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Abstract—The practicality of available (throughput) capacity
results in multi-access networks, which dispense with coding
schemes, is often questioned for several reasons including 1)
the underlying asymptotic regimes, and 2) the assumption of
saturated traffic sources. This paper jointly addresses these lim-
itations by providing capacity results in non-asymptotic regimes,
i.e., holding at all time scales and network sizes, for the very
broad class of exponentially bounded burstiness (EBB) traffic
sources. Both upper and lower bounds on capacity are derived
in terms of probability distributions, which immediately yield
all the moments. The explicit and closed-form nature of the
results enable the investigation of the impact of burstiness on
non-asymptotic network capacity. In particular, the results show
that for the EBB class the non-asymptotic end-to-end capacity
rate decays linearly in the number of hops.

I. INTRODUCTION

Information theory has been instrumental to many techno-

logical advances, particularly in the field of communications.

However, in what is referred to as an unconsummated union,

information theory has yet to make a comparable mark in

the field of communication networks [13]. Part of the reason

is that the traditional information theory approach to the

problem of multi-access communication considers the noise

and interference aspects of multi-access communication, but

ignores the fundamental aspects of data burstiness and delay

in packet switching networks [15].

Multi-access communication is an important but largely

open problem concerning the understanding of the funda-

mental performance limits of communication in multi-hop

wireless networks. Metrics of interest include the network

(throughput) capacity, referring to the maximal data rates

which can be reliability sustained by the network, and network

delay. The pure information theory approach to the network

capacity problem produced solutions restricted to special net-

work topologies [15]. Simplification of the problem, i.e., by

dispensing with multi-user coding schemes as in the work of

Gupta and Kumar [17], produced solutions for more general

topologies but in asymptotic form. These results, although

shedding light on how network capacity scales in the number

of nodes, are unable to predict the exact capacity in networks

with a given number of nodes, and are thus questioned on

their practicality for small or medium sized networks ([2],

p. 180). Besides their asymptotic nature, the capacity results

from [17] are derived under saturated conditions (i.e., all nodes

have infinite data to transmit) and may be thus inaccurate for

realistic network scenarios with bursty data sources.

In this paper we address the problem of (non-asymptotic)

network capacity under data burstiness constraints at the

sources. Concretely, we consider a fixed multi-hop path in

a network with a specified multi-access protocol and with the

transmitting source having data variability or burstiness. In

particular we consider the class of Exponentially Bounded

Burstiness (EBB) [24] data sources which include many

Markov arrival processes. The relaying nodes on the fixed

multi-hop path have only the role of relaying the data from

its source to destination, whereas all the other nodes in the

network are saturated. The contribution of this paper consists

in the derivation of closed-form explicit results on the capacity

of the fixed multi-hop path, in terms of both upper and lower

bounds, with EBB arrivals at its source.

Besides applying to a wide class of data sources, what

makes our capacity results particularly attractive is that they

are non-asymptotic, i.e., they hold for any finite time scale

and network size, and that they are derived in distribution, i.e.,

moments of any order can be readily obtained. Being derived

in closed-form (up to the evaluation of infimum operators),

our results enable the study of the impact of the degree

of burstiness on the end-to-end achievable capacity rates.

Numerical results show that capacity is sensitive to burstiness,

in the sense that burstiness at the data source eventually

dominates the effects of multi-access. In a multi-node setting,

the bounds show that non-asymptotic capacity rates decay

linearly in the number of nodes for the EBB traffic class. An

open and far from apparently trivial question is whether this

scaling holds for other types of bursty traffic such as heavy-

tailed, which may create subtle correlations possibly leading to

super-linear decays; such decays have been recently observed

in wired networks even for EBB sources [6].

