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Abstract—The migration of voice communication from the
Public Switched Telephone Network to the Internet pushes the
need to adequately size network resources such as buffers and
capacity. This paper addresses the problem of how these resources
should be scaled in the number of voice flows N in order to
guarantee predefined packet loss probabilities and end-to-end
delays. By deriving non-asymptotic buffer overflow probabilities
at both edge and interior network nodes, the paper demonstrates
that O(1) buffers are sufficient to ensure probabilistic packet
loss constraints at all utilizations. Also, by deriving end-to-
end delay bounds, the paper shows that the required per-flow
capacities are bounded by O (&) when probabilistic end-to-
end delay guarantees are sought. Numerical examples illustrate
that statistical multiplexing dominates the effect of scheduling in
multi-nodes scenarios with high capacities.

I. INTRODUCTION

The problem of network dimensioning concerns with the
allocation of network resources such that the transmitted
data meets some Quality of Service (QoS) requirements. For
instance, in the Public Switched Telephone Network (PSTN),
the capacity of a telephone switch can be dimensioned using
the classical Poisson arrival model for telephone calls [19]
and the Erlang’s loss formula [20], in order to meet call drop
probabilities typically below one percent. These early works of
Erlang on PSTN modelling and analysis are broadly regarded
as representing the foundation for the classical queueing
theory.

Since much recently, voice communication started to mi-
grate from the PSTN to the Internet. Because PSTN and
Internet’s underlying technologies are fundamentally different,
i.e., circuit-switched vs. packet-switched, network dimension-
ing solutions for the PSTN are not directly applicable to the
Internet. In fact, the analysis of a packet-switched network
is a much harder problem due to the interleaving of packets
from multiple flows on the same link (statistical multiplexing)
and the presence of buffers at the packet switches. This paper
provides analytical results on loss and end-to-end delays,
which can be in principle used to predict the Quality of
Experience (QoE) level of voice calls with the ITU’s E-
Model (see Eq. (1) in [24]).

A voice source can be abstracted as a sequence of alter-
nating active and silence periods; during the active period the
source produces data at some constant rate and during the
silence period the source is idle. The consideration of both
active and silence periods, rather than just of the active period,
leads to significant resource savings in a network carrying data

produced by multiple voice flows. For instance, the application
of digital speech interpolation in time division multiple access
(TDMA) satellite systems can yield capacity savings at the
Earth stations of as large as 50% [22]. Similar savings can also
be reached in packet networks due to the underlying statistical
multiplexing principle.

Since the active and silence periods of a voice source are
reasonably well represented by exponential random variables,
a commonly used analytical model for voice is the Markov-
modulated On-Off (MMOO) process [31]. An exact deriva-
tion of buffer overflow probabilities when multiplexing many
MMOQO processes has been carried out for a single server with
infinite sized buffer in the seminal paper of Anick, Mitra, and
Sondhi [1]. The analysis is based on a fluid representation
of the arrival MMOO processes and a constant rate server,
meaning that the traffic and service units are infinitesimal. The
buffer overflow probability is expressed as a sum of negative
exponentials where the exponents are computable eigenvalues.
For numerical purposes, the sum is usually approximated by
the term containing the smallest negative eigenvalue, which
dominates the sum; this dominant term is independent of
the number of flows [31]. For other traffic models for voice
multiplexers we refer to [17].

In this paper we analyze the fluid MMOO model from [1] in
a scenario with many nodes by adopting a network calculus
approach. With this approach, the arrival processes are rep-
resented using bounds on their moment generating functions
(MGF), and the service received by a subset of arrivals at a
node is represented in terms of probabilistic lower bounds set
by service curves [9], [23]. While the obtained results in the
single node case are provided only in terms of bounds (e.g.
on the buffer overflow probability), the key advantage of the
network calculus approach is that it can be easily extended
to multi-node scenarios. The idea behind the simplification of
analyzing multi-node scenarios is that it is generally much
easier to provide bounds on the nodes’ departures than to
exactly characterize them. Using network calculus techniques
we are able to derive buffer overflow probabilities at interior
network nodes and also end-to-end delay bounds. These results
are then directly applied to two network problems: (1) buffer
dimensioning in order to guarantee certain loss probabilities,
and (2) the minimum per-flow capacity at the nodes in order
to guarantee probabilistic end-to-end delays.

