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ABSTRACT
Energy consumption imposes a significant cost for data cen-
ters; yet much of that energy is used to maintain excess
service capacity during periods of predictably low load. Re-
sultantly, there has recently been interest in developing de-
signs that allow the service capacity to be dynamically re-
sized to match the current workload. However, there is still
much debate about the value of such approaches in real set-
tings. In this paper, we show that the value of dynamic re-
sizing is highly dependent on statistics of the workload pro-
cess. In particular, both slow time-scale non-stationarities
of the workload (e.g., the peak-to-mean ratio) and the fast
time-scale stochasticity (e.g., the burstiness of arrivals) play
key roles. To illustrate the impact of these factors, we
combine optimization-based modeling of the slow time-scale
with stochastic modeling of the fast time scale. Within this
framework, we provide both analytic and numerical results
characterizing when dynamic resizing does (and does not)
provide benefits.
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1. INTRODUCTION
Energy costs represent a significant, and growing, fraction

of a data center’s budget. Hence there is a push to improve
the energy efficiency of data centers, both in terms of the
components (servers, disks, network) and the algorithms.
One specific aspect of data center design that is the focus of
our work is dynamically resizing the service capacity of the
data center so that during periods of low load some servers
are allowed to enter a power-saving mode (e.g., go to sleep
or shut down).

The potential benefits of this dynamic resizing have been a
point of debate in the community [3, 1, 5]. On one hand, it is
clear that, because data centers are far from perfectly energy
proportional, significant energy is used to maintain excess
capacity during periods of predictably low load when there
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is a diurnal workload with a high peak-to-mean ratio. On the
other hand, there are also significant costs to dynamically
adjusting the number of active servers. These costs come in
terms of the engineering challenges in making this possible,
as well as the latency, energy, and wear-and-tear costs of the
actual “switching” operations involved.

The challenges for dynamic resizing highlighted above have
been the subject of significant research. At this point, many
of the engineering challenges associated with facilitating dy-
namic resizing have been resolved. Additionally, the algo-
rithmic challenge of deciding, without knowledge of the fu-
ture workload, whether to incur the significant “switching
costs” associated with changing the available service capac-
ity has been studied in depth and a number of promising
algorithms have emerged.

However, despite this body of work, the question of char-
acterizing the potential benefits of dynamic resizing has still
not been properly addressed. Providing new insight into this
topic is the goal of the current extended abstract. For the
full version of the work summarized here please refer to [6].

2. METHODOLOGY
The perspective of this work is that, apart from engineer-

ing challenges, the key determinant of whether dynamic re-
sizing is valuable is the workload, and that proponents on
different sides tend to have different assumptions in this re-
gard. In particular, a key observation, which is the starting
point for our work, is that there are two factors of the work-
load which provide dynamic resizing potential savings:

(i) Non-stationarities at a slow time-scale, e.g., diurnal
workload variations.

(ii) Stochastic variability at a fast time-scale, e.g., the bursti-
ness of request arrivals.

The goal of this work is to investigate the impact of and
interaction between these two features with respect to dy-
namic resizing.

To this point, we are not aware of any work characteriz-
ing the benefits of dynamic resizing that captures both of
these features. There is one body of literature which pro-
vides algorithms that take advantage of (i), e.g., [4]. This
work tends to use an optimization-based approach to de-
velop dynamic resizing algorithms. There is another body
of literature which provides algorithms that take advantage
of (ii), e.g., [2]. This work tends to assume a stationary



1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

1

2

3

4

5

6

α

pe
ak

/m
ea

n 
ra

tio

 

 
cost reduction =40%
cost reduction =30%
cost reduction =20%
cost reduction =10%

(a) Hotmail

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

2

4

6

8

10

α

pe
ak

/m
ea

n 
ra

tio

 

 
cost reduction =40%
cost reduction =30%
cost reduction =20%
cost reduction =10%

(b) MSR

Figure 1: Characterization of the cost reduction of
optimal dynamic resizing under different levels of
burstiness, α, and peak-to-mean ratio in the work-
load.

queueing model with Poisson arrivals to develop dynamic
resizing algorithms.

The first contribution of our work is to provide an analytic
framework that captures both effects (i) and (ii). We accom-
plish this by using an optimization framework at the slow
time-scale, which is similar to that of [4], and combining
this with stochastic network calculus and large deviations
modeling for the fast time-scale, which allows us to study
a wide variety of underlying arrival processes. We consider
both light-tailed models and heavy-tailed models with vari-
ous degrees of burstiness by varying the tail index α which
describes the shape of the tail 1.

The interface between the fast and slow time-scale models
happens through a constraint in the optimization problem
that captures the Service Level Agreement (SLA) for the
data center, which is used by the slow time-scale model but
calculated using the fast time-scale model:

P(Dk > D̄) ≤ ε̄ , (1)

where we use Dk to represent the steady-state delay during
frame k, and (D̄, ε̄) to represent an SLA of the form “the
probability of a delay larger than D̄ must be bounded by
probability ε̄”.

3. RESULTS
Using this modeling framework, we are able to provide

both analytic and numerical results that yield new insight
into the potential benefits of dynamic resizing. Specifically,
we use trace-driven numerical simulations to study (i) the
role of burstiness for dynamic resizing, (ii) the role of the
peak-to-mean ratio for dynamic resizing, (iii) the role of the
SLA for dynamic resizing, and (iv) the interaction between
(i), (ii), and (iii). The key realization is that each of these pa-
rameters are extremely important for determining the value
of dynamic resizing. In particular, for any fixed choices of
two of these parameters, the third can be chosen so that
dynamic resizing does or does not provide significant cost
savings for the data center. Thus, performing a detailed
study of the interaction of these factors is important. To
that end, we provide concrete illustrations of which settings
of peak-to-mean ratio, burstiness, and SLAs dynamic resiz-
ing are and are not valuable (e.g., Figure 1). Hence, debate
about the potential value of dynamic resizing can be trans-
formed into debate about characteristics of the workload and
the SLA.

1A concrete example is generating jobs in every slot accord-
ing to i.i.d. Pareto random variables Xi with tail distribu-
tion for all x ≥ b: P (Xi > x) = (x/b)−α, in which smaller
values of α indicate heavier tails and, thus, more burstiness.
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Figure 2: Characterization of the impact of the SLA,
ε̄, and burstiness, α, on the cost reduction achieved
by optimal dynamic resizing.

There are some interesting facts about these parameters
individually that our case studies uncover. Two important
examples are the following (see Figure 2). First, while one
might expect that increased burstiness provides increased
opportunities for dynamic resizing, it turns out the bursti-
ness at the fast time-scale actually reduces the potential cost
savings achievable via dynamic resizing. The reason is that
dynamic resizing necessarily happens at the slow time-scale,
and so the increased burstiness at the fast time-scale ac-
tually results in the SLA constraint requiring more servers
to be used at the slow time-scale due to the possibility of a
large burst occurring. Second, it turns out the impact of the
SLA can be quite different depending on whether the arrival
process is heavy- or light-tailed. In particular, as the SLA
becomes more strict, the cost savings possible via dynamic
resizing under heavy-tailed arrivals decreases quickly; how-
ever, the cost savings possible via dynamic resizing under
light-tailed workloads is unchanged.

In addition to detailed case studies, we provide analytic
results that support many of the insights provided by the
numerics. In particular, we prove theorems to provide mono-
tonicity and scaling results for dynamic resizing in the case
of Poisson arrivals and heavy-tailed, self-similar arrivals.
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