[M;] < Var[Ms] but M; is
‘worse’ than M>. To conclude, the variance alone of M is
not a sufficient indicator for ordering the queues. Moreover,
in the light of the above counterexamples, it is conceivable
that the sufficient condition from Eq. (11), which imposes an
ordering on the MGFs, is also necessary.



Worst-Case
------ Uniform
& - --- Binomial
—— Deterministic
&
n —
()
3
o
g _
o -
&
o
X r==-=X
---Z- X
o

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

Fig. 2. Impact of several distributions for the number of parallel flows
M on the queue size. Analytical bounds are depicted with lines, whereas
corresponding simulation results are depicted with the ‘X’ symbol.

E. Numerical Results

We now provide numerical evidence on the discrepancy
between static and dynamic queues, by varying the distribution
of the number of parallel flows M and also the corresponding
peak-to-mean ratios.

To keep the analysis concise, we consider a homogenous
scenario in which the elements of a are Bernoulli random
variables taking the values 0 and 1 with probabilities 1 —p and
p, respectively. Figure 2 illustrates the queue size z, for a
fixed violation probability ¢ = 1073, and as a function of
the utilization factor; the other parameters are E[M] = 10,
Mupx = 20, C = 9, and p is scaled accordingly for
each utilization value. The worst-case distribution is the one
from Lemma 1. The figure indicates that the impact of M’s
distribution on the queue size can be substantial (e.g., as large
as many orders of magnitude). Moreover, simulation results
(depicted with the ‘X’ symbol, for each distribution) indicate
that our analytical bounds are quite tight.

In Figure 3 we illustrate the impact of several distributions
on the queue size, especially when varying the peak-to-mean
ratio (the same parameters are used as in Figure 2, except
for scaling the peak and fixing the utilization to 75%). The
figure provides strong evidence that approximating dynamic
by static queues can be arbitrarily misleading for queueing
metrics, even for moderate values of the peak-to-mean ratio.

As a side remark, the obtained results uncover several
fundamental similarities and differences amongst the concepts
of capacity when defined in 1) information theory (e.g., as the
channel capacity), 2) static, and 3) dynamic queues (e.g., as
the required capacity to guarantee some queueing constraints).
All three corresponding maximal capacities are attained by the
intuitively obvious constant distribution, which in particular
has zero entropy. In turn, while the minimal channel capacity
is attained by the uniform distribution (which maximizes the
entropy), the two queueing minimal capacities are attained by
bimodal distributions; this conceptual difference stems from
the different scalar measures of a distribution used in infor-
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Fig. 3. Impact of several distributions for the number of parallel flows M
on the queue size, depending on the peak-to-mean ratio.

mation theory (i.e., the entropy) and queues (i.e., moments
accounting for actual values).

IV. MARKOV-MODULATED MULTIPLEXING (MMM)

In this section we consider the Markov-Modulated Multi-
plexing (MMM) case, i.e., M(n) is modulated by a Markov
process. While MMM is more realistic than iid multiplexing,
the implicit nature of the obtained stochastic bounds only
allows for qualitative insights on the behavior of dynamic
queues using numerical results.

A. Arrival Model

To model MMM we consider a number of M,,x Markov-
Modulated sources. For each source, transmissions are modu-
lated by a Markov chain with state space S = {0,1,IA} (see
Figure 4).

Fig. 4. A Markov process modulating the arrival process of a source

The upper two states correspond to a typical Markov-
Modulated On-Off (MMOOQ) source which is idle while in
state ‘0’ and transmits at constant rate R while in state ‘1’. The
extra state ‘IA’ models the situation that the MMOO source
may be inactive. The difference between the states ‘0’ and ‘IA’
is that r << g, i.e., it is much less likely for the source to enter
the inactive state than the idle state. From the inactive state, the



source reactivates according to the (conditional) steady-state
probability vector of the MMOO source, i.e.,

e = (q P)
ac p+q7p+q )
such that so = -1-(1—s) and s; = I (1—s). The transition

matrix of the entire Markov chain is
1-p(t-r) p(l-r) r

rT=| q¢d-r) (A-q¢=r) r (13)
s (L=s) a(l—=s) s

To summarize, the number of active sources (i.e., par-
allel flows) is a (Markov) process M (n) with support
{0,1,..., Muax }. The fundamental difference from the iid
multiplexing model from Eq. (3) is that MMM allows for
the dynamic multiplexing of bursty sources (e.g., MMOO
processes). In particular, we point out that the model from
Eq. (3) cannot be simply extended to bursty sources by
relaxing the condition that the elements of A are iid; for
instance, in the case of MMOO sources in Eq. (3), their
Markovian structure would be ambiguous due to dynamically
changing M (n). On the other hand, the proposed MMM model
restricts the distribution of M (n) to a binomial, albeit the
dynamical structure (i.e., driven by an implicit Markov chain)
of M(n) is captured.