We find that O(1) buffers, in the number of flows N,
are sufficient to guarantee any predefined loss probabilities



at all utilizations in a network with FIFO scheduling carrying
voice traffic. The O(1) buffering scheme generally applies to
traffic with exponentially decaying tails (e.g. voice) carried
over open-loop UDP. This parallels a known buffering scheme
for TCP traffic which argues that O(1) buffers suffice in order
to guarantee high link utilizations [18]. The result from [18]
improved earlier buffer dimensioning schemes for TCP flows
which suggested O(N) (the bandwidth-delay product formula
[33]) and O(\/N) buffer sizing [2].

Also, we find that O (4) per-flow capacities suffice in
order to guarantee probabilistic end-to-end delays in a network
with general scheduling. This is a direct consequence of
the derived end-to-end delays which decay exponentially fast
in the number of flows IN. Moreover, numerical examples
illustrate that by increasing N, or equivalently the capacity,
most of the statistical multiplexing gain is captured, and also
scheduling is dominated by statistical multiplexing.

From a technical point of view, our contribution is an
extension of the network calculus formulation from [9], [23] to
a continuous time setting appropriate to analyze the MMOO
model from [1]. Also, we extend a service curve available
for FIFO scheduling [16] in a probabilistic framework. In
this way, we are able to compute non-asymptotic backlog
bounds at interior network nodes and show that they behave
as in a decomposed network where the upstream nodes can be
ignored [21]. Similar decomposition results have been reported
recently from an asymptotic point of view [32], [35], [21]
and non-asymptotically but under additional independence
assumptions of the arrivals (e.g. statistically independent in-
crements) [13]. Our results further advocate the use of FIFO—
perhaps the simplest algorithm to minimize the amount of time
and hardware for resolving contention among arrival flows—by
providing evidence that it can significantly simplify network
analysis using decomposition arguments.

The network calculus approach to analyze queueing systems
in terms of bounds, instead of exact results, was proposed by
Cruz [15]. Initially formulated as an analytical tool to compute
deterministic backlog and delay bounds (i.e. never violated),
the network calculus was later extended in a probabilistic
framework in order to exploit statistical multiplexing [37], [8],
[26], [4]. When carrying out a probabilistic analysis, a key
step commonly used in the calculus to compute backlog or
delay bounds is to use the Chernoff bound together with the
inequality

Pr (stsle(s) > cr> < ZPT (X(s)>o0) , (1)

for some random process X (s) with negative mean and o > 0.
Sharper bounds for the left-hand side term of Eq. (1) can be
obtained for Markovian traffic using supermartingales [7], [10]
or matrix analytical techniques [29].

The Inequality (1) can yield tight bounds for Poisson
arrivals [12], due to their additivity. On the other hand, it
can yield overly conservative bounds for arrivals burstier than
Poisson [11], which is the case of MMOO flows. This is due
to the fact that the combination of the Chernoff bound and

the Inequality 1 is closely related to the effective bandwidth
approximation for the steady-state backlog B

Pr(B>o)~e %,

which is invariant to the number of traffic flows N (here, a is
a constant). This approximation was corrected to

Pr(B>o) = e~ NI(%) ,

where I(-) is a shape function depending on the cumulant
generating function of the arrivals [5]. This improvement sug-
gests that the buffer overflow probabilities decay exponentially
in N (see also [11] for numerical evidence). Similar scalings
have been obtained using the Bahadur-Rao inequality [3] in
[30], [28]. However, these results, as well as those from [7],
[10], [29], do not readily extend to interior network nodes, for
which reason we will resort in our analysis on the combination
of Chernoff bound and Inequality 1.