The analytical tool which enables the analysis in this

paper is the stochastic network calculus [7], [18]. This is a

probabilistic extension of the deterministic network calculus

conceived by Cruz in the early 1990’s [12], and is being re-

garded as an alternative to the traditional queueing theory [19],

especially for multi-node queueing networks scenarios. The

stochastic network calculus is herein applied to account not

only for queueing delay due to data burstiness, but also for

the access delay due to multi-access. Using the fundamental

result of a network service curve, which provides a description

on the service capacity along a network path in an underlying

(min, +) algebra, the paper can derive concise non-asymptotic

network capacity results, and yet in a rigorous manner.



In the literature, throughput capacity results are mostly

restricted to averages in single-hop scenarios with specific

arrivals [1], [21]. In turn, multi-hop results often rely on

simplifying technical assumptions [16], or they are obtained

asymptotically and in saturated regimes [20], [17]. Multi-

hop non-asymptotic results have been recently obtained for

saturated data sources [10].

The remainder of the paper is organized as follows. In

Section II we introduce the network model along with the

main analytical tools to be used along. In Section III we derive

the main results of the paper, i.e., upper and lower bounds on

the end-to-end throughput capacity, and also illustrate them

numerically. Brief conclusions are presented in Section IV.

II. MODEL, ARRIVAL PROCESSES, AND SERVICE CURVES

FOR MULTI-ACCESS

We consider a slotted time model with slots of size one time

unit. Also, we consider the network from Figure 1 in which

node 1 transmits to node k + 1 using the nodes 2, 3, . . . , k as

relays. There are N nodes inside the interference ranges of

each of the relay nodes, represented in the figure by circles;

the actual number of nodes in the intersection of adjacent in-

terference ranges is not needed in the model. All nodes inside

any interference range share the same communication channel,

with capacity of one data unit per time slot, and use the

(slotted-)Aloha protocol for multi-access communication in a

full-duplex mode. Each node attempts to access the channel

with probability p = 1
N

in each time slot, independently of the

other nodes. A transmission from node i to node j is denoted

by [i → j]. A transmission [i → i+1] is considered successful
in some time slot if node i has data to transmit, attempts to

access the channel during that slot, and all the other nodes

within the interference range of node i + 1 are silent.

Fig. 1. A multi-hop wireless network with k hops. The k + 1 circles,
representing the interference ranges of nodes 1, 2, . . . , k + 1, have each
N nodes inside, some of which are shared. We are interested in the (non-
asymptotic) (throughput) capacity of node 1 transmitting to node k +1 using
the nodes 2, 3, . . . , k as relays.

The choice of positioning the relay nodes at the inter-

section of adjacent circles is simply made here for a more

descriptive visual representation. In fact, our analysis can be

readily extended to network models with different random

number of nodes inside different circles, different transmis-

sion/interference ranges, or accounting for spatial correlations

across more than two adjacent circles. The technical key

enabling the rigorous analysis of such scenarios is the (min, +)
convolution representation of the end-to-end service.

In the following we first describe the arrival and departure

processes’ models, and then the (min, +) service model.

A. Arrival and departure processes

We assume that all the nodes excepting 1, 2, . . . , k + 1 are

saturated, that is they always have data to transmit to some

(unspecified) nodes. The relay nodes only relay the data of

the end-to-end transmission [1 → k + 1]. In turn, we assume

that node 1 is fed by a data source with an arrival pattern

characterized by burstiness or high variability.

We point out that the saturation assumption leads to a worst-

case analysis for the end-to-end transmission [1 → k + 1].
Significant technical difficulties would arise, if this assumption

were relaxed, due to subtle correlations amongst temporarily

saturated/unsaturated nodes (for a related discussion on Aloha

stability see [4]). One may relax in turn the assumption on

the relay nodes, i.e., they may produce their own data or relay

data for other transmissions but [1 → k + 1], and run various

scheduling algorithms (see [10]).

