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Abstract. The purpose of this paper is to shed light on the accuracy of
probabilistic delay bounds obtained with network calculus. In particular,
by comparing calculus bounds with exact results in a series of M/M/1
queues with cross traffic, we show that reasonably accurate bounds are
achieved when the percentage of cross traffic is low. We use recent re-
sults in network calculus and, in addition, propose novel bounds based
on Doob’s maximal inequality for supermartingales. In the case of sin-
gle M/M/1 and M/D/1 queues, our results improve existing bounds by

Ω
�

log(1−ρ)−1

1−ρ

�
when the utilization factor ρ converges to one. 1

1 Introduction

Stochastic network calculus is an extension of deterministic network calculus [1–
3] for analyzing network performance in terms of probabilistic backlog and delay
bounds. Compared to its deterministic counterpart, the advantage of stochas-
tic network calculus is that it can account for statistical multiplexing [4–7]. In
addition, the calculus can be applied to a wide class of traffic models including
deterministically regulated, Markov modulated or fractional Brownian motion [8,
9, 7]. The ‘pay-bursts-only-once’ property [3] observed in deterministic network
calculus holds in a probabilistic setting as well [10–12].

One of the main concerns in analyzing networks with performance bounds
is whether the bounds are accurate enough to be applied to practical problems.
As far as network calculus bounds are concerned, there are several approaches
to estimate the bounds’ accuracy. For example, the authors of [4, 8, 13] use sim-
ulation results as benchmarks for calculus bounds. The admissible region of
connections requiring some performance guarantees is compared with two corre-
sponding regions: the region obtained from simulations [5, 6], and the maximal
possible region based on an average rate admission control [6, 7]. Asymptotic
properties of end-to-end bounds are established in both networks where arrivals
and service at the nodes are either statistically independent [11], or subject to
correlations [10].

1 Adopting Landau notation for two sequences fn and gn, we say that fn ∈ O(gn)
and fn ∈ Ω(gn) if the fractions fn/gn and gn/fn, respectively, are bounded. Also,
fn ∈ Θ(gn) if both fn ∈ O(gn) and fn ∈ Ω(gn).



In this paper we take a different approach to estimate the accuracy of net-
work calculus bounds. We apply the calculus to the derivation of end-to-end
delay bounds in a network of M/M/1 queues in series, with cross traffic at each
queue. We then compare the obtained bounds with exact results that are readily
available in M/M/1 queueing networks [14]. This comparative study leads to ac-
curate estimations of the bounds’ behavior, yet it dispenses with computationally
expensive simulations. Moreover, the presented network calculus methodology to
analyze M/M/1 queueing networks can be extended to more general queueing
networks where exact results are usually not available.

Applying the calculus in scenarios specific to queueing network theory con-
tributes to an understanding of some of the complementary features between the
two analytical tools. For instance, queueing networks analysis applies to a small
class of scheduling algorithms (of which we only consider FIFO), whereas net-
work calculus applies to a broader scheduling class. We derive calculus bounds for
static priority (SP) scheduling assuming higher priority for cross traffic. When
the percentage of cross traffic is low, we show that the obtained bounds are
reasonably accurate; however, when the cross traffic dominates the traffic across
the network, then the bounds may degrade significantly.

Another complementary aspect between queueing networks and network cal-
culus is that the former requires statistical independent arrivals, whereas the
latter considers both independent and correlated arrivals. By accounting for the
independence of arrivals in network calculus, we show that much smaller bounds
can be achieved than those holding for correlated arrivals. This indicates that
the independence of arrivals may play a significant role in network calculus for
practical purposes. We mention that queueing networks and network calculus
have been related before in [15] where the effects of traffic shaping on queueing
networks analysis are considered.