The rest of the paper is structured as follows. In Section II
we review MMOO processes and introduce the main network
calculus models for arrivals and service. In Section III we
address the problem of buffer dimensioning and provide
backlog bounds in a network with two nodes. In Section IV
we address the problem of capacity dimensioning in a network
such that the end-to-end delays are below a certain threshold.
Brief conclusions are finally presented in Section V.

II. ARRIVAL AND SERVICE MODELS

We use a continuous time model. The arrivals and departures
at a node are modelled with non-decreasing, left-continuous
processes. Each node serves the arrivals in a fluid-flow manner
and stores the backlog in an infinite sized buffer. For any
arrival process A(t) we introduce for convenience the bivariate
process A(s,t) = A(t) — A(s). We also assume the initial
condition A(0) = 0 and the causal condition D(t) < A(t),
where D(t) is the departure process. The backlog process is
denoted by B(t) = A(t) — D(t), and the delay process is
denoted by W (t) =inf {d: A(t —d) < D(t)}.

To model voice traffic we use Markov-modulated pro-
cesses [31]. Such a process is based on a homogenous and
continuous-time Markov chain X (¢) with two states denoted
by ‘On’ and ‘Off’, and with the transition matrix

Qz(}” _“A)-

Here, i1 and A represent the transition rates from the ‘On’ state
to the ‘Off” state, and vice-versa, respectively. In the steady-

state, the average dwell time of the process X (¢) in the ‘On’

state is %, and the average dwell time in the ‘Off” state is §.

A
P
Fig. 1: A Markov-modulated On-Off traffic voice model.



Then, a continuous-time arrival process A(t) is a Markov-
modulated On-Off process driven by the Markov process X (t)
if its instantaneous arrival rate is either P or zero, depending
whether X (¢) is in the ‘On’ or ‘Off” states, respectively (see
Figure 1).

Average
‘On’ time
y 5:0.45 \ 1=06s \ P =64 Kb/s \ r =256 Kb/s \

Average Peak Average
‘Off” time rate rate

TABLE I: Parameters for a voice source.

For numerical illustrations we choose the values from
Table I for the parameters of a voice flow. These values suggest
that as much as P/r = 2.5 more voice flows can be potentially
admitted using packet-switched schemes than when using pure
circuit-switched schemes [31].

We now briefly introduce the network calculus models to
represent arrivals and service. Arrivals are modelled using
bounds on their MGFs [9], [23]. Concretely, we assume that
the MGF of an arrival process A(t) is bounded in the sense
that for all # > 0 there exists a rate r > 0, which depends on
0, such that for all ¢ > 0

sup E [eeA(s,s+t)] <Pt @)
s>0

When this holds we say that A(t) is bounded by an MGF
envelope with rate r; this rate is usually referred in the
literature as the effective bandwidth of A(t) [25]. In particular,
for the MMOO process from Figure 1, the rate r satisfies the
inequality [14]

1 2
< = — =X+ — o+ + )
<5 (PH w—A \/(Pt9 w+A) 4)\u>

An important property of MGF envelopes is that if a
number N of statistically independent flows A,(¢) have MGF
envelopes with rates r; for some 8 > 0, respectively, then
the aggregate flow A(t) = Z]\Ll A;(t) has an MGF envelope
with the additive rate » = ) ;" , 7. This additive property is
instrumental to exploit the statistical multiplexing at a node
with multiple inputs.

While the arrivals are described using upper bounds on their
moment generating functions, the service given by a node to
a flow, or an aggregate of flows, is described by probabilistic
lower bounds set by service curves. Concretely, a random
process S(s,t) is a statistical service curve (referred in [9]
as a dynamic F-server) for the arrivals A(t) if the departures
D(t) satisfy for all t >0

D(t) > A% S(t) .