To model the arrival traffic burstiness at node 1 we consider

the class of EBB processes [24]. These processes include many

Markov arrival processes and can be described in terms of

bounds on their moment generating functions (MGF’s) [7],

[14]. Let us denote A(t) as the cumulative arrival process at

node 1 which counts the total number of arrivals by time slot

t, starting with A(0) = 0. The EBB characterization assumes

that for any θ > 0 there exists a rate rU , depending on θ and

invariant to time parameters, such that for all s ≤ t

E
[

eθA(s,t)
]

≤ eθrU(t−s) , (1)

where A(s, t) := A(t) − A(s) denotes the corresponding

bivariate process. This description is equivalent, up to a

prefactor, to the original EBB description from [24]. We also

assume the existence of bounds on the Laplace transform of

A(t), i.e., for any θ > 0 there exists a rate rL, depending on

θ and invariant to time parameters, such that for all s ≤ t

E
[

e−θA(s,t)
]

≤ e−θrL(t−s) . (2)

An immediate consequence of Jensen’s inequality is that for

all t > 0

rL ≤
E [A(t)]

t
≤ rU ,

which implies that the long-term average rate of the process

r := limt→∞
A(t)

t
satisfies rL ≤ r ≤ rU .

The upper and lower bound models from Eqs. (1) and (2)

will be used in conjunction to derive probabilistic upper and

lower bounds on the capacity of the transmission [1 → k+1].
Denoting the (cumulative) departure process at node k + 1
by D(t), a probabilistic upper bound on the non-asymptotic

(transient) capacity rate is a minimal value λU
t such that

P

(

D(t) ≥ λU
t t
)

≤ ε , (3)

where ε is some fixed violation probability (e.g., ε = 10−3).

A probabilistic lower bound on the non-asymptotic capacity

rate is a maximal value λL
t such that

P

(

D(t) ≤ λL
t t
)

≤ ε . (4)



We remark that λU
t and λL

t are non-asymptotic both in time

and network size. The behavior of these bounds, relative to

multiple levels of burstiness in the arrival process A(t) at the

source and especially to the number of hops k, is the goal of

this paper.

In addition to the arrival model we also need to introduce

the service model for single-hop transmissions, which will be

instrumental to the derivation of multi-hop results.

B. Service processes

In order to represent the service of a single-hop trans-

mission, for instance [1 → 2], we introduce the (virtual)

interfering process V (t), corresponding to node 1, whose

increments V (t−1, t) := V (t)−V (t−1), and V (0) = 0, are
defined for all t ≥ 1 as [10]

V (t − 1, t) = 1 − X1(t)

N
∏

i=2

(1 − Xi(t)) . (5)

Here, Xi(t)’s are i.i.d. Bernoulli random variable taking values

1 and 0, with probabilities p and 1−p, respectively. Note that

as we assumed bursty arrivals at node 1, it may happen that the

multi-access protocol can select node 1 to successfully access

the channel (V (t − 1, t) = 1) but there is nothing to transmit

(all the data in A(t) has been transmitted by time t− 1). Due
to such situations we emphasize the attribute virtual for the

process V (t). The process V (t) is statistically independent of

A(t) since V (t) depends only on the corresponding indepen-

dent Bernoulli random variables.

In the derivations of the lower and upper bounds from

Eqs. (3) and (4) we need the MGF and Laplace transforms

of V (t), respectively, i.e., for θ 6= 0

E
[

eθV (t)
]

= eθ
log bθ

θ
t ,

where bθ = 1 + q
(

eθ − 1
)

and q = 1 − p(1 − p)N−1. The

term log bθ

θ
is the relative rate of V (t). The key result in the

derivations is the following exact (min, +) representation of

the service received by a node in a single-hop transmission.

Theorem 1: (SINGLE-HOP (EXACT) SERVICE REPRESEN-

TATION) Consider the node 1 from Figure 1 and the interfering

process V (t) from Eq. (5). Then for all arrival processes

A(t) at node 1, the following equality holds for the departure

process D(t) corresponding to single-hop transmissions:

D(t) = inf
0≤s≤t

{A(s) + t − s − V (s, t)} . (6)

Therefore, the bivariate process

S(s, t) = t − s − V (s, t)

is a stochastic service curve for node 1, i.e.,

D(t) = A ∗ S(t) . (7)

Here, the symbol ‘∗′ denotes the (min, +) convolution operator
defined for all t ≥ 0 as A∗S(t) := inf0≤s≤t {A(s) + S(s, t)}.
(The proof is omitted; for the lower bound see [10]).