In our derivations we use recent results in network calculus, and also propose
novel bounds for the special class of Lévy processes. For the first time in the
context of network calculus, where service is expressed with service curves, we
invoke Doob’s maximal inequality for supermartingales to estimate sample path
bounds. Estimating sample path bounds is a difficult problem in network calculus
[7], and existing solutions generally rely on approximations using extreme value
theory [13, 6], or the derivation of bounding sums with Boole’s inequality [8, 2].
By using Doob’s inequality we can recover exact results in the M/M/1 queue; the
bounds obtained in the M/D/1 queue numerically match the corresponding exact
results. Moreover, our bounds improve those obtained with Boole’s inequality
by Ω

(
log(1−ρ)−1

1−ρ

)
when the utilization factor ρ converges to one.

We structure the rest of the paper as follows. In Section 2 we derive perfor-
mance bounds in a network calculus with effective bandwidth and a formulation
of a statistical service curve that generalizes several existing definitions. In Sec-
tion 3 we improve these bounds by exploiting the special properties of Lévy
processes. In Section 4 we apply the network calculus bounds from Sections 2
and 3 to queueing networks with exact solutions, and show numerical compar-
isons. Finally, in Section 5, we present brief conclusions.



2 Performance Bounds

We consider a discrete time domain with discretization step τ0 = 1. The cu-
mulative arrivals and departures at a node are modelled with nondecreasing
processes A(t) and D(t), where A(0) = D(0) = 0. We denote for convenience
A(s, t) = A(t) − A(s). The corresponding delay process at the node is denoted
by W (t) = inf {d : A(t− d) ≤ D(t)}.

We assume that the moment generating function of the arrivals is bounded
for all s ≤ t and some θ > 0 by

E
[
eθA(s,t)

]
≤ eθρa(θ)(t−s) . (1)

The quantity ρa(θ) is called effective bandwidth [16] and varies between the
average and peak rate of the arrivals. Effective bandwidths can be obtained for
a wide class of arrivals [16], or traffic descriptions with effective envelopes [7].

In network calculus, the service at a node is usually expressed with ser-
vice curves that are functions specifying lower bounds on the amount of service
received. We now introduce a service curve formulation that generalizes several
existing formulations. This service curve is particularly useful in network scenar-
ios where services at the nodes are either statistically independent or correlated;
moreover, the service curve can account for the benefits of (partial) statistical in-
dependence. Let us first define the convolution operator for two doubly indexed
processes f and g as f ∗ g(u, t) = infu≤s≤t {f(u, s) + g(s, t)}; also, we denote
f ∗ g(t) := f ∗ g(0, t).

We say that a nonnegative, doubly indexed random process S(s, t) is a sta-
tistical service curve if for all t, σ ≥ 0

Pr
(
D(t) < A ∗ [S − σ]+ (t)

) ≤ ε(σ) , (2)

where we denoted [x]+ = sup{x, 0}. The nonnegative, nonincreasing function
ε(σ) is referred to as the error function. When ε = 0 then Eq. (2) recovers
a service curve from [2, 11]2; if further S(s, t) is non-random and stationary
(depending on t − s, and invariant of s or t alone), then S is a deterministic
service curve [2]. If S(s, t) is non-random and stationary then Eq. (2) recovers a
definition from [10]. In the most general form, S(s, t) is random and ε ≥ 0.

Similar to the condition on the arrivals from Eq. (1), we assume that the
Laplace transform of service curves is bounded [11] for some θ > 0 by

E
[
e−θS(s,t)

]
≤ M(θ)e−θρs(θ)(t−s) . (3)

The next theorem provides delay bounds at a node where the service is
given with statistical service curves. The presented bounds generalize the bounds
obtained in [11] for the special case when ε = 0.

2 We say that ε = 0 whenever ε(σ) = 0 for all σ.



Theorem 1. (Delay Bounds) Consider a network node offering a statistical
service curve S(s, t) with error function ε(σ) to an arrival process A(t). Assume
that A(t) and S(s, t) are statistically independent, and are bounded according to
Eqs. (1), (3) with parameters ρa(θ), M(θ), ρs(θ), for some θ > 0. If ρ(θ) =
ρs(θ)− ρa(θ) > 0, then a delay bound is given for all discrete t, d ≥ 0 by

Pr
(
W (t) > d

)
≤ inf

σ

{
M(θ)

e−θρs(θ)d

θρ(θ)
eθσ + ε(σ)

}
. (4)

Proof. In the first part of the proof we separate the estimation of the delay bound
into a service curve bound and a sample path bound. The latter is estimated in
the second part of the proof.