The inequality is assumed to hold almost surely, and ‘x’ is
the (min,+) convolution operator, defined as A * S(t) =
infogsgt {A(S) + 8(87 t)}

This paper uses two types of statistical service curves for
general and FIFO scheduling. General scheduling, or aggregate
scheduling [6], does not specify any arbitration order among

the flows. Suppose that an arrival flow A(t), together with
some cross arrival flow A.(t), are served at a node with
capacity C' and general scheduling. Then, the node offers the
flow A(t) the so called leftover service curve S(s, t) satisfying
for all 0 < s <t [23]

S(s,t) =[C(t—s) - AC(S,t)]+ ) (3)

where [z]; denotes the positive part maz(x,0) of a real
number z. Note that this service curve holds in the worst-
case when A(t) receives the lowest priority at a static priority
scheduler, whence the name of a leftover service curve. In
turn, if A(t) and A.(t) are served according to a FIFO policy,
then the node offers the flow A(¢) the service curve

S(s,t) =[C(t =) — Ac(s,t — )] Lpp—snay » (D)

where > 0 is a free parameter, and 1{.} is the indicator
function. The FIFO service curve recovers the leftover service
curve from Eq. (3) by setting x = 0, and it provides tighter
lower bounds on the service. FIFO service curve were previ-
ously proposed in the context when A.(¢) has a deterministic
envelope, i.e., a function G.(t) satisfying A.(t) — A.(t) <
Ge(t —s) for all 0 < s < ¢t [16], [6]. In the probabilistic
framework herein, Eq. (4) can be proven by extending the
proof of Theorem 6.2.1 from [6] to sample-paths and bivariate
processes.

Having a service curve definition with random processes it
is convenient to assume the existence of MGF bounds [23].
Unlike bounding the arrivals from above as in Eq. (2), the ser-
vice curves are bounded from below. Concretely, a statistical
service curve S(s,t) has an MGF bound if for some choice
of 8 > 0 there exists a prefactor K and a rate » > 0, both
depending on 6, such that for all 0 < s <t

E {6705(5,0} < Ke0r(i=s) | (5)

At a single node, backlog and delay bounds for an arrival
process A(t) can be derived in terms of a sum containing the
MGF bounds on the arrivals and service of A(¢) [23]. In turn,
in a multi-node scenario, if A(t) crosses H nodes in series,
each offering a service curve Sh(s,t), h =1,...,H, then
A(t) is offered the (network) service curve [9]

S(s,t) =S' xS % ... xS (s,1) . (6)

With this service curve, single node results can be directly
applied to derive end-to-end backlog and delay bounds for the
arrivals of A(t).

III. BUFFER SCALING

In this section we address the problem of buffer dimen-
sioning in the network from Figure 2 such that the loss
probabilities at the two nodes are below a certain threshold.
The network has two nodes traversed by n MMOO through
flows A;(t) whose aggregate is denoted by A'(¢). Each node
is also traversed by N — n cross flows whose aggregates are
denoted by A;(t) and As(t), respectively. Both nodes have
the scaled capacity C' = Nc¢ with the per-flow normalized
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Fig. 2: Two network nodes with normalized capacities C' =
Nc traversed by n through flows and N — n cross flows.

capacity ¢ > 0. For simplicity of notation we assume that all
flows are homogeneous.

We provide two theorems to compute the buffer overflow
probabilities at both nodes from Figure 2. The first one uses a
direct analysis, while the second one provides a justification to
derive the buffer overflow probability at the second node using
a decomposition approach. The results from the theorems are
illustrated with numerical examples.

Theorem 1: (TOTAL BACKLOG BOUNDS) Consider the net-
work scenario from Figure 2 described above. All flows are
statistically independent and are served according to FIFO
scheduling. Each MMOO flow is bounded by an MGF enve-
lope with rate r depending on 6 > 0 such that » < ¢. Denote
by ¢ = & the proportion of through flows and by p =
the node utilization, relative to 6. Then we have the following
probabilistic bounds on the two backlogs.

1) FIRST NODE: The backlog process B!(t) at the first

node satisfies for all t,0 > 0

PT(B (t) > 0) < gg%{lfpe“’”} NG
2) SECOND NODE: The backlog process B?(t) at the
second node satisfies for all ¢, > 0

K
Pr(Bt) > 0) < inf{ : e—%} C®
>0 |1 —p
Pp
1-¢p 1
where K = (1 >~ dp ) —dp"

The main result of the theorem is the second backlog bound
(the first backlog bound appears also in [13] and is restated
here for completeness). The key idea to derive Eq. (8) is
to represent the service received by the through traffic at
the first node using the FIFO statistical service curve from
Eq. (4). We note that for the same network scenario with
FIFO scheduling another backlog bound at the second node
was recently derived in [13], but under additional statistical
independence assumptions between the interarrivals of the
through flows and past backlog processes.