B. The Queue Distribution
Let (ai(n)),. @ € {1,..., Miqes}, denote M,,,, indepen-
dent copies of Markov-Modulated sources as in Figure 4.
Then, the (cumulative) arrival process A(n) is given by
Mpax

A(n) = A(n—1) + Z flai(n)) , (14)

where

1 z=1
J(@) = {0 z e {0,1A}

It is easy to check that the stationary distribution of each
source is given by the probability vector

_ q(1 —s) p(l—s) r
p+q)r+1—-5) (p+q)(r+1—s) r+1-s)
Further, the balance equations

Ly =mT:, 4,j€S
hold so that the sources a;(n), and hence the increment process
A(n) — A(n — 1), are reversible. Consequently, the stationary
queue length Q) can be written as

Q =sup{A(n) —Cn} .

n>0

The key tool to bound @’s distribution is the following
exponential column-transform of the transition matrix.

Definition 1. For T from Eq. (13) and 6 > 0 define the
exponentially transformed matrix T? as:

T =T, ;"0 | ijes,

i.e., the second column of T is multiplied with the factor e?f(),
Further, let \(0) denote the maximal positive eigenvalue and
v a corresponding positive eigenvector.

As TY is a nonnegative matrix, by the Perron-Frobenius-
Theorem, A(6) equals to the spectral radius and an eigenvector
v with positive entries exists. The next theorem provides upper
and lower bounds on ()’s distribution.

Theorem 2. (()’S DISTRIBUTION, MMM-CASE) Consider

the arrival model from Eq. (14) and a constant server capacity
C > 0. Let

0 :=sup{f > 0: \(0) = ¢op-1 (0)}
then the following bounds on the backlog hold:

P(Q>z) < Hye 0"
P(Q > x) > Hie %" |

where
Mmaz

(movo + TV 4 TAVIA)

H, = CR-T] - and

v + min{vg, vy }Mmas—[CR7]
Mo
I (movo + My + mavia)”
l pr—

max, yMmaes g0 (RMpmas—C)

Note that the definition of # resembles the one from
Theorem 1 with the only difference that the MGF is replaced
by the spectral radius. We also note that § = 0 when the
queue is not stable, and that the upper and lower bounds are
asymptotically exact since they have the same decay rate 6.

Proof. For 0 <1¢ < M4, consider the process

XE = v, (e (ke F(@i (k) =OMy )

In Duffield (see [19]) it is shown that X! is a martingale.
By the independence assumption on the M,,,, arrivals the
product

Mmaz Moz
Xoo= [[ Xi= ][ vae’@m=m

=1 =1

is a martingale as well. Now similarly as in the proof of
Theorem 1 define the stopping time

T=inf{n>0:A(n)—Cn >z}

and then apply the optional sampling theorem to 7' A n,
implying that

E[Xo] = E[X7rn] > E[X7An {7<n}]
1\4777404(17
> e@mE[ H Vai(T)I{Tgn}] .

=1

A critical observation is that since 7T is the first point where
A(n) — nC > z, the T"th increment is positive, i.e., at time



T at least [CR™1] chains are transmitting. Therefore:

Mumas
T S JCRTY Moas—[CR™]
H Vai(T) = 11 + min{vo, v1a }
=1

_ E[X0]
H,
The upper bound then follows as in the proof of Theorem 1
by letting n — oo and observing that
P(Q>z)=P(T <) .
For the lower bound, define the stopping time
T, = min{T,inf {n > 0: A(n) — Cn < —y}}

for some y > 0. Using the same arguments as in the proof of
Theorem 1 we have
E[Xo] =E[X7t, | A(T})) — CT, > x]P(A( x)
+E[XTy | A(Ty) — Ty < —yP(A( y )
S max l/i\l'mam ee(RAImax_CJFI)]P)(A(Ty) _ CTy Z 1.)

