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Abstract—Renewable energy such as solar and wind generation
will constitute an important part of the future grid. As the
availability of renewable sources may not match the load, energy
storage is essential for grid stability. In this paper we investigate
the feasibility of integrating solar photovoltaic (PV) panels and
wind turbines into the grid by also accounting for energy storage.
To deal with the fluctuation in both the power supply and
demand, we extend and apply stochastic network calculus to
analyze the power supply reliability with various renewable
energy configurations. To illustrate the validity of the model, we
conduct a case study for the integration of renewable energy
sources into the power system of an island off the coast of
Southern California. In particular, we asses the power supply
reliability in terms of the average Fraction of Time that energy
is Not-Served (FTNS).

Index Terms—Power Grid, Renewable Energy Sources, Com-
munication Networks, Stochastic Network Calculus

I. INTRODUCTION

The need to reduce greenhouse gas emissions is driving the
deployment of more environmentally friendly and sustainable
energy sources, such as solar and wind. The next-generation
grid will feature renewable energy sources to reduce the carbon
footprint. A challenge, however, of solar and wind generation
is their intermittency and randomness, rendering it hard to
match supply and demand, which is itself variable. One way
to help match uncertain supply and demand is to effectively
utilize energy storage, such as batteries. It has been recently
reported that the Los Angeles Department of Water and Power
(LADWP) has formed a partnership with BYD Ltd. Corp.
on a grid-scale battery project for renewable energy storage,
which will lead to the development of a power storage unit
up to 10 MWh [2]. In this paper we consider the deployment
of such a large energy storage unit into a grid powered by
an arbitrary number of PV panels and wind turbines, and
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we address the storage dimensioning problem subject to the
constraint of continuously satisfying the demand for energy.

A closely related system which faces a similar problem is
the Internet. As a concrete example, the apparently excessive
overprovisioning of buffer memory in Internet routers has
led to an intense debate in the research community over the
past years [3], [4], [5]. The Internet resource dimensioning
problem—concerning especially bandwidth dimensioning sub-
ject to certain Quality of Service guarantees—has been tradi-
tionally formulated in the framework of queueing theory [6],
and more recently in the framework of network calculus [7],
[8]. We extend and apply network calculus to the problem of
dimensioning of energy storage subject to certain constraints
on the power supply reliability.

Network calculus uses bounds to characterize arrivals and
service in a queueing system, and also to derive queue-
ing performance measures. This bounding approach has the
advantage that a very broad class of arrival processes (in-
cluding deterministically regulated, Markov modulated, and
even heavy-tailed and self-similar) can be analyzed. Network
calculus has been mostly applied in the context of computer
and communication networks, but also in other systems such
as automotive [9] or avionic networks [10]. The key idea
in network calculus is to transform a complex non-linear
queueing system into an analytically tractable system, in a
suitable (min, +) algebra. The development of network calcu-
lus has followed two interrelated directions: deterministic and
stochastic. The deterministic network calculus allows a broad
scope of queueing scenarios and enables the derivation of tight
bounds (see [8], p. 27). A concern, however, is that these
bounds can be conservative in highly multiplexed regimes
or when a small probability of violation is tolerable. This
motivates the stochastic extensions of the calculus (e.g., [11],
[12], [13], [14], [15]), which can reap the benefit of statis-
tical multiplexing gain, and consequently can yield efficient
solutions for resource dimensioning problems.

The ability of the stochastic network calculus to model
broad classes of queueing scenarios and capture statistical mul-
tiplexing gain, motivates our extension of a stochastic power
network calculus for the power grid. In this context, arrivals
can be regarded as the energy generated by the power sources,
whereas statistical multiplexing manifests itself through the
aggregation of many energy sources (e.g., turbines or PV
panels). Such an extension of the calculus, however, is not
straightforward. The reason lies in a slight conceptual differ-



ence between a conventional queueing system (e.g., an Internet
router), which is described in terms of arrivals and service
processes, and the power system, which is described in terms
of energy supply and demand processes. More concretely, the
difference lies in the concept of an energy demand process
which is uncharacteristic to conventional queueing systems.
Moreover, the power system has a very specific performance
metric of critical interest, i.e., the Fraction of Time that energy
is Not-Served (FTNS) accounting for the time periods during
which energy demand exceeds energy supply plus storage.

To model the power system, our idea is to regard it as a
queueing system where 1) arrivals are described by the energy
supply process, 2) service is described by the energy demand
process, and 3) the buffer is the storage capacity. To model
this queueing system, we define energy supply and demand
stochastic curves to model the generated energy and desired
demand, respectively, in terms of probabilistic bounds. The
supply curve corresponds directly to the notion of a statistical
envelope, which is used in stochastic network calculus to
model queueing arrivals. In turn, the demand curve has no
direct correspondent in the conventional network calculus,
due to the conceptual issue mentioned above. Moreover, from
a technical point of view, the demand and supply curves
are defined in an entirely decoupled manner. This is unlike
the conventional coupling of arrival and service processes in
network calculus, and creates the main technical challenge to
be addressed in our power network calculus extension.

To summarize, the contribution of this paper is threefold:

o We build a stochastic power network calculus theoreti-
cal framework for the performance evaluation of power
networks with renewable energy generations and storage.
Our model extends the concepts of the conventional
stochastic network calculus by introducing new mod-
els and properly adjusting the analytical techniques for
queueing analysis.

o We derive explicit formulas of the performance metrics
for the power system reliability analysis and dimen-
sioning. In particular, the two main metrics which we
consider are 1) the average Fraction of Time that energy
is Not-Served (FTNS) and 2) the Waste of Power Supply
(WPS) due to improper energy storage dimensioning. The
obtained formulas provide fundamental guidance for the
configuration of the power system with renewable energy
sources and energy storage, in order to meet certain
constraints like negligible FTNS and WPS.

o To illustrate the validity of our stochastic power network
calculus, especially when aggregating multiple renewable
energy sources, we conduct a case study for the integra-
tion of renewable-energy sources into the power system
of an island off the coast of Southern California.