In the theorem, the first backlog bound grows as O(1) in
the total number of flows IN. On the other hand, for any
fixed number of through flows n, the factor K is uniformly
bounded in /N which implies that the backlog bound at the
second node also grows as O(1). It then follows inductively
that for a network with cross traffic and more than two nodes
the backlog bounds at the downstream nodes are also invariant
to the number of flows N.

The O(1) order of growth immediately extends to the
problem of buffer sizing in order to guarantee some loss prob-
ability. This follows from bounding the cell loss probability
in a finite buffer system with the buffer overflow probability
in an infinite buffer system, up to some constant invariant to

N (see [36], [34]).

PROOF. Fix t > 0, # > 0 such that r < ¢, and o. We first
give the proof to derive the first backlog bound and later use
it to derive the second backlog bound.

Denote the total arrival process at the first node by A(t) =
AL(t) + Ay(t), and the corresponding departures by D(t).
Because the node offers the arrivals A(t) a service curve

S(s,t) = Ne(t — s) [9], we can write for the first backlog
B(t) = A(t) - D(®)
< A@)— AxS(¥)
< sup {A(s,t) — Nc(t—s)} .
0<s<t

For 0 < s <'t, let a discretization parameter 7y, and denote

j=[%*] the integer part of £=*

Pr(B'(t) > o)

< Pr ( sup {A(s,t)
0<s<t

— Ne(t—s)} > a>

< Pr (sup {A(t = jro,t) = Ne(j — )70} > U)
j=1
< Z e&Nrj-roe—GchTg eGNCTOe—Go
j>1
eQNCTU

—0o
SING-In )

In the third line we used the monotonicity of the arrival pro-
cesses. In the fourth line we applied Boole’s inequality and in
the last line we used the inequality Z i>1€ < f e~ “dx,
for all @ > 0. The proof for the first backlog is complete after
optimizing 7o = 77~ NC and minimizing over 6.

To derive the second backlog bound let us fix s > 0 and
a parameter z > 0. For 0 < u < s — z let a discretization
parameter 7o, and denote j = [*==*] the integer part of

Recall that S'(s, ) = [C(t — 5) — Ay(s,t — )], L—soa)
is a statistical service curve given by the first node to the
through flow A'(t) (see Eq. (4)). Then we have the following
bounds on the MGF of the departure process D' (s,t) of the
through flow at the first node

[ 0D (s,t) } [ H(Al(t)—Al*Sl(s))]
<E [ sup /(A @ —[C—u)- A1<u,sw>1+1{w>m})}
B 0<u<s

< E |:69A1(s—:c7t)i| 4 E{Sup eGAl(s—at—j‘ro,t)
Jj=1

e—9<c<m+(j—1>m>—A1(s—m—jms—m))}



< eﬁnr(tfs%»m)

14+ 6700(177'0) Z efﬁ(chNr)j'ro
j=1

< eﬁnr(tfs) <€9nrx + € eO(Ncnr)z) )
I—p

In the third line we restricted the supremum to 0 < u < s —x
and applied sup(a,b) < a + b for positive a and b. Then we
computed the sums and optimized 7y as in the derivation of
Eq. (9).

