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ABSTRACT
Randomized load balancing is a cost efficient policy for job
scheduling in parallel server queueing systems whereby, with
every incoming job, a central dispatcher randomly polls some
servers and selects the one with the smallest queue. By ex-
actly deriving the jobs’ delay distribution in such systems,
in explicit and closed form, Mitzenmacher [5] proved the so-
called ‘power-of-two’ result, which states that by randomly
polling only two servers yields an exponential improvement
in delay over randomly selecting a single server. Such a fun-
damental result, however, was obtained in an asymptotic
regime in the total number of servers, and does do not neces-
sarily provide accurate estimates for practical finite regimes
with small or moderate number of servers. In this paper we
obtain stochastic lower and upper bounds on the jobs’ av-
erage delay in non-asymptotic regimes, by borrowing ideas
for analyzing the particular case of the Join-the-Shortest-
Queue (JSQ) policy. Numerical illustrations indicate not
only that the obtained bounds are remarkably accurate, but
also that the existing exact but asymptotic results can be
largely misleading in some finite regimes.
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1. INTRODUCTION
Parallel server queueing systems model a wide range of

scenarios related to daily situations, e.g., toll booths, bank
tellers, supermarket cashiers, etc., or to computer and com-
munication systems, e.g., multi-processor systems, data cen-
ters, etc. Scheduling in these complex systems concerns the
assignment of a single server to execute each arriving job.
Existing scheduling policies reveal an interesting tradeoff be-
tween 1) the optimality of some performance metric, e.g.,
jobs’ (average) delay, and 2) cost efficiency, e.g., in terms of
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minimizing the amount of overhead. At one extreme, the
policy of (non-)randomly selecting a server has no feedback
cost (as communication from the servers to the dispatcher)
but conceivably leads to very large delays, and even to in-
stabilities when the selection process is not adequately bal-
anced. At the other extreme, the Join the Shortest Queue
(JSQ) policy, whereby the dispatcher sends each job to the
server with the shortest queue, minimizes delay but has a
very high feedback cost because all servers must report their
queue lengths for every job arrival, and thus raises a valid
concern regarding practical implementations.

In order to reduce the feedback cost, and yet to keep the
delay ‘small’, JSQ has been generalized to SQ(d), whereby
the dispatcher runs JSQ only for a subset of d randomly
sampled servers from the uniform distribution (see Mitzen-
macher [5] and Luczak and McDiarid [3]). Note that SQ(d)
reduces to a simple uniform random selection when d = 1,
and to JSQ when d = N , where N is the total number
of servers. A fundamental qualitative result is that SQ(2)
yields an exponential improvement over SQ(1) in terms of
delay, yet with a conceivably small overhead cost. This re-
sult is known as the ‘power-of-two’ result [5].

Despite its apparent simplicity, SQ(d) is very difficult to
analyze in terms of the delay metric, even for a classical in-
put with Poisson arrivals and exponential job sizes. In fact,
SQ(d) can be exactly analyzed only for d = 1, in which case
the problem reduces to the M/M/1 queue. What makes the
problem particularly difficult, when d > 1, is that the gener-
ator matrix of an underlying N -dimensional Markov chain
(representing, for instance, the number of jobs at each of the
servers’ queues) has an irregular structure. For this reason,
solutions have been so far developed either in asymptotic
regimes or in terms of bounds in particular cases.

An exact solution on the delay distribution was obtained
in an asymptotic regime in the total number of servers, i.e.,
for N → ∞ [5]; this solution was instrumental to showing
the ‘power-of-two’ result. Lower and upper bounds on delay
were obtained for the particular case when d = N , i.e., JSQ.
The main idea is to transform the original Markov chain
with the inherent irregular structure into Markov chains
with some regular structure (see Adan et al. [1], Lui et
al. [4], or Zhao and Grassmann [7]). To get a lower bound,
for instance, the transformation consists in redirecting some
transitions between the states of the original Markov chain
in such a way that the new system is less loaded than the
original one. Moreover, the newly formed generator ma-
trix has a periodic structure such that its analysis becomes
amenable to matrix-geometric techniques (Neuts [6]).