S

+ max yMmae =0
S

Ty
T

IN IV

) - CT,
) - CT,

Now simply let y — oo and thus
E[Xo] < max pyMmaes o8(BMmaz=CHa)p(T < o)

_ LE{(IO] (T < o)

which completes the proof. O

C. Numerical Results

As in Section III, we next discuss the discrepancy between
static and dynamic queues. Recall that the exponential decay
rate 6 from Theorem 2 is the same for the upper and lower
bounds, respectively, and is thus the dominating factor for the
decay of the overflow probability P(Q > z).

We consider a similar numerical settings as in Section III-E
with an average Mg,,; = 10 of homogenous Markov-
Modulated sources, as in Figure 4, which are active (i.e.,
dwelling in the states 0 and 1). Formally,

r
r+1—s

The parameter r determines the flow’s average lifetime
(which equals 7~1). Its range is the interval [0, 3]; for 7 = 0
the queues are static, whereas for r > % the parameter s cannot
be scaled such that Eq. (15) holds. The ratio RC~! is scaled
such that the link utilization p = 0.75 remains constant in all
cases, i.e.,

A = =0.25 . (15)

RC'=—F

T Mmax

_r
(ﬂ'act)l Mrwg

in the dynamic and static cases, respectively.

In Figure 5.(a) and (b) we illustrate the dominating factor
6 from Theorem 2, of the probability of P(Q) > z), for
various average lifetimes r~! of the flows. Compared to (a),
the scenario from (b) captures burstier flows (by decreasing

and RC~! =

Decay Rate Decay Rate
0 0
e — static e — static
< - dyn. (Mpmay=15) < - dyn. (Mmax=15)
S dyn. Mra=20) | S dyn. (Mnax=20)
dyn. (Mmay=50) dyn. (Mmax=50)
«@ @
© O © O
© ©
= =
o o
o o
S S
o o T
2 20 200 2 20 200

Flow duration

(b) p = 0.01, ¢ = 0.05

Flow duration

(@p=014¢=05

Fig. 5. Decay rate 6 as a function of the flows’ average lifetime 7~ for
both static and dynamic (dyn.) scenarios (p = 0.75, Mavg = 10, RC—1is
rescaled for each r—1; the x-axis is shown on a log-scale)

the transition probabilities by a factor of 10). In both figures
we consider a static scenario (i.e., M,,,, = 10) and three
(properly normalized) dynamic (dyn.) scenarios by varying
M ez = 15,20, 50.

Figure 5.(a) highlights the expected behavior that random-
ness in the number of flows ‘hurts’ the system’s performance:
Unless the flows are very short-lived (i.e., r~1 > 5) the
backlog in the dynamic case is on average larger than its
deterministic counterpart. Interestingly, for r—! < 4 the
performance actually benefits from randomization. This is due
to the fact that for very short-lived flows, the (beneficial)
property of multiplexing roughly independent flows (as the
Markov structure lasts very shortly) outruns the (detrimental)
effect of the bursty sources.

This phase-transition effect, i.e., the actual value of the
flows’ average lifetime at which dynamic multiplexing ‘hurts’,
depends on the flows’ own burstiness. This can be seen from
Figure 5.(b) where the phase-transition occurs at much larger
average lifetimes (and at which the flows remain roughly
independent since the flows’ Markov structure survives for
around the average dwelling time in one of the states).

In conclusion, the figures indicate that for reasonable (i.e.,
not very short) average flows’ lifetimes, flows’ multiplexing
‘hurts’ the queue size. Moreover, the discrepancy between
static and dynamic queues depends on the flows’ own bursti-
ness and also the distribution/support of the number of flows,
and can be arbitrarily large as shown in Figure 5.(a) for large
M. a2 and long flows.

V. CONCLUSIONS

In this paper we have investigated queueing behavior in
typically neglected but highly relevant dynamic queues char-
acterized by a random number of parallel flows. Under some
strong iid assumptions, enabling a tractable analysis, we
have first shown that dynamic queues retain some extremal
properties from static queues, i.e., capacities are maximized
by constant distributions and are minimized by bimodal dis-
tributions. While the iid case confirms that “determinism
minimizes the queues”, we have shown that this folk principle
fails in the more realistic case when the number of parallel



flows has a Markov structure. Concretely, we have shown
that there is a phase-transition of the flows’ average lifetime,
below which dynamic queues are smaller than static queues.
While our observations jointly depend on the overall statistics,
they nevertheless provide a convincing argument that current
approximations of dynamic by static queues can be very
misleading, and that a rigorous analysis of queueing scenarios
with a dynamic number of flows is necessary.
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