To continue the previous derivation we use the following
infimum

0

- . af\ Pty

inf {ae_ﬁ‘ + evl} — (ﬁ) m )
x>0 Y ﬂ
obtained using convex optimizations. Using this result we get

E |:69D1(s,t):| < e@nr(tfs) e Nec—nr\¥e Ne
- 1—p nr Nc—nr

_ Keanr(t—s) )

Therefore a bound on the MGF of the departures D' (s, t)
is given by the bound on the MGF of the arrivals A!(s,t)
multiplied by the factor K. It then follows that by repeating
the steps from Eq. (9) the backlog bound at the second node
is the backlog bound at the first node multiplied by /K which
completes the proof. |

Figure 3 illustrates on a logarithmic scale the backlog
bounds derived with Theorem 1 at the first and the second
nodes from Figure 2 as functions of nodes’ utilization. The pa-
rameters of the MMOO flows are from Table 1. Two fractions
of through flows, i.e., » = 0.1 and ¢ = 0.9 are considered, and
the violation probability is set to 10~3. The figure shows that
for very low fractions of through flows, the backlog bounds at
the two nodes become almost indistinguishable. This indicates
that FIFO schedulers do not change the statistical structure of
a small number of flows at the output.

n

To further illustrate the role of the fraction ¢ = & when
analyzing FIFO schedulers, let us closely analyze the buffer

overflow probability from Eq. (8). Because limg_.o (%) ’ =1
in the term K while the remaining factor is uniformly bounded
in ¢, the second backlog bound converges to the first backlog
bound when decreasing the fraction of through flows ¢ = .
The next theorem provides a justification that this convergence
holds under greater generality, i.e., when N — oo. Concretely,
the next theorem shows that by increasing N the output of one
flow converges to the input. This suggests a decomposition
analysis [21], whereas the second node can be studied in
isolation as if the first node was removed from the network.

Theorem 2: (INPUT-OUTPUT CONVERGENCE) Consider
the first node from Figure 2. All flows are statistically in-
dependent and are served according to FIFO scheduling. Each
MMOO flow is bounded by an MGF envelope with rate r

depending on & > 0 such that » < c. Denote by p = =

C
the node utilization, relative to 6. Then we have the following

10
= = =Second node
First node
J
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e
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Fig. 3: Backlog bounds at the first and the second nodes as a
function of utilization (per-flow average rate 25.6 Kbps and
peak rate P = 64K bps, fraction of through flows ¢ = 0.1 and
¢ = 0.9, violation probability 10~3)

relationship between the input A(t) and output D(t) processes
of a single flow:

log KN 1
Pr(D@)>A(t- >1- —
T( (t) = (t 9cN ))- N’

where K =

(10)

1—p
By letting N — oo the theorem indicates that the output
process D(t) converges to the input process A(t). This result
is closely related to a result from [35] which states that,
asymptotically, the effective bandwidths of flows remain un-
changed at the output [35]. In the light of this known result, the
contribution of the theorem is that it provides non-asymptotic
bounds on the output, i.e., holding for any N, and further
it provides a non-asymptotic justification that the per-flow
effective bandwidths are preserved at the output for relatively
small number of flows.

PROOF. Fix ¢ > 0 and # > 0 such that < ¢. The proof is
based on deriving a bound on the delay process W (¢) of the
single flow A(t).

Let d > 0 and denote by An_1(f) the rest of
the arrival processes at the node. Recall now from
Eq. (4) that for any « > 0 the process S(s,t) =
[Ne(t —s) — An—1(s,t —2)], 11_s>p) is a statistical ser-
vice for the flow A(t). We can now bound the delay as follows

Pr(W(t) > d)
< Pr(A(t —d) > D(t))

< Pr <o§?§t (A(s,t —d) — S(s,1)) > 0)

< Pr < sup (A(s,t —d) —S(s,t)) > O) (11)
0<s<t—d



In the third line we used that S(s,t) is a service curve for
A(t). In the last line we could restrict the supremum due to
the positivity of S(s,t).

We now choose x = d. For 0 < s < t—d let a discretization
parameter 7y, and denote j = [t_fio_sj the integer part of
t_fio_s. Then we can continue Eq. (11) as follows:

Pr(W(t) >d) < Pr(sup {A(t —d—(j+ 1)ro,t—d)

j>1

+AN_1(t7d* (j‘i’l)To,t*d) 7Nc(d+j7'0)} > O)

< efech E 670N(cfr)j'rg 69Nc7'0

Jj=21
< Ke Ned |

In the last line we optimized 7y as in Eq. (9). By equating the
last expression above with % we get

__log KN
~ fcN

The proof is complete by observing from the definition of
the delay process W (t) that

Pr(D(t) > At — d)) < Pr(W(t) < d) .