The rest of the paper is organized as follows. In Section II
we present a description of the integrated power system,
introduce notation, and provide a brief introduction into the
(stochastic) network calculus. In Section III and IV we first
introduce the models for the stochastic power network calcu-
lus, and then we derive formulas on the performance metrics
of interest. In Section V we provide an aggregation result
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Fig. 1. Schematic of the hybrid power system

needed for analyzing power systems with multiple power
supply sources and capturing the underlying multiplexing gain.
In Section VI we conduct a real case study for the integration
of renewable energy sources into the power system. Finally,
some related work is discussed in Section VII, and brief
conclusions are presented in Section VIII.

II. FORMULATION AND NOTATIONS
A. Problem Description

Figure 1 illustrates a hybrid power system consisting of
solar PV panels, wind turbines, battery storage, controller
units, etc. The PV panels and wind turbines work together
to satisfy the load demand. When the energy sources are
abundant, the excess power generation will feed the battery
until it is fully charged. Whenever there is a deficiency
in power, the battery will be discharged to cover the load
requirements until the energy storage is depleted.

Due to fluctuations in both power generation and demand,
our goal is to investigate the effects of energy storage on the
power supply reliability in configurations with different levels
of renewable generation. The reliability of the power supply
is assessed in terms of three performance metrics:

1) the Loss of Power Supply Probability (LPSP), at a
given time, which quantifies the probability that an
instantaneous demand cannot be met due to either a very
high energy demand and/or a low level of energy supply
plus storage.

2) the average Fraction of Time that energy is Not-Served
(FTNS), which follows directly by averaging out the
LPSP over some time scale.

3) the Waste of Power Supply (WPS), at a given time,
which quantifies the amount of instantaneous wasted
energy when the stored energy plus the supply exceed
the energy demand.

These reliability metrics are derived as functions of the number
N, of PV panels, the number N,, of wind turbines, and the
specified capacity C' of battery storage; other factors, e.g.,
the AC/DC inverter, are ignored. The merit of these metrics,
obtained explicitly, is that they can assist the decision making
process for investing in the deployment of renewable energy
sources and energy storage.

Our approach to the dimensioning of the hybrid solar-wind
system from Figure 1, in terms of the battery storage needed
to guarantee negligible FTNS and WPS, is to formulate a
stochastic power network calculus, based on similar concepts



from the stochastic network calculus. We do so by first
modelling the individual components of the power system and
then analyzing its reliability in terms of the three metrics listed
above. A key feature of the calculus is that it accounts for the
stochastic nature of the hybrid solar-wind system, and yet it
lends itself to explicit formulas on the performance metrics of
interest, e.g., FTNS and WPS.

B. Notations

We denote by F the set of non-negative, non-decreasing
functions, i.e.,

F={f():V0<z <2, 0 f1) < flaa)} s

and by F°¢ the set of non-negative, non-increasing functions,
ie.,

Fe={f():VO0<a <x9, 0< f(22) < f21)} .

For a random variable X, its cumulative distribution func-
tion (CDF) and cumulative complementary distribution func-
tions (CCDF) are denoted by

Fx(z) =P{X <z} and F§(z) =P{X >z},

respectively; the former belongs to F and the latter belongs
to F°.
For two numbers x and y we use the notations

[z]T = max{z,0} and [z,y]t = max{z,y,0} .

For two function f(z) and g(x), the Stieltjes convolution is

frgle) = / " Fy)dg(e— ) .

For the same functions, their (min, +) convolution, denoted
by ‘®’, is defined as follows:

(f®g)(zr)= inf [f(y)+g(z—y)]

0<y<z
This convolution is characteristic to network calculus theory.
We also remark that, although we adopt a discrete time model,
we prefer inf and sup instead of min and max operators.

C. Network Calculus

We now provide a brief introduction into some relevant
concepts and ideas from the conventional (stochastic) network
calculus, by making an analogy with linear systems theory
(see also [16], [17], [8], [18]).

Network calculus is an alternative to the traditional queueing
theory. It was conceived by Cruz [7] in the early 1990s
in a deterministic framework, and soon after, independently
by Chang [19], Kurose [20], and Yaron and Sidi [21] in
a probabilistic framework. Subsequently, many others have
contributed to both interrelated directions of the network
calculus (see [17], [8], [14] and references therein). While
the development of the deterministic calculus was motivated
by the need for a theory for worst-case performance guar-
antees (e.g., packet_delay < 200 ms), the raison d’étre for
the stochastic network calculus was to additionally capture

(b) transformed
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Fig. 2. A queueing system from the perspective of a flow A. In (a), the
system is not linear; in (b), the transformed system is analytically tractable.

statistical multiplexing gains when some small violation prob-
abilities of the performance guarantees are tolerable (e.g.,
P(packet_delay > 200 ms) < 1073).

An example of a queueing scenario addressed with the
network calculus is depicted in Figure 2.(a). A server with
constant rate C serves two arrival flows, or aggregate of
flows, A and A.. Whenever there are more arrivals than
serving capacity, the excess is temporarily stored in a shared
queue. From the perspective of flow A, the queueing system
transforms A’s arrival process (i.e., the input signal, in systems
theoretic terms) into a departure process (i.e., the output
signal). Besides the characteristics of A’s arrival process, this
transformation depends on several external factors (i.e., the
noise), e.g., the characteristics of the other (aggregate) flow
A,, the type of scheduling algorithm, and the queue size.
Because of the complexity jointly induced by these factors,
A’s queueing system is generally not linear in the sense that
the existence of an algebra such that

T (ClAl + CQAQ) = ClT (Al) + CQT (AQ)

is questionable. Here, ¢; and co are scalars, A; and A,
are input signals, 7' : F — JF transforms an input signal
into an output signal, whereas the addition and multiplication
operators are relative to some (unknown) algebra, yet to
be discovered. Due to the lack of linearity, the analytical
tractability of A’s queueing system is conceivably hard.