In this paper we extend such methods for computing lower
and upper delay bounds to the general SQ(d) case. The
extension is not straightforward, but on the contrary, be-
cause of a much more compounded transformation process
needed to produce Markov chains with a regular structure.
We thus provide the first non-asymptotic results for SQ(d)
policy which can be applied in finite regimes with small to
moderate number of servers. A drawback of the obtained
bounds, however, is that they are obtained in implicit form,
as they are based on matrix-geometric techniques, and are
thus unable to provide qualitative insight alike the ‘power-of-
two’ result. However, the bounds are numerically tractable,
and are remarkably tight. Moreover, the bounds illustrate
that the asymptotic result from [5] can be largely inaccurate
(e.g., smaller than the lower bound) in regimes with small
number of servers.
The rest of the paper is organized as follows. In Section 2

we summarize the main ideas for computing lower and upper
bounds for the SQ(d) policy. In Section 3 we numerically
test the accuracy of the obtained bounds, and in Section 4
we conclude the paper.

2. MODEL AND ANALYSIS
We consider the general SQ(d) scheduling policy with N

parallel servers. Jobs arrive at a central dispatcher according
to a Poisson process with rate λN , and their service times
are exponentially distributed with unit mean. With every
arriving job, the dispatcher randomly polls d servers accord-
ing to a uniform distribution without replacement, out of the
N servers. The d selected servers report the number of jobs
in their systems, and the newly arriving job joins the server
with the smallest number of existing jobs; ties are resolved
arbitrarily. At every server, jobs are served according to the
FIFO policy. We impose the stability condition λN < 1.
The Poisson/exponential arrivals’ model enables the con-

struction of a continuous-time Markov chain to model the
evolution of the SQ(d) policy. The set of states is

M = {m : m = (m1,m2, . . . ,mN )} ,

where m1 denotes the largest number of jobs at the N
servers, m2 denotes the second largest number of jobs, and
so on, such that mN denotes the smallest number of jobs.
The corresponding generator matrix is denoted by Q, and
the steady-state distribution of the number of jobs in the
systems π = πm can be obtained by solving

πQ = 0, πe = 1 .

For example, if N = 3, then π = (π(0,0,0), π(1,0,0), . . .),
where π(0,0,0) denotes the equilibrium probability for the
state (0, 0, 0) with no jobs in the whole system.
As we have pointed out earlier, the computation of the

steady-state distribution π is hampered by the irregular
structure of the generator matrix Q. In order to circumvent
this problem we next borrow ideas from the JSQ analysis
(see Adan et al. [1]), whereby the original Markov chain
is transformed by suitably redirecting transitions such that
the new generator matrix has some regular structure. Con-
cretely, we introduce a threshold parameter T such that,
in the transformed Markov chains (one for getting lower
bounds and another for getting upper bounds), the following
condition must hold

m1 −mN ≤ T . (1)

To enforce this condition we suitably redirect some transi-
tions from the original chain. In particular, to get a stochas-
tic lower bound, we redirect transitions according to the fol-
lowing two rules:

1. When a departure causes the violation of Eq. (1), then
the departure occurs from (one of) the longest queue(s)
instead of the shortest queue.

2. When an arrival causes the violation of Eq. (1), then
the arrival is sent to (one of) the shortest queue(s)
instead of the longest queue.

In turn, to get a stochastic upper bound for SQ(d), we
redirect the transitions in the following way:

1. When a departure causes the violation of Eq. (1), then
the departure may not occur.

2. When an arrival causes the violation of Eq. (1), then
the arrival is accompanied by the addition of one extra
job at each of the shortest queues.

The key advantage of these transformations is that we
can partition the newly constructed state spaces (for the
lower/upper bounds systems) into blocks of states with a
periodic structure between adjacent blocks. Moreover, each
block has a finite number of states which can be further
ordered according to the total number of jobs in the sys-
tem; ties are broken according to a lexicographical ordering.
Overall, the newly generator matrices Q have the form

Q =



R00 R01 0 0 0 . . .
R10 A1 A0 0 0 . . .
0 A2 A1 A0 0 . . .

0 0 A2 A1 A0

. . .
...

...
. . .

. . .
. . .

. . .

 .