(]
Figure 4 illustrates the offset % from Theorem 2
between the input and output processes of a single flow
as a function of the total number of flows and for three
utilization levels, i.e., p = 0.5, p = 0.75, and p = 0.95. The
parameters of the MMOO flows are from Table I. Remarkably,
for N = 10* flows and node utilization p = 0.75, the input-

output relationship
D(t) > A(t —7)

holds for all times ¢ > 0, with a violation probability £ ~ 1073
and 7 = 1 ms.

IV. CAPACITY SCALING

In this section we address the problem of capacity di-
mensioning for a network with voice traffic under specific
constraints on the end-to-end delays experienced by each flow.
First we derive explicit bounds on end-to-end delays, and then
we numerically illustrate the influence of the number of flows
on the required per-flow capacity and the achievable network
utilization.

We consider the network scenario from Figure 5. The net-
work has H nodes which are crossed by a through aggregate
of n MMOO flows whose arrivals and departures are denoted
by the processes A(t) and D(t), respectively. Moreover, each
node is crossed by N —n cross flows. The normalized capacity
of each node is C' = Nc. The assumption of FIFO scheduling
from the previous section is now relaxed to general scheduling.

The next theorem provides end-to-end delay bounds for the
flows of A(t). As in the previous section we restrict the result
to the simplified case of homogeneous flows.

10"

t-output) (sec)

inpu

Offset (

4000 6000 8000 10000

Number of flows

0 2000

Fig. 4: Offsets between the input and output processes of a
single flow as a function of the number of flows N (per-flow
average rate 25.6 Kbps and peak rate P = 64 Kbps, and node
utilizations p = 0.5, p = 0.75, and p = 0.95)

A:@:: Nc »| Nc > »| Nc
> > —>
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[

> D
—
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Fig. 5: A network with H nodes traversed by n through flows
and N — n cross flows; the normalized capacity at each node
is C'= Ne.

Theorem 3: (END-TO-END DELAY BOUNDS) Consider the
network scenario from Figure 5 described above. We assume
that each MMOO flow is bounded by an MGF envelope with
rate ~ which depends on 6 > 0 such that r < c. All flows are
statistically independent and are served according to general
scheduling. Denote by ¢ = % the proportion of through flows
and by p = ~ the node utilization, relative to 6. Then the
end-to-end delay W (t) satisfies for all ¢,d > 0

; —ONc(1-(1—-¢)p)d
Pr(W(t) > d) < éI;%{Ke } , (12)
H
ER
where K = (W) .

In the theorem, the end-to-end delay bound decreases ex-
ponentially fast in the number of flows NN, or in the capacity
C = Nc. By fixing an end-to-end delay bound d on the
through flows, the required per-flow capacity to meet this
constraint with some violation probability € is given by the
implicit equation
< inf !
=N (0 050, c>r}{9(1 1—o)p)d

Using p < 1 in the right-hand side yields ¢ = O (4).

c

log I;} . (13)



PROOF. Recall from Eq. (3) that the processes S"(s,t) =
[C(t — s) — An(s,t)], are statistical service curves for the
through aggregate at each node h. Moreover, the process

S(s,t) =S xS%x ... xS (s,1)

is a statistical network service curve for A(t) across the H
nodes (see Eq. (6)).

