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ABSTRACT

Task replication has recently been advocated as a practi-
cal solution to reduce latencies in parallel systems. In ad-
dition to several convincing empirical studies, analytical re-
sults have been provided, yet under some strong assumptions
such as independent service times of the replicas, which may
lend themselves to some contrasting and perhaps contriving
behavior. For instance, under the independence assump-
tion, an overloaded system can be stabilized by a replica-
tion factor, but can be sent back in overload through fur-
ther replication. Motivated by the need to dispense with
such common and restricting assumptions, which may cause
unexpected behavior, we develop a unified and general theo-
retical framework to compute tight bounds on the distribu-
tion of response times in general replication systems. These
results immediately lend themselves to the optimal number
of replicas minimizing response time quantiles, depending on
the parameters of the system (e.g., the degree of correlation
amongst replicas).

1. INTRODUCTION

Given the late abundance of computing resources, a nat-
ural and yet very simple way to improve latencies is repli-

cation. In the context of a multi-server (parallel) system, the
idea is merely to replicate a task into multiple copies/replicas,
and to execute each replica on a different server. By lever-
aging the statistical variability of the servers themselves, as
execution platforms, it is expected that some replicas would
finish much faster than others. The key gain of executing
multiple replicas is not to reduce the average latency, but
rather the latency tail which is recognized as critically im-
portant for ensuring a consistently fluid/natural responsive-
ness of systems.

While the idea of using redundant requests is not new,
as it has been used to demonstrate significant speedups in
parallel programs [3], it has become very attractive with
its implementation in the MapReduce framework through
the so-called ‘backup-tasks’ [1]. Thereafter there has been a
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surge of high-quality empirical work which has convincingly
demonstrated the benefits of using redundancy for signifi-
cant latency improvement.

Such empirical work has been complemented by several
excellent analytical studies, which have provided fundamen-
tal insight into the benefits of replication. Constrained by
analytical tractability, most of these works make several
strong assumptions: not only the arrivals are Poisson and
the service times are exponentially distributed, but the ser-
vice times of the replicas plus the corresponding original
tasks are statistically independent [2]. By challenging these
assumptions, we first provide some elementary analytical ar-
guments, that the benefits of replication are highly depen-
dent on both the distributional and correlation structures of
the service times. Second, we develop a general analytical
framework to compute stochastic bounds on the response
time distributions in replication systems. In particular, our
framework covers scenarios with Markovian arrivals, general
service time distributions, and a correlation model amongst
the original and replicated tasks.

2. ELEMENTARY INSIGHTS

We consider a parallel system withK homogeneous servers
with identical speeds. A stream of tasks arrives at a dis-
patcher according to some stationary and ergodic point pro-
cess; the interarrival times are denoted by ti with mean
E [t1] =

1
λ
.

Upon its arrival, job i is replicated to k ≤ K servers
where they are processed with service times xi,1, . . . , xi,k,
respectively. We first assume the family of service times
{xi,j | i ≥ 1, 1 ≤ j ≤ k} are i.i.d. and drawn from some gen-
eral distribution subject to a finite moment generating func-
tion; the average is set to E [x1] =

1
µ
.

A necessary and sufficient condition for stability in a sce-
nario with replication factor 0 ≤ k ≤ K is

E [min {x1, . . . , xk}] <
K

k
E[t1] . (1)

Denoting the CCDF of xi by f(x) := P(x1 ≥ x), we ob-
serve from the previous stability conditions that the ‘best’
replication-factor k is

argmin
k

k

∫

fk(x)dx . (2)

Depending on the distribution of the xi, each of the repli-
cation strategies 1) No-Replication (i.e., k = 1), 2) Full-
Replication (i.e., k = K), and 3) Partial-Replication (i.e.,
1 < k < K) can be the ‘best’:



iact act 1− p

1

p
λiact λact

Figure 1: Two-state Markov chain Z(n)

No-Replication: Uniform: Assuming uniformly dis-
tributed service times, i.e., xi ∼ U[0,1], replication is detri-
mental:

kE [min {x1, . . . , xk}] =

∫ 1

0

kxkdx =
k

k + 1
.

Full-Replication: Weibull: AssumeWeibull distributed
service times, i.e., f(x) = e−(x/λ)α . For α < 1, a higher de-
gree of replication is ‘better’:

kE [min {x1, . . . , xk}] = k
λ

k1/α
Γ(1 + 1/α) .

Partial Replication: Pareto: Assume Pareto distributed
service times, i.e., f(x) = x−α for x ≥ 1. For suffiently small
α > 1, Partial-Replication is ‘best’:

kE [min {x1, . . . , xk}] = k +
k

kα− 1
.

This last example highlights that the performance of repli-
cation strategies heavily depends on the replication factor k,
the service time distribution, and other underlying assump-
tions. In particular, performance is not monotonic in k, and
thus an optimization framework is desirable.

3. THEORY

For simplicity, we assume that K is an integral multiple
of k. Further, the jobs are assigned to the K

k
batches in a

round robin scheme, i.e. the interarrival times for one batch
can be described as:

t̃i :=

K/k−1
∑

j=0

t(i−1)K
k

+j .

The steady-state response time r has a representation:

r =D max
n≥1

{

n+1
∑

i=1

min
j≤k

{xi,j} −
n
∑

i=1

t̃i

}

. (3)

We consider the following correlation model for the repli-
cas (from [4]):

xi,j = δyi + (1− δ) yi,j ,

where the random variables yi and yi,j are i.i.d. Here,
the parameter δ ∈ [0, 1] describes the degree of correlation
amongst the replicas; δ = 0 corresponds to the i.i.d. case.

For the interarrival times, we consider two scenarios. In
the first scenario the {ti} are i.i.d., in the second scenario
they have a Markovian structure as in Figure 1: the Markov
chain Z(n) alternates between active and inactive periods;
while active, exponentially distributed interarrival times are
generated (parameter λact). While inactive, one interarrival
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(a) i.i.d. scenario
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(b) Markovian scenario

Figure 2: Stochastic bounds vs. simulation results
accounting for 109 packets (K = 4, ρ = .75, µ = 1,
δ = .5)

time (exponentially distributed, parameter λinact < λact) is
generated, and the chain jumps back to the active state.

For 0 ≤ θ < λiact, let Tθ denote the following matrix:

Tθ :=

(

0 λact

λact+θ

p λiact

λiact+θ
(1− p) λact

λact+θ

)

.

Further, let ξ(θ) denote the spectral radius of Tθ, and h =
(hact, hiact) be a corresponding eigenvector.

Theorem 1. For the two scenarios above, let

θiid := sup

{

θ ≥ 0

∣

∣

∣

∣

E

[

eθδyi
]

E

[

eθ(1−δ)minj≤k{yi,j}
]

E

[

e−θti
]K

k
≤ 1

}

θmkv := sup

{

θ ≥ 0
∣

∣

∣
E

[

eθδyi
]

E

[

eθ(1−δ)minj≤k{yi,j}
]

ξ
K
l (θ) ≤ 1

}

Then for the response time holds for all σ ≥ 0:

P(riid ≥ σ) ≤ E

[

eθiid minj≤k{x1,j}
]

e−θiidσ

P(rmkv ≥ σ) ≤ E

[

eδθmkvyi
]

E

[

e(1−δ)θmkv minj≤k{yi,j}
]

e−θmkvσ

To numerically compare our stochastic bounds to simu-
lation results we refer to Figure 2; we remark that in both
considered scenarios, the bounds are remarkably accurate.
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