Fix σ and some discrete times t, d. Assume that for a particular sample path
the following inequality holds

D(t) ≥ A ∗ [S − σ]+ (t) , (5)

such that we can write

W (t) > d ⇒ A(t− d) > D(t) ⇒ A(t− d) > A ∗ [S − σ]+ (t) .

It follows that

Pr (W (t) > d) ≤ Pr
(
A(t− d) > A ∗ [S − σ]+ (t)

)
+ Pr

(
Eq. (5) fails

)

≤ Pr

(
sup

0≤s<t−d
{A(s, t− d)− S(s, t)} > −σ

)
+ ε(σ) . (6)

We remark that the points s = t − d, . . . , t do not contribute to the supremum
in Eq. (6) (due to the positivity constraint). Next, to estimate the sample path
bound in Eq. (6), we apply Boole’s inequality and the Chernoff bound

Pr

(
sup

0≤s<t−d
{A(s, t− d)− S(s, t)} > −σ

)
≤

t−d−1∑
s=0

E
[
eθ(A(s,t−d)−S(s,t))

]
eθσ

≤ M(θ)
t−d−1∑

s=0

eθρa(θ)(t−d−s)e−θρs(θ)(t−s)eθσ ≤ M(θ)
e−θρs(θ)d

θρ(θ)
eθσ . (7)

In Eq. (7) we first used the independence of A and S. Then we substituted the
bounds from Eqs. (1) and (3), and finally applied the inequality

∑
s≥1 e−as ≤

1/a, for a > 0. The proof is completed by minimizing over σ. ut
Consider now a flow along a network path with H nodes. Assume that the

service given to the flow at each node is expressed by a statistical service curve
Sh(s, t) with error function εh(σ). Then, the service given to the flow by the net-
work as a whole can be expressed using a statistical network service curve, such
that end-to-end performance bounds can be derived using single node bounds.
If εh = 0, then the network service curve is given by Snet = S1 ∗ . . . ∗ SH [11].
A similar expression can be constructed in the case when εh ≥ 0 [10].



For the rest of the section we show how to construct leftover service curves
for a tagged flow at a node, in terms of the capacity left unused by the remaining
flows. Consider a workconserving network node operating at a constant rate R.
We denote by A(t) a tagged flow (or aggregate of flows) at the node, and by
Ac(t) the aggregate of the remaining flows; Ac(t) is referred to as cross traffic.
We assume SP scheduling with A(t) getting lower priority.

If A(t) and Ac(t) are statistically independent, then a leftover service curve
is given by

S(s, t) = R(t− s)−Ac(s, t) , (8)

with error function ε = 0 [11]. Assume now that A(t) and Ac(t) are not necessar-
ily independent, and that Ac(t) is bounded according to Eq. (1) with parameter
ρc(θ) < R, for some θ > 0. Then for any choice of δ > 0, a leftover service curve
is given by

S(t) = (R− ρc(θ)− δ) t with ε(σ) =
1
θδ

e−θσ . (9)

The proof of Eq. (9) proceeds similarly as the proof of Theorem 3 in [10] and
is omitted here (the main difference is that here we use effective bandwidth to
describe arrivals, whereas [10] uses statistical envelopes).

Although leftover service curves give a worst case view on the per-flow service,
they have the advantage of leading to simple, closed-form expressions for the
performance bounds of interest. Tighter per-flow service curves can be derived
for GPS or EDF schedulers, but their notation increases and the differences with
SP service curves at a single-node are small [7].

3 Performance Bounds for Lévy Processes

In this section we assume that the arrivals and service curves are Lévy processes.
Using the special properties of Lévy processes, i.e., independent and stationary
increments, we show that we can improve the performance bounds obtained
in the previous section. We discretize Lévy processes (that are defined in a
continuous time domain) with discretization step τ0 = 1.

