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Abstract

A common problem arising in network performance analysis with the stochastic network calculus is
the evaluation of (min, +) convolutions. This paper presents a method to solve this problem by applying
a maximal inequality to a suitable constructed supermartingale. For a network with D/M input, end-to-
end backlog bounds obtained with this method improve existing results at low utilizations. For the same
network, it is shown that at utilizations smaller than a certain threshold, fluid-flow models may lead to
inaccurate approximations of packetized models.

1 Introduction

Stochastic network calculus is a theory for the performance analysis of networks in terms of probabilistic
bounds. A feature of the calculus is that end-to-end backlog and delay bounds can be derived using a (min, +)
convolution operation. The bounds obtained in this manner are generally much tighter than corresponding
results obtained by adding per-node bounds (see Ciucu et. al. [6], Fidler [7]).

A common technique for the problem of evaluating backlog bounds in network calculus is to invoke
Boole’s inequality, i.e., Pr(sup Xs > x) ≤ ∑

Pr(Xs > x). For the same problem restricted to the class
of Lévy processes with bounded moment generating functions, an alternative technique is to apply Doob’s
maximal inequality, i.e., Pr(sup eθXs > eθx) ≤ E[eθX0 ]e−θx, where eθXs is a supermartingale. This technique
is reminiscent of the derivation of backlog bounds in GI/GI/1 queues, in a classic note by Kingman [10].
In previous work [5], we have shown in a network calculus setting that Doob’s inequality leads to improved
bounds than those obtained with Boole’s inequality, in the single-node case.

In the multi-node case, multiple (min, +) convolutions make difficult the construction of supermartingales
to extend the benefits shown in the single-node case. In this paper we resolve this problem in scenarios with
low utilizations. As a consequence, for a non-trivial fluid-flow network scenario, we find an utilization
threshold below which the end-to-end backlog is uniformly bounded in the number of nodes. In contrast,
packetization causes the end-to-end backlog to increase (see Burchard et. al. [1]).

We thus identified a scenario where fluid-flow models may be unsuitable to approximate packet networks.
This finding presents interest since fluid-flow models are frequently used to simplify network analysis with
theories such as effective bandwidth (Kelly [8]) or network calculus (Chang [3]). Another attractive feature
of fluid-flow models is that they can speed up packet-based simulations in small networks, but this advantage
may disappear in networks with large number of nodes (see Kesidis et. al. [9]).

A notable characteristic of the utilization threshold found in this paper is that it decreases with the
number of nodes H as 1/ log H. This raises an interesting parallel with a result obtained by Charny and
Le Boudec [4]. There, it is shown that the end-to-end delay of a flow traversing H nodes with packetization
grows with H, as long as the utilization decreases as 1/H; otherwise, the delays may grow unbounded. The
result holds for high priority and deterministically regulated flows with aggregate scheduling. In contrast,
our result holds for statistical arrivals and any workconserving scheduling. The importance of the result in
[4] is that it holds for networks with general topologies; in turn, we only consider a single-path network.

In Section 2 we derive an end-to-end backlog bound with Doob’s inequality, and for comparison we
present a second bound obtained with Boole’s inequality. The scaling and numerical comparisons of these
bounds are discussed in Section 3 for networks with D/M input.
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2 End-to-End Backlog Bounds

We consider the network scenario from Fig-

Figure 1: A network with cross traffic

ure 1. A through flow traverses H nodes in
series, and additional cross flows arrive at the
nodes. All flows are discrete time processes,
i.i.d., have stationary and independent incre-
ments, and also have bounded moment gener-
ating functions. Each node is workconserving,
and has capacity C > 0.

The next theorem gives our main result, i.e., a bound on the end-to-end backlog process B(t) = A(t)−D(t)
of the through flow traversing the network.
Theorem 1 Given the network scenario above, assume that there exits θ > 0 such that

E
[
eθA(1)

]
E

[
eθ maxh{Ah(1)}

]
≤ eθC (1)

holds. Then we have for all t, σ ≥ 0
Pr

(
B(t) > σ

)
≤ e−θσ . (2)

Proof. Fix t ≥ 0. Following [7] we have that Sh(s, t) = C(t− s)−Ah(s, t) are statistical service curves
for the through flow at each node h, and furthermore D(t) ≥ A ∗ S1 ∗ . . . ∗ SH(t), where f ∗ g(s, t) :=
infs≤u≤t(f(s, u) + g(u, t)). Then we can write for the backlog: B(t) ≤ sups

[
A(s, t)− S1 ∗ . . . ∗ SH(s, t)

]
.

Denoting T (s) the process in the braces, with s replaced by t− s, we make the critical observation that

T (s + 1) ≤ T (s) + A(t− s− 1, t− s)− C + max
h
{Ah(t− s− 1, t− s)} .

Let us now choose θ > 0 satisfying Eq. (1). Using the stationary and independent increments properties,
we can write for an appropriate filtration Fs

E
[
eθT (s+1) ‖ Fs

]
= eθT (s)e−θCE

[
eθA(1)

]
E

[
eθ maxh{Ah(1)}

]
≤ eθT (s) ,

thus showing that eθT (s) is a supermartingale. Invoking Doob’s maximal inequality we obtain the end-to-end
backlog bound for all σ ≥ 0

Pr (B(t) > σ) ≤ Pr

(
sup

s
eθT (s) > eθσ

)
≤ e−θσ ,

that completes the proof. ¤
For comparison, we next follow [3, 7] to obtain a second end-to-end backlog bound with Boole’s inequality.