The critical observation in the theorem is that Eqs. (6)

and (7) hold for all arrival processes A(t) at node 1. This

invariance of service curves to arrival processes is in fact

instrumental in the theory of the network calculus to the

derivation of both single and multi-hop queueing results.

Concretely, having the service curves at each hop in a multi-

hop scenario, holding for (possibly) unknown input and output

processes but directly related from hop to hop, the (min, +)
convolution of the service curves provides a characterization

of the service received along the entire network path. Using

this network path service characterization, multi-hop results

can be simply derived using single-hop results [5], [7], [18].

III. END-TO-END CAPACITY

In this section we provide the main results of this paper, i.e.,

lower and upper bounds on the capacity rate along the [1 →
2 → · · · → k + 1] path in the network from Figure 1, where

the arrival process at node 1 belongs to the EBB class as in

Eqs. (1) and (2). We also provide some numerical illustrations

of these bounds for the subclass of Markov-Modulated On-Off

processes with various levels of burstiness.

Theorem 2: (LOWER AND UPPER BOUNDS ON END-TO-

END CAPACITY) Consider the network from Figure 1 de-

scribed in the previous section. Let the arrival process A(t)
at node 1 with relative upper and lower rates rU and rL,

depending on θ > 0, as in Eqs. (1) and (2). If D(t) denotes the
departure process at node k + 1 of the multi-hop transmission

[1 → k + 1], then we have the following probabilistic lower

bound on the end-to-end capacity for all λL
t and t ≥ 0

P
(

D(t) ≤ λL
t t
)

≤ inf
θ>0,δ≥0,1−

log bθ
θ

>rL−δ

Me−θ(rL−δ−λL
t )t ,

(8)

where M =

(

1 +

(

1

θ
“

1−
log bθ

θ
−rL+δ

”

)k
)

, p = 1
N
, q = 1 −

p(1−p)N−1, and bθ = 1+q
(

eθ − 1
)

. Also, the corresponding

upper bound for all λU
t and t ≥ 0 is

P
(

D(t) ≥ λU
t t
)

≤ inf
θ>0

e−θ(λU
t −rU) . (9)

The condition 1 − log bθ

θ
> rL − δ can be regarded as a

stability condition, with the left-hand side term representing

the available service rate for a one-hop transmission. The

parameter δ ≥ 0 is used for optimization: on one hand it

relaxes the lower rate rL in the exponential, and on the other

hand it enables a bigger optimization space for θ in the stability

condition. This tradeoff results in much tighter bounds than by

simply letting δ = 0; this rate relaxation technique has been

used for similar purposes in [9] and [22].

PROOF. Fix t ≥ 0. According to Theorem 1, the bivariate

processes

Sj(s, t) = t − s − Vj(s, t)

are exact service curve processes for the end-to-end transmis-

sion [1 → k + 1] at each hop j + 1 = 2, 3, . . . , k + 1. The
corresponding interfering processes

Vj(s, t) = t − s −

t
∑

u=s+1

X1,j(u)

N
∏

i=2

(1 − Xi,j(u))



are as in Eq. (5) with Xi,j(u) being i.i.d. Bernoulli random

variables. Applying the convolution theorem in network cal-

culus we have the relationship

D(t) = A ∗ S1 ∗ S2 ∗ . . . ∗ Sk(t) ,

coupling the arrival process A(t) at the source node 1 with the

departure process D(t) at the destination node k + 1. Using
this relationship we can write for the lower bound, for some

λL
t ≥ 0

P
(

D(t) ≤ λL
t t
)

≤ P
(

A ∗ S1 ∗ . . . ∗ Sk(t) ≤ λL
t t
)