Here, R00, R01 and R10 correspond to the matrices created
by transition rates within the boundary blocks, transitions
from a non-boundary block to a boundary block and from a
boundary block to a non-boundary block, respectively. The
non-boundary blocks, i.e., A0, A1 and A2, are of orderm×m,
where m is the number of states in such a block, i.e.,

m =

(
N + T − 1

T

)
.

The generator matrixQ is irreducible and, since two states
in different non-boundary blocks can reach each other via
paths not passing through the boundary block R00, the gen-
erator A0+A1+A2 is also irreducible. We define the station-
ary probabilities (p⃗0, p⃗1, p⃗2, . . .), where p⃗0, p⃗1 and p⃗2 corre-
spond to the equilibrium probability vectors of the boundary
block, and the first and second non-boundary block, respec-
tively. Then, Theorem 1.7.1 of Neuts [6] yields the solutions
of (p⃗0, p⃗1, p⃗2, . . .) for the lower and upper bound models, i.e.,

p⃗q+1 = σN p⃗q and p⃗q+1 = Rp⃗q, q = 1, 2, . . . , (2)

respectively. Here, σ is the unique solution, inside the unit
circle, of the equation in x



x =
∑
k≥0

xkβk , (3)

where βk is the probability that there are k departures within
two arrivals, i.e.,

βk =

∫ ∞

0

tk

k!
e−tdA(t) .

Solving for Eq. (3) in the case of the SQ(d) lower bound
model yields σ = ρ, where ρ = λN is the system’s uti-
lization. In turn, for the SQ(d) upper bound model, the
rate matrix R from Eq. (2) can explicitly be computed (see
Latouche and Ramaswami [2]). Next, (p⃗0, p⃗1, p⃗2) can be ob-
tained by solving the following system of equations for the
lower/upper bound models

(p⃗0, p⃗1, p⃗2)

R00 R01 0
R10 A1 A0

0 A2 A1 +RA2

 = (p⃗0, p⃗1, p⃗2) ,

where R = ρN for the lower bound model. From these equi-
librium probabilities of the states, we can obtain the lower
and upper bounds on the average delay. Concretely, for each
state we know the number of waiting jobs at each server, i.e.,
server i has max{(mi−1), 0} jobs, and we can multiply this
number by the equilibrium probability of the corresponding
state. By doing so for all states, we can numerically compute
the bounds on the jobs’ average delay.

3. NUMERICAL RESULTS
To test the accuracy of our lower and upper bounds, we

simulated the SQ(d) model for 106 transitions (arrivals and
departures), of which we ignored the first 105 when calculat-
ing the jobs’ average delay. For comparison, we also consider
the exact, but asymptotic, results from [5].
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(a) N = 3, T = 2
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(b) N = 3, T = 3
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(c) N = 6, T = 3
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(d) N = 10, T = 3

Figure 1: Average delay as a function of utilization
for SQ(2) for various number of servers N = 3, 6, 10
and threshold parameter T = 2, 3

In Figure 1.(a-d) we show the average delay as a function
of utilization for SQ(2). The first observation is that there
is a tradeoff between the accuracy of the upper bounds and
the computational complexity. Indeed, (a) and (b) indicate
that the upper bounds are quite loose by letting T = 2,
and are getting significantly tighter by letting T = 3. How-
ever, the numerical complexity increases significantly with
T because the sizes of the (non-)boundary blocks in the gen-
erator matrix Q are exponential in T . As a related remark,
different values of T change the stability condition for the
SQ(d) upper bound (recall the last two rules for redirecting
transitions from the previous section). The second obser-
vation is that the lower bounds are accurate over all three
values of N , i.e., 3, 6, and 10. Finally, the asymptotic results
(which are in fact invariant to the value of N), significantly
underestimate the ‘true’ results for small values of N , and
especially at high utilizations.

4. CONCLUSIONS
In this paper we have considered the SQ(d) scheduling

policy, and we have carried out matrix-analytical methods
to compute stochastic lower and upper bounds on the av-
erage delay. The merit of the obtained bounds is that they
hold in non-asymptotic regimes, and thus complement exist-
ing exact results obtained in asymptotic regimes. Numerical
results revealed that there is an interesting tradeoff between
the accuracy of the obtained upper bounds and the dimen-
sion of the computational complexity. Moreover, the lower
bounds are remarkably tight, whereas the asymptotic results
may be misleading in finite regimes.
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