To circumvent the lack of linearity problem, the key idea of
network calculus is to transform A’s original non-linear queue-
ing system into an analytically tractable system, as depicted in
Figure 2.(b). Here, S can be regarded as the impulse-response
(in systems theoretic terms), which characterizes A’s queueing
system in that

D(t)>A®S(t), (1)

for all arrival processes A(t) € F, where D(t) is the cor-
responding departure process. Note the underlying (min, +)
algebra over which the convolution is operated. Note also the
similarity between 1) describing the system from Figure 2.(b)
with a (min, 4) convolution, and 2) describing conventional
linear systems in terms of a (conventional) convolution (see,
e.g., [22]). This similarity drives the analytical tractability of
broad queueing systems with network calculus.

In network calculus terms, S is a service (bi-variate) process
S(s,t), and the convolution from Eq. (1) expands as

> i >0.
D(t) > nggt [A(s) + S(s,t)] Yt >0
In other words, S characterizes A’s queueing system through
a lower bound on A’s received service. Because the lower
bound holds for all arrival processes A(t), the service process
S almost entirely characterizes the queueing system (the



characterization is not complete due to the formulation of
Eq. (1) with an inequality, and not with an equality). We also
note that, for the transformed system from Figure 2.(b), S
may depend on the service capacity C, the arrivals A., the
scheduling at the server, and possibly the queue size as well.
For a survey of service processes see [23].

In addition to the concept of a service process, network
calculus uses the concept of an envelope to characterize an
arrival process A(t). A version of a stochastic sample-path
envelope (e.g., see Definition 3.11 in [14]) can be defined by
a function or curve a(t) € F, and a bounding function e(z) €
JF¢, such that for all ¢,z > 0

P {Oiligt [A(s,t) — alt — s)] > x} <e(z) . (2

Once a queueing system, from the perspective of a flow
A, is described with a service process S(s,t) and an en-
velope a(t) with some bounding function e(x), then A’s
queueing performance measures of interest can be derived.
Consider for instance the virtual delay process W (t) =
inf [d: A(t — d) < D(t)] describing the delay of the last de-
parting data unit (if any) at time ¢. If S(s,t) = C(t — s),
i.e., modelling a queueing scenario with constant-rate service
given to A, then a probabilistic bound on A’s delay process
is forall z > 0

P{W(t) > h(a+=,B)} <e(z) , 3)

where §(t) = Ct and h(a + z, 8) is the maximum horizontal
distance between the functions «(t) + « and B(t) for t > 0
(see Theorem 5.4 in [14]).

ITI. POWER SYSTEM MODELLING

In this section we introduce the stochastic power network
calculus, in particular the energy demand, energy supply, and
storage models for the power system from Figure 1.

The time model is discrete with 1 hour increments. Consider
a time interval [0,¢] with ¢ < T, where T is the maximum
considered time. With abuse of notation, the process D(t) € F
denotes the cumulative amount of energy demand in the
system (in MWh). Also, the process S(t) € F denotes the
cumulative amount of energy supply in the system. D(t) is
called the energy demand process, and S(t) is called the
energy supply process of the system, with initial conditions
D(0) = S(0) = 0. The bivariate processes’ extensions are
D(s,t) = D(t)—D(s) and S(s,t) = S(t)—S(s) V0 < s <t.
Before introducing stochastic models for these two processes,
we describe the evolution of the power system in terms of the
energy storage process.

A. Energy Storage

The energy storage, or battery load, is modelled by a
discrete time process b(t), with maximum capacity C, and
which is defined recursively as follows: If the energy generated
from the PV/wind system is greater than the load for a
particular hour, then the surplus energy is stored in the battery
and the battery is charged:

b(t) = min[C,b(t — 1) + [S(t — 1,¢) — D(t — 1,8)]ne] , (4)

where 7). denotes the charge efficiency of the battery. When
the battery reaches its maximum value C, any excess energy
generated cannot be charged and is wasted.

In turn, if the energy demand is greater than the supply for
a particular hour, then the battery is discharged in order to
supplement the supply. In this case the recursion becomes:

b(t) = [b(t —1) — [D(t = 1,t) = St -1, )lna] " . (5)

where 1y denotes the discharge efficiency of the battery. Due
to physical constraints, the minimal quantity level of battery is
determined by the maximum depth of discharge. If the battery
decreases to its minimum value C,,;,, then the deficient
energy demand cannot be meted out from the battery system,
and we refer to this event as Loss of Power Supply (LPS).
We make the initial condition b(0) = 0 (zero initial buffer
storage), and assume for brevity 1. =14 = 1 and C),;, = 0.
To further simplify notation, we introduce the process C(t),
representing the actual storage capacity for any time ¢ > 0, by

C(t):{g /

Note that, by convention, there is no storage capacity at time
zero. When clear from the context, we write C' for C(t).

t>0
t=0

B. Energy Demand and Supply

The power queueing system described in Egs. (4) and (5)
is conceptually different from conventional queueing systems.
Concretely, the energy demand process, which can be regarded
using standard queueing terms as a (desired) departure process,
is given as input to the power queueing system. Moreover,
it is decoupled from the energy supply (i.e., arrival) process,
which means that the departure process is not a function of the
arrival process. In turn, in conventional queueing systems (e.g.,
the one from Figure 2) the two are coupled through an addi-
tional service process (e.g., see the (min, +) convolution from
Eq. (1)). This conceptual difference of uncoupled vs. coupled
departure and arrival processes, in power and conventional
queueing systems, motivates the extension of conventional
stochastic network calculus models and techniques.