Let us compute now an MGF bound for S(s,t) for some
0 < s <t. Denoting o = s and xg =t we can write

sup
zo<-<xH

PO Ah(@‘hhwh):|

B[etst0] < [ I s’t(xhl,xh)]

sup
zo<-<zH

S e—QC(t—s)E |:

For a discretization parameter 7y denote by jj

= |52]

. t—ax; . o
the integer parts of " forall j =1,...,H — 1. We can
now bound the last expectation with

>

0S47'1§"'§J’H—1§\_FOSJ

T

E [60(141(S,t*jl'ro)Jr---JrAH(t*(jH—lJrl)To-,t))

Using the statistical independence of the processes Ap(s,t)
and the bounds on their MGFs we obtain

E [6793(5@}

< 6(H71)9r1‘rg67«9(C7T1)(t75) Z 1
0<ih < Sinr <452
t—s

< |2+ H -1 S H—1)0r1 70, —0(C—r1)(t—5)

- H-1 ’

where r; = (N —n)r. In the last line the binomial coefficient
is the number of combinations with repetitions.
Similarly as in Eq. (11) we have that

sup
0<s<t—d

Pr(W(t) >d) < Pr < (A(s,t —d) — S(s,t)) > 0)

To further derive a sample path bound we discretize as in the
proof of Theorem 1 and use the bound on the MGF of S(s,t)
derived above. It follows that

Pr(W(t) > d)

< 6—9(0—T1)d6907069HT1T0 Z <] +H - 1) e—GN(c—T)jTD

: H-1
jz1

H
) e—0(C—r1)d

. , "
In the last line we used 3., (7471 ")a? = (L) for all

0(C+Hr)™g
H

S(@N(—)

1—a
H
0 < a < 1 (see [23]) and the inequality (kiw) —1<
(%)H for all @ > 0.
The proof is complete after optimizing 79 = W and

minimizing over 6.
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Fig. 6: Per-flow capacity (Mbps) as a function of the number
of flows (per-flow average rate 25.6 Kbps and peak rate P =
64 Kbps, number of nodes H = 2,10, 20, fraction of through
flows ¢ = 0.5, end-to-end delay 200 ms, violation probability
e=107%)

Figure 6 illustrates the O (%) decrease of the required per-
flow capacity from Eq. (13) in order to guarantee an end-to-
end delay of 200 ms for the through flows with a violation
probability of 10~3. The parameters of the MMOO flows are
from Table I and the fraction of through flows is ¢ = & = 0.5.
The asymptotic decrease is depicted for various values H = 2,
H =10, and H = 20 of the number of nodes.

For the same numerical settings as above, Figure 7 illus-
trates the achievable node utilization as a function of capacity.
The number of nodes is now set to H = 10 and various values

of the fractions of through flows are considered, i.e., ¢ = 0.25,

. ¢ = 0.5, and ¢ = 0.75. The figure shows that utilizations

higher than 90% can be achieved at 100 Mbps, when the
through flows dominate the cross flows (i.e. ¢ > 0.5).

Both Figures 6 and 7 illustrate that Theorem 3 achieves
significant statistical multiplexing gain. In fact, in regimes
with capacities bigger than 100 Mbps, most of the statis-
tical multiplexing gain is attained which suggests that the
end-to-end delay bounds from Theorem 3 are tight despite
the assumption of general scheduling at the nodes and the
multiple application of Inequality 1. In other words, statistical
multiplexing dominates the effects of link scheduling at high
capacities. A similar observation has been reported in [27] in
the case of a single node.

V. CONCLUSIONS

In this paper we have derived non-asymptotic backlog and
end-to-end delay bounds in a network carrying voice traffic.
By adopting a probabilistic network calculus approach and by
using a probabilistic service curve available for FIFO schedul-
ing, we have shown that different network nodes have similar
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Fig. 7: Achievable node utilization as a function of capacity
(per-flow average rate 25.6 Kbps and peak rate P = 64K bps,
number of nodes H = 10, end-to-end delay 200 ms, violation
probability € = 1073)

buffer requirements in order to guarantee desirable loss prob-
abilities. Remarkably, the buffers can be sized independently
of the number of voice flows. Also, we have shown that in a
network with general scheduling the end-to-end delays decay
exponentially fast in the number of voice flows. Consequently,
by fixing some end-to-end delay constraints, the required per-
flow capacities decrease accordingly and the network can reach
very high utilizations. The results from this paper hold in
principle for traffic described by hyperexponential distributions
which provide tighter descriptions for aggregates of MMOO
flows and also cover broader classes of traffic.
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