Theorem 2. (Delay Bounds for Lévy processes) Consider the hypothesis
from Theorem 1. In addition, assume that A(t) and S(s, t) are Lévy processes
and that the following condition holds

M(θ)e−θρ(θ) ≤ 1 . (10)

Then, a statistical delay bound is given for all discrete t, d ≥ 0 by

Pr
(
W (t) > d

)
≤ inf

σ

{
M(θ)e−θρ(θ)e−θρs(θ)deθσ + ε(σ)

}
. (11)

The delay bounds obtained in Theorem 2 are smaller than those obtained in
Theorem 1; the reason is that e−θρ(θ) < (θρ(θ))−1, for all θ > 0. Note that the
difference becomes large when θρ(θ) → 0 (i.e. at very high utilizations).



The proof’s main idea is to estimate sample path bounds using Doob’s
maximal inequality for supermartingales. This technique is applied in a clas-
sic note by Kingman [17] to the derivation of exponential backlog bounds in
GI/GI/1 queues. Since Kingman’s note, several works use related supermartin-
gales techniques to derive exponential bounds (e.g. in queueing systems with
Markovian arrivals [18, 19], or in stochastic linear systems under the (max,+)
algebra [20]). Here we integrate the technique with supermartingales in network
calculus, where service is expressed with service curves. Using the properties of
service curves, supermartingales can then be directly applied to analyze many
scheduling algorithms and multi-node networks.

Proof. We adopt the first part of the proof of Theorem 1. The rest of the proof
estimates the sample path bound from Eq. (6) by first constructing a super-
martingale, and then invoking Doob’s maximal inequality.

Fix t, d, σ. For positive s with s ≤ t− d we construct the process

T (s) = eθ(A(t−d−s,t−d)−S(t−d−s,t)),

with the associated σ−algebras Fs generated by A(t − d − s, t − d) and S(t −
d− s, t). We can write

E [T (s + 1) ‖ Fs] = E
[
T (s)eθ(A(t−d−s−1,t−d−s)−S(t−d−s−1,t−d−s)) ‖ Fs

]

= T (s)E
[
eθ(A(1)−S(1))

]
≤ T (s)M(θ)e−θρ(θ) ≤ T (s) . (12)

In Eq. (12) we first used the fact that A and S are independent Lévy processes,
then we substituted the bounds from Eqs. (1) and (3), and finally we used the
condition from Eq. (10).

From Eq. (12) we obtain that T (1), T (2), . . . , T (t− d) form a supermartin-
gale. We can now estimate the sample path bound from Eq. (6) as follows

Pr

(
sup

0≤s<t−d
{A(s, t− d)− S(s, t)} > −σ

)
≤ Pr

(
sup

s
T (s) > e−θσ

)

≤ E [T (1)] eθσ ≤ M(θ)e−θρ(θ)e−θρs(θ)deθσ (13)

In Eq. (13) we first invoked Doob’s inequality (see [17]) for the supermartingale
T (s), and the rest follows as in Eq. (12). The proof is completed by minimizing
over σ. ut

Finally we show how to exploit the properties of Lévy processes to the con-
struction of leftover service curves. Consider the scenario from the end of Sec-
tion 2, with a node serving a tagged flow A(t) and some cross traffic Ac(t). If, in
addition, the cross traffic Ac(t) is a Lévy process, then a leftover service curve
for the tagged flow A(t) is now given by

S(t) = (R− ρc(θ)) t with ε(σ) = e−θσ . (14)

The proof for Eq. (14) can be constructed by invoking Doob’s maximal inequal-
ity, similarly as in the proof of Theorem 2. Note that the service curve in Eq. (14)
is tighter than the one given in Eq. (9); the difference becomes significant when
the rate of Ac(t) approaches the rate R.



4 Applications to Queueing Networks with Exact
Solutions

In this section we apply network calculus to the derivation of delay bounds in
queueing networks. For single M/M/1 and M/D/1 queues we show that by using
the special properties of Lévy processes, the derived bounds match the exact
results. In the multi-node case we investigate the bounds’ behavior depending
on factors such as the traffic mix in the network and the statistical independence
of arrivals.