To this end, we model the energy demand (i.e., the desired
departure) process D(s,t) using a standard network calculus
model for arrival processes with probabilistic sample-path
upper and lower bounds. In other words, we treat the energy
demand process as arrivals to the queueing system.

Definition 1: (ENERGY DEMAND) An energy demand pro-
cess D(s,t) is said to have a stochastic upper demand curve
a'(t) € F with bounding function €%(z) € F¢, denoted by
D ~ (¢4, a™), if for all ¢,z > 0

P{ sup [D(s,t) — a“(t — s)] >z} < ej(x) , (6)
0<s<t
and it is said to have a stochastic lower demand curve
al(t) € F with bounding function £,(z) € F¢, denoted by
D ~ (!}, aly, if for all ¢,z > 0

P{Oiligt[al(t —8) = D(s,t)] >z} < ely(x) . (7



Additionally, we use the same arrival model for the energy
supply process S(s,t), i.e., the other input/arrival process to
the power queueing system.

Definition 2: (ENERGY SUPPLY) An energy supply process
S(s,t) is said to provide a stochastic upper supply curve
p*(t) € F with bounding function €¥(z) € F¢, denoted by
S ~ (g%, B, if for all t,z >0

P{ sup [S(s,t) = B"(t —s)] > a} <ef(z), B
0<s<t
and it is said to have a stochastic lower supply curve 8(t) € F
with bounding function £} (z) € F¢, denoted by S ~ (¢, 8%),
if forall £,z >0
P{ sup [B'(t —s) — S(s,t)] > x} < el(x) . )
0<s<t

We remark that the energy demand and supply processes,
especially the upper curves, are modelled similarly to how
arrival processes are modelled in conventional stochastic net-
work calculus (see Eq. (2)). The technical consideration of
entire sample-path bounds in all four bounds from Eqgs. (6)-(9)
is motivated by the simplicity of derived queueing performance
metrics (see for instance the delay bound from Eq. (3)).
Furthermore, the need for both upper and lower bounds for
both energy demand and supply processes is motivated by the
type of performance metrics of interest for the power system.
In particular, the upper bound from Eq. (6) together with the
lower bound from Eq. (9) are sufficient to analyze the loss
of power supply probability (LPSP). In turn, the lower bound
from Eq. (7) together with the upper bound model from Eq. (8)
are sufficient to analyze the waste of power supply (WPS)
process.

C. On Model Tightness

In practice, the shapes of the demand/supply curves and the
corresponding bounding functions from Egs. (6)-(9) should
adequately capture a broad range of fluctuations in the power
system. For instance, as two extreme cases, 8% (t) and €¥(z)
should capture maximum power generation situations (e.g.,
sunny all the time in the case of solar), whereas 3'(t) and
el (x) should capture a minimal level of generated energy.

The tightness of the four modelling bounds from Egs. (6)-
(8) depends on the trade-off between the shapes of the
demand/supply curves and the corresponding bounding func-
tions. For instance, when fitting or tuning a*(t) and €}(z),
an increase in one implies a decrease in the other. This trade-
off is further complicated by the need to jointly account for
high fluctuations in both energy demand and supply, in order
to produce tight bounds in the queueing analysis. To illustrate
this constraint, note that the selection of very tight modelling
bounds (e.g., very small €}j(x) in Eq. (6), which implies very
large demand curve a(t), as mentioned earlier) can lead to
meaningless performance measures since the power system
would be incorrectly viewed as mostly in underflow. At the
other extreme, i.e., smaller demand curves at the expense of
bigger bounding functions, can lead to very loose performance
bounds, e.g., on the loss of power supply probability. In
practice, the demand/supply curves can be constructed to
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Fig. 3. A visualization of the power queueing system. S(t) and D(t)
denote the cumulative energy supply and demand processes, respectively; b(t)
denotes the instantaneous buffer storage with maximum capacity C; W (¢)
and L(t) denote the instantaneous waste of power supply and loss of power
supply processes.

slightly deviate from the average rates of their demand/supply
processes, and the corresponding bounding functions can be
properly tuned.

IV. PERFORMANCE METRICS IN THE POWER QUEUEING
SYSTEM

In this section we first recall a non-recursive identity for the
energy storage process b(t), which was defined recursively
in Section III-A. The non-recursive identity will enable the
analysis of the three processes of interest for the power
queueing system reliability analysis: 1) the loss of power
supply (LPS), 2) the Fraction of Time that energy is Not-
Served (FTNS), and 3) the Waste of Power Supply (WPS).

Based on Egs. (4) and (5), the Energy Storage Process b(t)
can be concisely defined as follows:

b(t) = min[C, [b(t — 1) + S(t — 1,t) — D(t — 1,1)] 1]

By fitting this recurrence with Eq. (3) from [24], and ac-
counting for the initial conditions b(0) = 0 and C(0) = 0, the
following non-recursive identity for b(¢) holds (see Theorem 1
from [24])

b(t) = nggt[siligt[S(u,t)—D(u, t),S(s,t)=D(s,t)+C(9)]] .
o (10)

With this explicit expression we can next conduct the reliabil-
ity analysis of the power system.

A. Loss of Power Supply (LPS)

Here we first derive a non-recursive formula for the loss of
power supply process denoted by L(¢) (for visualization see
Figure 3). Using this formula can then derive performance
bounds on the loss of power supply probability and also
on the average Fraction of Time energy Not-Served (FTNS)
performance metric.