≤

t
∑

s=0

P



A(s) + inf
s≤u1≤···≤uk−1≤t

k
∑

j=1

Sj (uj−1, uj) ≤ λL
t t





≤

t
∑

s=0

P

(

sup
s≤u1≤···≤uk−1≤t

(Vj (uj−1, uj) − (uj − uj−1))

≥ A(s) − λL
t t

)

,

where by convention u0 = s and uk = t. In the second line

we applied Boole inequality. Using further repeatedly Boole

inequality and the Chernoff bound for some θ > 0 we can

bound the last sum above by
∑

0≤s≤u1≤···≤uk−1≤t

e−θrLseθ
log bθ

θ
(uj−uj−1)e−θ(uj−uj−1)eθλL

t t

=

t
∑

s=0

(

t − s + k − 1

k − 1

)

e
−θ

“

1−
log bθ

θ
−rL

”

(t−s)
e−θ(rL−λL

t )t ,

where the binomial term is the number of combinations with

repetition. Since the sum is non-increasing in rL, we can relax

this rate by some δ ≥ 0 satisfying the stability condition 1 −
log bθ

θ
> rL − δ, and we can further bound the sum by

t
∑

s=0

(

t − s + k − 1

k − 1

)

e
−θ

“

1−
log bθ

θ
−rL+δ

”

(t−s)
e−θ(rL−δ−λL

t )t ,

Next we use the equality
∑

s≥0

(

s+k−1
k−1

)

as =
(

1
1−a

)k

for

all 0 < a < 1 [14], with a = e
−θ

“

1−
log bθ

θ
−rL+δ

”

, and the

inequality
(

1
1−e−x

)k

≤ 1 +
(

1
x

)k
for all x > 0, and we can

bound the last sum by

P
(

D(t) ≤ λL
t t
)

≤ Me−θ(rL−δ−λL
t )t ,

with M as in the theorem. Minimizing after θ and δ completes

the proof for the lower bound.

In turn, for the upper bound, we can write for some λU
t ≥ 0

P
(

D(t) ≥ λU
t t
)

= P
(

A ∗ S1 ∗ . . . ∗ Sk(t) ≥ λU
t t
)

≤ inf
0≤s≤u1≤···≤uk−1≤t

P

(

A(s) + t − s −
k−1
∑

j=1

Vj (uj−1, uj)

≥ λU
t t

)

≤ inf
0≤s≤t

e
θ

“

1+
log b

−θ
θ

−rU
”

(t−s)
e−θ(λU

t −rU) . (10)

The infimum is attained at s = t. Minimizing over θ completes

the proof. �

For comparison we next give the non-asymptotic capacity

results in the network from Figure 1 where node 1 is always

saturated. A probabilistic lower bound on the capacity rate is

for all t, λ̃L
t ≥ 0

P

(

D(t) ≤ λ̃L
t t
)

≤ inf
θ>0

(

t + k − 2

k − 1

)

e
−θ

“

1−
log bθ

θ
−λ̃L

t

”

t
.

(11)

A corresponding upper bound is

P

(

D(t) ≥ λ̃U
t t
)

≤ inf
θ>0

e
−θ

“

1+
log b

−θ
θ

−λ̃U
t

”

t
, (12)

where bθ is defined as in Theorem 2. The proof of these bounds

follows along the lines of the proof of Theorem 2; the key

difference is that in the case when node 1 is always saturated

one has A ∗ S1 ∗ . . . ∗ Sk(t) = S1 ∗ . . . ∗ Sk(t).
For some fixed violation probability ε all the four asymp-

totic bounds (i.e., λL
t , λU

t , λ̃L
t , and λ̃U

t , with t → ∞) scale as

Θ(1) in the number of hops k. However, at a fixed time scale

t, the (non-asymptotic) lower bounds for both unsaturated and

saturated regimes scale as

λL
t , λ̃L

t = Ω (−k) ,

i.e., they decrease linearly in k. Since the non-asymptotic end-

to-end capacity rate decreases at least linearly in k, the two

lower bounds from Eqs. (8) and (11) capture the right scaling,

i.e., Θ(−k).
In turn,the corresponding (non-asymptotic) upper bounds

from Eqs. (9) and (12) scale as

λU
t , λ̃U

t = O (1) ,

which are clearly asymptotically loose. The technical reason

lies in the evaluation of sample bounds using the argument

from the second line of Eq. (10), which does not capture the

decay in k. We note that the underlying bound

P

(

inf
s

Xs ≥ σ
)