We assume that exogenous flows at a node (queue) consist of packets arriving
according to a Poisson process N(t) with rate λ. Since a Poisson process is given
in a continuous time domain, we discretize time as in Sections 2 and 3 with
step τ0 = 1. Each node serves packets at rate µ and each flow is locally FIFO.
For stability, we assume that the utilization factor ρ = λ/µ is less than one.
To fit a queueing model with network calculus, we construct the arrival process
A(t) =

∑N(t)
i=1 Xi, where Xi represents the service time of the i’th packet [16].

In the single node-case is sufficient to model the service with a deterministic
service curve S(t) = t that induces a fluid view of the service (infinitesimal
service unit). However, in the multi-node case the output from a node h may be
the input at the next node h + 1. Consequently, we introduce packetizers [21] to
enforce that, for each packet, the starting processing time at node h + 1 can be
no sooner than the completion time at node h. Packetizers can be ignored at the
last node [21], hence no packetizer is needed in the single-node case. A packetizer
can be described with the service curve S(s, t) =

[
t− s− 1−Xf (t)

]
+
, where

Xf (t) denotes the time already spent in service by the packet currently in service
at time t. The substraction of 1 in the expression of S(s, t) is a consequence of
discretizing continuous time processes.

Along with the derivation of bounds, we provide numerical comparisons with
exact results for the following setting. Each node has a service rate R = 100 Mbps
and the average size of packets is 400 Bytes. We optimize the delay bounds over
the parameter τ0. We show the delays on a milliseconds time scale, and with
violation probability ε = 10−6. The numerical comparisons reflect the sensitivity
of the bounds to factors such as different network loads or number of nodes.

4.1 Single M/M/1 and M/D/1 Queues

Here we apply network calculus to the analysis of two of the most common
queueing models, namely the M/M/1 and M/D/1 queues.

In the M/M/1 queue the service times Xi are exponentially distributed (Xi ∼
exp(µ)). The distribution of the steady state delay W = limt→∞W (t) is given
by [14]

P (W > d) = e−µ(1−ρ)d . (15)

Next we derive two network calculus delay bounds for the M/M/1 queue.
First, the conditions from Eqs. (1) and (3) yield ρa(θ) = λ

µ−θ , M(θ) = 1, and
ρs(θ) = 1 for all 0 < θ < µ. One delay bound is obtained by plugging in these



values into Eq. (4) from Theorem 1 (recall that ε(σ) = 0). Moreover, since A(t)
is a Lévy process, a second delay bound can be obtained with Eq. (11) from
Theorem 2. Remarkably, by choosing θ = µ− λ, the latter delay bound recovers
the exact result from Eq. (15). We note that the same bound is obtained by
Kingman in [17], but for the waiting time in the queue.

For some fixed violation probability ε, let us solve for the ε-quantiles in
Eqs. (4) and (11) yielding d1 and d2, respectively. Then we have d1 − d2 ≥
1
θ log 1

θ(1−ρa(θ)) , implying that d1 − d2 ∈ Ω
(

log(1−ρ)−1

1−ρ

)
as ρ → 1.

In the M/D/1 queue the service times Xi are constant. The distribution of
the steady state delay W is given by [22]

P (W > d) = 1− (1− ρ)eλd
T∑

k=0

(kρ− λd)k

k!
e−(k−1)ρ , (16)

where T = bdµc denotes the largest integer less than or equal to dµ. This formula
poses numerical complications when ρ is close to unity, due to the appearance
of large alternating, very nearly cancelling terms (note that the factor kρ − λd
is negative). We evaluate Eq. (16) using a numerical algorithm from [22].

Next we derive delay bounds for the M/D/1 queue with network calculus.
The conditions from Eqs. (1) and (3) give ρa(θ) = λ

θ

(
e

θ
µ − 1

)
, M(θ) = 1, and

ρs(θ) = 1 for all θ > 0 satisfying ρs(θ)− ρa(θ) > 0. One delay bound is obtained
by plugging in these values into Eq. (4) from Theorem 1. Since A(t) is a Lévy
process, a second delay bound is obtained with Eq. (11) from Theorem 2. As
shown above, the latter delay bound improves the former by Ω

(
log(1−ρ)−1

1−ρ

)
.