Recall that the instantaneous LPS process characterizes the
deficient energy demand which cannot be meted out from the
battery at some time ¢. According to the evolution of the power
queueing system described in Section III-A, L(¢t) is defined for
allt > 1 as

L(t)=[D(t—1,t) = S(t —1,t) = b(t — 1)]* .

Note that L(t) would correspond to the amount of unused
service capacity in a (conventional) queueing system, by
regarding the demand process as a service process.

Using the explicit expression of b(t) from Eq. (10), an
explicit expression for L(t) follows immediately:



Corollary 1: (Loss of Power Supply) The LPS process L(t)
satisfies for all ¢t > 1

L(t)= sup inf [D(u,t) — S(u,t),

0<s<t—1 sSust—1

D(s,t) — S(s,t) — C(s)]"] . (11)

This explicit expression enables further the derivation of the
instantaneous LPS probability:

Theorem 1: (LPS Probability) Given the power queueing
system, assume that the energy demand process has a stochas-
tic upper demand curve o with bounding function €, i.e.,
D ~ (g4, "), and the energy supply process has a stochastic
lower supply curve 3! with bounding function €., ie., S ~
(L, B!). Then the loss of power supply probability satisfies
forall t > 1

PL0) > 0) < s (€ s o) - 80 )
0<s<t

The theorem is quite general in the sense that it does
not require a statistical independence assumption between the
energy demand and supply processes. Therefore, the theorem
accounts for the situation when the demand and supply pro-
cesses are correlated, e.g., high energy demand implies high
energy supply. The proof is based on Lemma 1 from the
Appendix, which bounds the distribution of a sum of non-
necessarily independent random variables.

Proof: Fix t > 1. From Eq. (11), we have
P{L(t) >0} =P{ sup inf [D(u,t) — S(u,t),
0<

s<t—1 s<u<t—1

D(s,t) — S(s,t) + C(s)]] > 0} .
The event from the right-hand side can be bounded as follows:

sup inf 1[D(u, t) — S(u,t), D(s,t) — S(s,t) — C(9)]]

0<s<t—1 sSust—
< sup [D(s,t) — S(s,t) — C(s)]
0<s<t

< sup [D(Svt) - S(S,t) - C]

0<s<t

= sup [D(s,t) — a®(t — s) + a(t — s) + B'(t — 5)
0<s<t

— Bt —s) = S(s,t)] — C

< sup [D(s,t) —a"(t —s)] + sup [5l(t —s)—S(s,t)]

T 0<s<t 0<s<t

+ sup [a(s) — B(s)] = C .
0<s<t

By accounting for the assumptions in the theorem that
P{ sup [D(s,t) — a“(t — s)] > =z} < eY%(x) and

0<s<t
P{ sup [B'(t — 5) — S(s,t)] > 2} < el(z), the rest of the

0<s<t
proof follows from Lemma 1 by regarding the two supremums
as non-necessarily independent random variables. ]

As we have previously mentioned, the result of Theorem 1 is
quite general in that it holds without a statistical independence
assumption between the energy supply and demand processes.
Under such an additional assumption, the bound from Theo-
rem 1 can be tightened as follows.

Theorem 2: (LPS Probability - Statistical Independence
Case) With the same conditions as in Theorem 1, along
with a statistical independence assumption between the energy
demand and supply processes, the loss of power supply
probability satisfies for all ¢ > 1

P{L(t) > 0} < e%(z) +e%xel(2),

where z = C' — sup [a%(s) — B'(s)].
0<s<t
The proof is similar to the proof of Theorem 1, except

that right at the end one needs to apply Lemma 2 (see the
Appendix), instead of Lemma 1, to bound the distribution of
a sum of independent random variables (note that, according
to the assumptions from the Theorem 2, the supremums

sup [D(s,t) — a®(t — s)] and sup [B'(t —s) — S(s,t)] are
0<s<t 0<s<t
independent).

The second considered reliability metric, closely related to
the loss of power supply probability, is the average Fraction of
Time energy Not-Served. This metric, denoted by FTNS(T),
is defined over the entire system time period [0, T:

1 X
FTNS(T) := = P{L . 12
S(T) i= 7 2 PLLE) > 0} (12)
The FTNS metric will be used in our real case study from
Section VI. Depending on the statistical independence between
energy supply and demand, the loss of power supply proba-
bilities from Eq. (12) can be bounded by either Theorem 1 or
Theorem 2.

B. Waste of Power Supply (WPS)

The instantaneous WPS process, denoted here by W (t),
characterizes the amount of wasted energy at time ¢ due to
insufficient energy storage and/or demand (for visualization
see Figure 3). Following the structure of the previous subsec-
tion, we first derive an explicit expression for W (¢) and then
compute a bound on its CCDF.

To define W (¢) at some time ¢, assume that there is b(t —1)
remaining energy in the storage at the end of time slot ¢ — 1.
Adding S(t—1,t) supplied energy and subtracting D(t —1,t)
consumed energy in time slot ¢, it follows that there is no more
than [b(t—1)+S(t—1,t)— D(t—1,t)]" remaining energy in
the system at the end of time slot ¢. If [b(t—1)+S(t—1,¢) —
D(t —1,t)]T > C, then some arrivals to the power queueing
system have to be dropped (i.e., energy is wasted). Formally,
W (t) is defined as

W(t)=[b(t—1)+ St —1,t) — D(t—1,t) - C]* .

Note that T (¢t) would correspond to the amount of buffer
overflow in a (conventional) queueing system.

Recalling the explicit expression of b(t) from Eq. (10), an
explicit expression on W (t) follows immediately:

Corollary 2: (WPS Process) For all t > 1 it holds
W(t) = [S(u,t) — D(u,t) — C,

inf [ sup
0<s<t—1"g<y<t—1

S(s,t) — D(s,t) + C(s) — C]T] . (13)



This result corresponds directly to the (conventional) queueing
result from Theorem 2 in [24].