We first apply the Chernoff bound in Pr(sups Ts > σ) and then apply Boole’s inequality in the form
E[supXs] ≤

∑
E[Xs] for nonnegative Xs. Evaluating the sums and letting θ > 0 such that

max
h

E
[
eθA(1)

]
E

[
eθAh(1)

]
< eθC , (3)

we obtain the end-to-end backlog bound for all t, σ ≥ 0

Pr
(
B(t) > σ

)
≤

(
1

1− e−θCE
[
eθA(1)

]
E

[
eθA1(1)

]
)H

e−θσ . (4)

For fixed values of θ, Eq. (2) yields tighter bounds than Eq. (4). However, the condition from Eq. (1)
poses more constraints on θ than the condition from Eq. (3). To see the additional constraints in Eq. (1),
Jensen’s inequality (i.e. exp(θE[X]) ≤ E [exp(θX)]) gives a necessary condition for Eq. (1) to hold:

E [A(1)] + E

[
max

h
{Ah(1)}

]
≤ C . (5)

This is stronger than a stability condition and it implies that the utilization should decrease as the number
of nodes grows. In contrast, Eq. (3) implies only the stability condition

E [A(1)] + max
h

E [Ah(1)] ≤ C . (6)
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3 Application to a Network with D/M Input

We now consider a special case of the network from Figure 1, where each flow consists of packets with
constant interarrival times equal to 1/λ, and exponentially distributed sizes with mean 1/µ. We denote the
utilization factor ρ = 2λ/(µC) and assume ρ < 1. The time unit is 1/λ. We assume a fluid-flow service
model, i.e., each fraction of a packet becomes available for service as soon as processed upstream.

Applying Theorem 1, the condition from Eq. (1) reduces for 0 < θ < µ to
(

1− θ

µ

)−1 H∏

h=1

(
1− θ

hµ

)−1

≤ e
2θ
ρµ . (7)

Here we used a result by Rényi on order statistics stating that max {Xh} =
∑ Xh

h in distribution, when Xh

are independent and exponentially distributed [11]. Hence, for values of θ satisfying Eq. (7), the end-to-end
backlog bound is given by Eq. (2). To illustrate the scaling of this bound we choose θ = µ

2 which permits
an explicit computation of the left-hand side of Eq. (7):

(
1− 1

2

)−1 H∏

h=1

(
1− 1

2h

)−1

=
2

(
H! · 2H

)2

(2H)!
= 2

√
πH

(
1 +O

(
1
H

))
,

after using Stirling’s approximation for the factorial. Solving for ρ in Eq. (7) yields

ρ ≤ 1
1.3 + log

√
H +O (

1
H

) . (8)

Some numerical values for the above threshold are given in Table 1. The threshold agrees with the observation
we made about Eq. (5). Moreover, since we chose θ = µ

2 , it follows from Eq. (2) that the end-to-end backlog is
uniformly bounded in the number of nodes H at utilizations smaller than the threshold. A similar conclusion
can be drawn by plugging-in the threshold into Eq. (4).

Number of nodes 10 102 103 106

Utilization threshold 0.41 0.27 0.21 0.12

Table 1: Threshold in Eq. (8), ignoring the asymptotic error, as a function of the number of nodes.

Let us next derive the scaling of the end-to-end backlog when accounting for packetization, i.e., each
packet becomes available for service as soon as fully processed upstream. We also assume that each node
is locally FIFO, and each packet maintains its size constant at each traversed node. Using results from
[1] with ρ chosen as in Eq. (8), we obtain that end-to-end delays (hence end-to-end backlogs as well) grow
as Θ

(
H log H

log H

)
. Besides packetization effects, this order of growth is also determined by statistical

correlations arising from maintaining the packets’ sizes constant. In contrast, we note that such correlations
are not present in the fluid-flow model.

At last, Figures 2.(a,b,c) numerically compare the end-to-end backlog bounds obtained with Doob’s in-
equality (Eq. (2)) and Boole’s inequality (Eq. (4)), adapted to the D/M case. The parameter θ is numerically
optimized in the conditions from Eq. (7) and Eq. (3), respectively. In (a), both bounds show that the end-to-
end backlog is uniformly bounded in H, at very small utilizations; the bounds are preserved even at extreme
values of H (e.g. 106, which is not displayed here), agreeing with the last pair of values from Table 1.

Figure 2.(b) shows that the bounds from Eq. (2) are tighter than the bounds from Eq. (4) at utilizations
smaller than approximatively 25%. The reason is that at utilizations smaller than the threshold from Eq. (8),
similar θ’s hold in Eqs. (2), (4), but the exponential in Eq. (2) has a smaller prefactor than in Eq. (4). We
observed that at utilizations around 30%, the bounds from Eq. (2) start to degrade significatively for H ≥ 100;
this agrees with the second pair of values from Table 1. The blow-up is illustrated in (c) at ρ = 40%; we
remark that bigger ρ implies an earlier blow-up in H.

To conclude, this paper shows that supermartingales based techniques can improve upon techniques based
on Boole’s inequality at small utilizations. Other sufficient conditions under which this advantage holds are
provided by Chang [2] for stochastic linear systems under the (max, +) algebra. Whether this advantage
holds in general for the multi-node network analysis remains open.
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(a) ρ = 5%

20 40 60 80 100
40

50

60

70

80

90

100

Total number of nodes H

B
a
ck

lo
g

(K
b
)

 

 

Upper bounds with Boole’s ineq.
Upper bounds with Doob’s ineq.

(b) ρ = 25%
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(c) ρ = 40%

Figure 2: End-to-end backlog bounds in a fluid-flow network with cross traffic and D/M input, as a function
of the number of nodes H (capacity C = 100 Mbps, utilization factors (ρ = 5%, ρ = 25%, and ρ = 40%),
average packet size 1/µ = 400 Bytes, violation probability ε = 10−6)
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[11] A. Rényi. On the theory of order statistics. Acta Math. Acad. Sci. Hungarica, 4:191–232, 1953.

4