Figures 1.(a) and (b) show that the bounds obtained with Theorem 2 improve
the bounds obtained with Theorem 1 at very high utilizations, as a consequence
of accounting for the special properties of Lévy processes. For small to high
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Fig. 1. Delay bounds at a node as a function of the utilization factor (node’s service
rate R = 100 Mbps, average packet size 400 B, violation probability ε = 10−6).



utilizations, the bounds closely match and are not depicted. This indicates that
the use of Boole’s inequality in estimating sample path bounds can lead to
conservative bounds, but only at very high utilizations. Figure 1.(b) also shows
that, at all utilizations, the M/D/1 delay bounds obtained with Theorem 2
exactly match the exact results from Eq. (16).

4.2 M/M/1 Queues in Series

Now we analyze a network with H nodes arranged in series. A Poisson through
flow A(t) with rate λ traverses the entire network; moreover, a Poisson cross
flow Ah(t) with rate λc transits each node h, and exits the network thereafter.
Each packet has independent and exponentially distributed service times at each
traversed node [14]; also, the flows and the service times of packets are assumed
independent. The utilization factor is now ρ = (λ + λc) /µ.

This network is an M/M/1 queueing network where exact results are avail-
able. In particular, considering FIFO scheduling, the steady-state end-to-end
delay Wnet of the through flow has a Gamma distribution Γ (µ(1− ρ), H) [14]:

P (Wnet > d) =

(
H−1∑

k=0

(µ(1− ρ)d)k

k!

)
e−µ(1−ρ)d . (17)

Next we derive two end-to-end delay bounds for SP scheduling (A(t) gets
lower priority) with network calculus. The first one uses the independence of
A(t) and Ah(t), and is constructed using techniques from [11]. The second bound
is obtained using techniques from [10], that apply for both independent or cor-
related arrivals. Observe first that the condition from Eq. (1) gives ρa(θ) = λ

µ−θ .
Using the statistical independence of arrivals: Using Eq. (8), a

leftover service curve for the through flow at node h is given by Th(s, t) =
[t − s − Ah(s, t)]+. Convolving Th(s, t) with the service curve corresponding to
the packetizer at each node, we obtain that the service at node h is described with
the service curve Sh(s, t) =

[
t− s−Ah(s, t)− 1−Xf

h (t)
]
+
. Therefore, the ser-

vice given by the network to the through flow can be expressed with the network
service curve Snet(s, t) = S1 ∗ S2 ∗ . . . ∗ SH(s, t) [11]. Using E

[
eθXf

h(t)
]

= µ
µ−θ

and denoting K = eθµ
µ−θ , the Laplace transform of Snet(s, t) gives

E
[
e−θSnet(s,t)

]
≤

∑

s=x0≤x1≤···≤xH=t

E
[
e−θ(t−s−PAh(xh,xh+1)−H−PXf

h(xh+1))
]

≤
(

t− s + H − 1
H − 1

)
KHe−θ(1− λc

µ−θ )(t−s) . (18)

The binomial coefficient is the number of combinations with repetitions. Match-
ing the last equation with Eq. (3) yields M(θ) =

(
t−s+H−1

H−1

)
KH and ρs(θ) =

1 − λc

µ−θ . Since M(θ) depends on t − s, Theorems 1 and 2 do not apply. How-
ever, we can use the proof of Theorem 1 and plug M(θ) into Eq. (7). Using



∑
s

(
s+H−1

H−1

)
as =

(
1

1−a

)H

for 0 < a < 1 [11],
(
1 + 1

x

)x ≤ e for x > 0, and

optimizing τ0 = 1
θρ(θ) log(1 + ρ(θ)) where ρ(θ) = ρs(θ)− ρa(θ) > 0, we obtain

Pr
(
Wnet(t) > d

) ≤
(

e
µ

µ− θ

1 + ρ(θ)
ρ(θ)

)H

e−θρs(θ)d . (19)