This expression lends itself to the following upper bound
on the CCDF of W (¢).

Theorem 3: (WPS CCDF) Given the power queueing sys-
tem, assume that the energy supply process has a stochas-
tic upper supply curve S* with bounding function ¥, i.e.,
S ~ (g%, "), and the energy demand process has a stochastic
lower demand curve o' with bounding function &), i.e.,
D ~ (!, al). Then the waste of power supply probability
satisfies for all ¢t > 1 and z > 0

P{W(t) >z} <e'®é}, <C - Oitigt[ﬂ“(s) —al(s)] + JZ) .

The proof follows the same line of argument as the proof
of Theorem 1; for completeness we give it next.

Proof: For the right-hand side of Eq. (13), we have:

inf sup
0<s<t—1"g<u<t—1

S(s,t) — D(s,t) + C(s) — C]
< sup [S(u,t) — D(u,t) — C,S(0,t) — D(0,t) — C]

[S(ua t) - D(uvt) - C,

0<u<t

= Sup [S(S,t)—D(S,t)—C]
0<s<t

= sup [S(s,1) = BU(t =)+ B"(t — 5) + o' (t — 5)
0<s<t

—al(t—s) = D(s,t)] - C

< sup [S(s,8) = B*(t = o) + Oiggt[al(t — ) = D(s,1)]
+ s [54(s) — al(s)] - O

The right-hand side in the last line indicates a sufficient
condition to derive P{W(¢) > x}. By accounting for the

assumptions that P{ sup [S(s,t) — B“(t — s)] > z} < ¥(x)
0<s<t

and P{ sup [a!(t — s) — D(s,t)] > z} < €l(z), the rest of
0<s<t
the proof follows from Lemma 1. ]

This theorem, alike Theorem 1, is quite general in that
it does not require the statistical independence between the
demand and supply processes. Under such an additional as-
sumption, the upper bound can be further strengthened as
follows:

Theorem 4: (WPS CCDF - Statistical Independence Case)
With the same conditions as in Theorem 3, along with an
additional statistical independence assumption between the
energy demand and supply processes, the waste of power
supply probability satisfies for all ¢ > 1

P{W(t) > o} < ei(2) + el xeq(2)

where z = C' — sup [B%(s) — al(s)] + z.
0<s<t
The proof follows the same steps as the proof of Theorem 3,
except for the last step application of Lemma 2 instead of
Lemma 1.

V. AGGREGATING DIFFERENT ENERGY SOURCES

In this section we provide two results concerning the
aggregation of heterogeneous power supply sources. These ag-
gregation results transform multiple supply curves into a single
one, which can be then immediately used in Theorems 1-4.
First we give a general result holding irrespectively of the
statistical independence amongst the sources.

Proposition 1: (Energy Aggregation Property) Consider a
power system that consists /N power generators in parallel. If
each power generator (n = 1,2,..., N) provides a stochastic
lower energy supply curve S, ~ (el L), then the power
system provides a stochastic lower supply curve S ~ (&', )
with

BH(t) = Bi(t) + By(t) + . + B (t),
ez) =l @b ®... @ ly ().

A similar result for a stochastic upper arrival curve appeared
in [14] (p. 108), using conventional network calculus terms.
The proof of our result follows the same line of argument as
in [14].

Proof: Here we only consider the case with 2 energy
generators, from which the proof can be easily extended to the
general case with N generators. As S(¢) is the aggregation of
2 power supplies, we have that S(s,t) = S1(s,t) + Sa(s,1)
for all 0 < s <. We can now write

sup [8(t - 5) — S(s,1)]

0<s<t

= e [(BL(t = 5) + B3(t = )) = (S1(s,t) + S2(s,1))]

= sup [(Bit =) = Si(s,1)) + (Ba(t = ) = Sa(5,1))]

< sup. [BL(t —s) — Si(s,t)] + sup. [B5(t — s) — Sa(s,1)] .

With the above assumptions, we have P{ sup [3}(t —s) —
0<s<t

Si(s.8)]} < h(a). and P{ sup [8}(t — 5) — Sa(s. O]} <

el (x). Applying Lemma 1 from the Appendix concludes the
proof. [ ]

If the individual energy supply processes are statistically
independent, then a tighter bounding function can be obtained
as shown in the next result.

Proposition 2: (Energy Aggregation Property - Statistical
Independence Case) Under the same conditions as in Propo-
sition 1, and assuming additionally that the energy supply
process S, (n =1,2,..., N) are statistically independent, then
the power system provides a stochastic lower supply curve
S ~ (el, p!) with the same B'(t) = BL(t) +B5(t) +...+ B4 (t)
as in Proposition 1, but a tighter bounding function

N n
El(aj):ZZEl*---*ei(x) .

n=1 i=1
With conventional network calculus terms, a similar im-
provement for a stochastic upper arrival curve can be found in
[14] (p. 133). The proof is similar to the proof of Proposition 1,
with the difference that at the end one should invoke Lemma 2
instead of Lemma 1.
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VI. CASE STUDY
A. Description of the Data Set

As a case study, we consider Santa Catalina Island, which is
located 26 miles off the coast of Southern California, USA. It
has an area of 76 square miles and it has 54 miles of coastline.
Currently, the electricity on Catalina is generated by a central
diesel plant, and the island is served by three 12kV distribution
circuits which are separated from the grid on the California
mainland. It is desirable to reduce diesel-based generation for
both environmental and economic reasons. This paper aims to
investigate the feasibility of replacing diesel generation with
generation from renewable sources.