≤ inf
s

P (Xs ≥ σ) , (13)

for some stochastic process Xs, has been frequently used

to provide lower bounds on the tail probability for queue

overflow (see for instance [23], [8], [3]). This (rather trivial)

bound has been argued to be reasonably accurate based on

the existence of a dominant time scale in queueing analysis.

However, for the end-to-end scenario herein, this dominant

time scale argument is clearly inapplicable. Asymptotically

tight upper bounds in k remains an open problem.

It is also open whether the Θ(−k) scaling holds for other

types of arrivals, such as heavy-tailed and self-similar, or other

types of network models which may create subtle correlations

between adjacent hops possibly leading to super-linear scaling

decay of the end-to-end (non-asymptotic) capacity rate; such

behavior has been observed in wired networks with packetized

EBB traffic, where end-to-end delays, and hence end-to-end

(non-asymptotic) capacity rates as well, were observed to scale

super-linearly [6].
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Fig. 2. Non-asymptotic capacity rates of the transmission [1 → k+1] in the
network from Figure 1 for different utilization factors u, burstiness parameter
T = 1

λ
+ 1

µ
, and number of hops k (ε = 10−3)

For brief numerical illustrations we consider the case of

a Markov Modulated On-Off (MMOO) process, driven by a

Markov process with two states ‘On’ and ‘Off’ and transition

rates λ and µ between the two, peak rate P while in the ‘On’

state, and burstiness parameter T = 1
λ

+ 1
µ

representing the

average time for the chain to change states twice. Explicit

expressions for rU and rL in Eqs. (1) and (2) are available

in [11].

For the network from Figure 1 we consider the following

numerical settings: the number of nodes within interference

ranges is N = 10, the number of hops is k = 10, and the input

traffic parameters are properly scaled such that the utilization

factor at the first hop is u = .75. Also, the peak rate is twice

as much as the average input rate, and the violation probability

is ε = 10−3.

Figure 2.(a) illustrates the behavior of the upper (UB) and

lower (LB) bounds (i.e., from Eqs. (9) and (8)) on the non-

asymptotic capacity rate of the transmission [1 → k+1] in the

network from Figure 1 with respect to multiple levels of bursti-

ness (T = 1, 10, 100). The figure shows in particular that

the capacity rates are eventually sensitive to burstiness, i.e.,

burstiness eventually dominates the effects of multi-access.

One such effect concerns the situation in which multi-access

may slow down the end-to-end output of a bursty source,

for a sufficiently long time interval, and which may appear

similar as the output of a less bustier source, for the same time

interval. We point out that our analysis, and consequently the

illustrated bounds, fully account for the unknown burstiness

at the relay nodes.

In Figure 2.(b) we show the same bounds as in (a) but

at utilization u = .99, and additionally the upper and lower

bounds for the saturated case from Eqs. (12) and (11). The

figure illustrates the decay of the lower bounds for different

number of hops k = 1, 10, 25, and indicates that at least in

this moderate range the value of k is not the dominant factor,

as the bounds appear to decay slower than the linear theoretical

prediction.

IV. CONCLUSIONS

In this paper we have derived explicit non-asymptotic ca-

pacity rates in terms of both upper and lower bound on their

distributions. The main novelty of the bounds is that they were

obtained under a burstiness constraint at the data source, and a

large traffic class (EBB) has been considered. The value of the

obtained results is that they provide immediate insight on how

the network capacity scales depending on practical parameters

such as the degree of burstiness, the network size, or the

time scales. The paper opens the question whether such non-

asymptotic capacity results are further influenced by subtle

correlations which may arise due to burstiness patterns and/or

network topology.
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