Lastly, the parameter θ is optimized numerically.
Without the statistical independence of arrivals: Now we derive

delay bounds that hold for both independent and correlated arrivals. Using
the Lévy properties of Ah(t), we first get the leftover service curve T h(s, t) =(
1− λc

µ−θc

)
(t − s) with error function εh(σ) = e−θcσ for some θc > 0 (see

Eq. (14)). Taking into account the packetizers, the service at node h is given
by the service curve Sh(s, t) =

[(
1− λc

µ−θc

)
(t− s)− 1−Xf

h (t)
]

with error

function εh(σ). Then, the network service curve [10] is given by Snet(s, t) =
[
ρs(θc)(t − s) −H −∑

Yh

]
+

with error function εnet(σ) = H
(

1
θcδ

)H−1
H

e−
θc
H σ,

where δ > 0, ρs(θc) = 1− λc

µ−θc
−(H−1)δ and Yh ∼ exp(µ). Proceeding as before

and optimizing τ0 = 1
θρ(θ,θc)

log(1+ρ(θ, θc)) where ρ(θ, θc) = ρs(θc)−ρa(θ) > 0,
we obtain

Pr
(
Wnet(t) > d

) ≤ α

θc

(
1
δ

)Hθ
α

(
e

µ

µ− θ

1 + ρ(θ, θc)
ρ(θ, θc)

)Hθc
α

e−
θθc
α ρs(θc)d , (20)

where α = Hθ + θc. The parameter δ can be optimized as in [10]. Lastly, the
parameters θ and θc are optimized numerically.

Figure 2.(a) illustrates the delay bounds from Eqs. (19), (20) for fixed ρ =
75%, through traffic percentages of 50% and 90%, and different number of nodes
H. The bounds approach the exact results from Eq. (17) when the percentage of
cross traffic is low (less than 10%), and when accounting for the independence
of arrivals (Eq. (19)). Increasing the cross traffic mix leads to more conservative
bounds, due to the higher priority given to cross traffic. The decay of the bounds
is more visible when dispensing with the independence of arrivals (Eq. (20)).
This indicates that the leftover service curves holding for adversarial arrivals
give much smaller service than those holding for independent arrivals.

In Figure 2.(b) we illustrate the delay bounds for 10 nodes, 90% through
traffic, and variable utilization factor ρ. This figure shows that, at all utilizations,
the independence of arrivals leads to much smaller bounds than those holding
for adversarial arrivals. Therefore, the independence of arrivals appears to play
a significant role in network calculus for practical purposes. From an asymptotic
point of view, the delay bounds from Eq. (19) grow as Θ(H), whereas the delay
bounds from Eq. (20) grow as Θ(H log H); the extra logarithmic factor stems
from dispensing with the independence of arrivals [23].

Finally, we remark that the network calculus bounds derived in this section
can be extended to more general queueing networks where exact results are usu-
ally not available. Such an extension reduces to the derivation of bounds on the
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Fig. 2. End-to-end delay bounds in a M/M/1 network as a function of (a) number of
nodes and (b) utilization factor; the through traffic percentages are 50%, 90% in (a),
and 90% in (b); nodes’ service rate R = 100 Mbps, average packet size 400 B, ε = 10−6.

moment generating functions of A(t) =
∑N(t)

i=1 Xi and Xi. Moreover, one can
adapt the presented calculus to analyze queueing networks with constant service
times of packets at each traversed node. A solution consists in describing pack-
etizers with non-random service curves whose convolution can be analytically
expanded without independence requirements, as needed for Eq. (19) (see [23]).

5 Conclusions

We have explored the accuracy of stochastic network calculus bounds by com-
paring them with exact results available in product-form networks. The single-
node analysis showed that the bounds are tight at most utilizations and, by
using the independent increments property of arrivals we could recover exact
M/M/1 results and numerically match M/D/1 results. The multi-node analysis
showed that for some scenarios (low percentage of cross traffic and account-
ing for independence of arrivals), the obtained bounds are reasonably accurate.
Nevertheless, there exist complementary scenarios where the calculus may yield
conservative bounds, due to the worst-case representation of service with leftover
service curves and dispensing with statistical independence.
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