We use data profiles including power load, solar PV genera-
tion, and wind generation for our analytical study. We consider
two typical data profiles in winter and summer seasons. The
hourly variations of all data profiles for the month of January
2010 are shown in Figures 4a, 5a, and 6a. In addition, the
hourly variations of the data profiles for the month of July
2010 are shown in Figures 4b, 5b, and 6b. They are obtained
at various locations near Santa Catalina Island with similar
meteorological characteristics:

« Solar generation profile: Based on the typical meteorolog-
ical year (TMY) data sets derived from the National Solar
Radiation Data Base (NSRDB) archives [25], the hourly
per unit (35m?) solar PV energy generation data for Long
Beach, California, is calculated using the System Advisor
Model [26].

¢ Wind generation profile: The hourly energy generation
data for a wind turbine located off an island near Santa
Barbara, California is obtained from the Western Wind
Sources data set available at the National Renewable
Energy Laboratory (NREL) [27].

o Load profile: The peak values for Santa Catalina Island
are obtained by personal communication with researchers
from Southern California Edison [28]. The load profiles
are generated from a proxy distribution circuit statistically
similar to the island, whose peak is scaled to match the
peak data for each of the three distribution circuits on the
island.

The cumulative per unit solar generation, per turbine wind
generation and load profiles are depicted in Figures 7a, 7b, and
7c. As shown in the figures, the solar PV generation in July
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Fig. 7.

is significantly greater than in January due to meteorological
factors. We also notice that the load in July is greater than in
January, a fact which could be attributed to the abundant usage
of air conditioning in the summer. For the wind generation
profile, there is no significant difference in the cumulative
amount; a slight difference lies in fluctuations characteristic
to daily behaviors.

With the typical power load and generation profiles for a
certain period, we are next going to address the following
design question: Given different configurations of renewable
sources, what are the appropriate amounts of battery storage
needed to ensure a certain level of power supply reliability?
To answer, we will illustrate in particular the impact of battery
storage on the average Fraction of Time that energy is Not-
Served (FTNS) performance metric from Eq. (12).

B. Model Fitting

From the data set given above, we first fit the stochastic
demand and supply curves and the corresponding bounding
functions from Definitions 1 and 2. The demand/supply curve
functions are linear functions with the rate equal to the long-
term mean rate of the fitted data. Once these curves are set,
we next fit exponential functions for the bounding functions.

In particular, for the energy demand process, we can get a
stochastic upper demand curve «*(¢) with bounding function
¢4, denoted by D ~ (e4,a"). In turn, to fit the solar
power supply data, we first assume that all the PV panels are
homogeneous. Then, based on the per unit data profile and
given the total number N, of PV panels, we fit a stochastic
lower supply curve (P(t) with bounding function &2, denoted
by SP ~ (e, 5P). Similarly, all the wind turbines are also
assumed to be homogeneous. Based on the per turbine data
profile and given the total number N,, of wind turbines, we
fit a stochastic lower supply curve 8% (t) for the wind energy
supply with bounding function €%, denoted by S ~ (¥, 5*).
To aggregate heterogeneous power supply sources together, we
use the aggregation property from Proposition 1.

C. Numerical Results

For a given battery capacity C, the loss of power supply
probability (LPSP) metric is provided by Theorem 1. Together
with Eq. (12), we can get the average Fraction of Time that
energy is Not-Served (FTNS) over the entire time period of
the given data profile, e.g., 7' = 744 hours in January 2010.
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Cumulative energy supply/demand profiles in January (blue line) and July (red line)

FTNS is used next to illustrate the impact of three factors, i.e.,
concerning wind and solar generation, and also seasonality, to
the reliability of the power system.

1) Wind Generation Impact: Figure 8a depicts the FTNS
metric as a function of the battery storage capacity, with a fixed
level of solar generation, i.e., IV, = 2X 102, for different values
N,, of wind turbines in January. As N, increases, FTNS
decreases with the same battery capacity and approaches a
constant value. For a targeting FTNS value, say 0.01, we
can readily get the amount of required battery storage for
different energy configurations. For instance, when the number
of wind turbines increases from 2 to 5 units, while fixing the
other settings, the battery storage requirement is reduced from
66.5 MWh to 51.3 MWh, 48.4 MWh, and 46.6 MWh,
respectively. This example illustrates the fact that, due to the
complementary characteristics between solar and wind energy
for certain locations, the hybrid solar-wind power generation
system with storage banks can offer a highly reliable source
of power, which is suitable for electrical loads with high
reliability constraints.

2) Solar Generation Impact: Figure 8b depicts the FTNS
metrics as a function of the battery storage for different levels
of solar generation with a single wind turbine in January. As
expected, FTNS decreases as the battery capacity increases.
Similar to the decreasing rate of FTNS shown in Figure 8a by
increasing N,,, the transition from high FTNS to low FTNS
sharpens by increasing [V,,. That means that for some targeting
FTNS value, increasing the number of wind turbines would
have a smaller impact on reducing the battery requirement
due to the fluctuating nature of the renewable power sources.
As an example, for a targeting FTNS value of 0.01, the
battery capacity requirement with the configuration of one
wind turbine and 2 x 103 units of PV panels is 116.8 MW h;
by further increasing the number of PV units to 5 x 10? units,
the battery capacity requirement decreases to 61.2 MW h.

3) Meteorological Impact: For a fixed configuration of
renewable generations, we next investigate the impact of
different seasons. Figure 8c shows the FTNS metric as a
function of the battery storage with a single wind turbine
and N, = 2 x 10 units of PV panels, in January and July.
We notice that FTNS decreases much sharper in July than
in January, beyond some critical point of the battery storage
capacity. In other words, in order to guarantee a certain level
of system reliability, less battery storage capacity is needed
in July. This can be explained by the significantly higher
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solar PV generation in July than in January. As an example,
for a targeting FTNS value of 0.01, the battery capacity
requirements are 116.8 MW h for January and 89.3 MWh
for July. We also notice that FTNS in July is greater than
in January for smaller values of the battery storage than the
critical point. This fact can be attributed to the increased
energy demand in summer, which widens the gap between
power generation and demand at the beginning of the day due
to lack of any solar generation.

VII. RELATED WORK

Aggregating stochastic power sources to achieve reliable
electricity supply is a challenging problem. Various opti-
mization techniques for hybrid PV/wind systems sizing have
been proposed in the literature [29], such as probabilistic
approaches [30], [31], graphical construction techniques [32],
[33], artificial intelligence methods [34][35], and iterative tech-
niques [36], [37]. For instance, the authors of [30] developed
a probabilistic model of the hybrid solar-wind power system
to incorporate the fluctuating nature of the resources and the
load. In particular, the model convolves the probability density
function of power generated by solar and wind generations,
to assess the long-term performance of a hybrid system for
both stand-alone and grid-connected applications. To estimate
the load-shedding probability, [31] constructed a matrix for
the Markov chain model based on the empirical distribution
of the energy storage states, and the results derived were
translated into design choices. Unlike this set of works, our
analytical framework is based on very general stochastic
network calculus models to capture fluctuations in both energy
supply and demand.

Unlike much theoretical development in the field of the
stochastic network calculus, its application to critical prob-
lems, such as the reliability of a power system, is lagging
behind [38]. Recent examples of works, concerning applica-
tions of the stochastic network calculus, include for instance
[39] which analyzes the delay of the IEEE 802.11 distributed
coordination function (DCF), where the stochastic behavior of
the DCF is characterized by a time-domain model; the end-
to-end delay in some wireless networks is analyzed in [40].
The extension of the stochastic network calculus to analyze
information-driven networks, developed in [41], can be re-

Battery Storage Capacity (MWh)

(b) Ny =1

60 80 100 120 0 50 100 150 200
Battery Storage Capacity (MWh)

(¢) Ny =1and Np = 2 x 103

FTNS as a function of battery storage capacity under various aggregation scenarios

garded as an important step to bridging the gap between com-
munication networks and information theory. Other extensions
of the stochastic network calculus are developed to study the
impact of network coding in acyclic networks [42] or the
problem of estimating the available bandwidth in networks
with random service [43]. The problem of scheduling sub-
piece transmission for P2P-VoD system is formalized in [44],
which further analyzes its delay performance.

Lastly we mention two parallel and closely related works
with ours. Wu er al. [45] also extend the stochastic network
calculus to account for the supply and demand energy in
a power system with renewable energy sources, which is
used for the study of the stochastic energy constraint and the
correlation between QoS and the uncertain energy supply. The
common metric studied in both [45] and ours is the waste of
power supply (WPS), albeit in [45] it is derived in a simplified
queueing model with infinite storage. The main difference
between the two formulations is that the energy demand in [45]
is coupled with the energy supply using a stochastic service
curve model alike Eq. (1), whereas this paper uses an entirely
decoupled approach. The same decoupled approach is used
by Le Boudec and Tomozei [46] in a deterministic framework
of the network calculus. In that work, the authors investigate
several problems related to battery sizes, such as the existence
of necessary and sufficient conditions, and the construction of
online battery charging schedules, to guarantee zero loss of
power supply (LPS). For future work, it would be interesting
to compare the coupled vs. decoupled formulations from [45]
and ours in a stochastic framework, and to further relate them
with deterministic counterparts as in [46].

VIII. CONCLUSION

In this paper, we have extended the stochastic network
calculus framework to analyze system design in the context
of the power grid. This extension was motivated by the ability
of the calculus to account for high fluctuations in queueing
systems, which are especially characteristic to the power
grid when integrating renewable energy sources such as solar
and wind. We have provided explicit formulas for various
performance metrics characteristic of the power grid, such as
the power system reliability depending on the number of PV
cells, wind turbines, and energy storage capacity. To validate



our model, we have investigated the feasibility of replacing
diesel generation entirely with PV panels and wind turbines,
supplemented with energy storage, in a case study on Santa
Catalina Island.
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APPENDIX

Here we give two lemmas which are useful for the main
results in the paper. The lemmas provide bounds on the
distribution of a sum of two random variables, which represent
instances of the energy demand or supply processes.

Lemma 1 ([14]): Let two random variables X and Y, with
CDFs Fx (x) and Fy (), respectively. If F'$(z) < ex(z) and
Fg(z) <ey(z) ¥V x > 0, for some real functions ¢x (x) and
ey (x), then for all x > 0

P{X+Y >z} <F5(z) @ Fg(z) <ex ®ey(z) .

We remark that the tail bound holds irrespectively of the
statistical independence between X and Y. If such an addi-
tional independence assumption holds, then the tail bound can
be further improved as follows.

Lemma 2: Let two non-negative random variables X and Y’
such that F'¢(z) < ex(z) and F(z) < ey (x) for all z >0,
and ex(x) = ey (z) =1 for all z < 0. Then for all z >0

P{X+Y >z} <ex(x)+texxey(z).

This lemma provides a slight simplification of Lemma 6.1
from [14] and the proof follows similarly.
Proof: Fix x > 0. Then we can write

P{X+Y >z} /OOOIF’{X >z —y}dFy(y)
< /000 ex(z —y)dFy(y)

— ex(—00) Fy(00) — ex () Fy (0) — / " Fr(wdex(z—y) |

after using the bound from the theorem and then integrating
by parts formula for the Stieltjes integral. We can continue the
last equation as follows

P{X+Y>x}§1—/oodéx(9€—y)
0
+ [ etz =)
glfsx(—oo)+sx(x)+/0 ey (y)dex(z —y)

=ex(x) +/Oz ey (y)dex(z —y) ,

which concludes the proof (in the third line we could restrict
the domain of the integral since ex(y) =1 Yy < 0). ]
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