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The paper studies the (end-to-end) waiting and sojourn times in tandem queues with general arrivals and

light-tailed service times. It is shown that the tails of the corresponding distributions are subject to polynomial-

exponential upper bounds, whereby the degrees of the polynomials depend on both the number of bottleneck

queues and the ‘light-tailedness’ of the service times. Closed-form bounds constructed for a two-queue tandem

with exponential service times are shown to be numerically sharp, improve upon alternative large-deviations

bounds by many orders of magnitude, and recover the exact results in the case of Poisson arrivals.
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1 Introduction
A landmark result in queueing theory is the product-form structure of the number of jobs 𝑁𝑖 at the

individual queues in steady-state, i.e.,

P (𝑁1 = 𝑛1, . . . , 𝑁𝑀 = 𝑛𝑀 ) =
∏
𝑖

P (𝑁𝑖 = 𝑛𝑖 ) .

This property was first proved in Jackson networks with Poisson arrivals, exponentially distributed

service times, FIFO scheduling, and probabilistic jobs’ routing. Several generalizations (e.g., BCMP

or Kelly networks) allow for instance for more general service time distributions or other scheduling

algorithms (see the surveys by Disney and König [16], Nelson [31], or Balsamo and Marin [5]).

What is challenging in Jackson networks, and even more so in queueing networks with general

arrivals, is to characterize end-to-end metrics (e.g., the end-to-end waiting times). For instance,

even in the𝑀/𝑀/1 → 𝑀/𝑀/1 case, unlike the local (per-queue) sojourn times at the two queues

which are independent (Reich [34]), the corresponding local waiting times are not (Burke [9])
1
.

The joint distribution of local waiting times is known in the𝑀/𝑀/1 → 𝑀/𝑀/1 case (Karpelevitch

and Kreinin [23]), as well as the distribution of the end-to-end waiting time in a more general case

when the second queue is served by multiple servers (Krämer [26]). These results were generalized

for a large class of networks with Poisson arrivals by Ayhan and Baccelli [3], but only in terms of

providing the joint Laplace-Stieltjes transform (LST) which generally requires numerical inversions;

explicit expressions for the distribution of local waiting times in such networks were later obtained

by Ayhan and Seo [4].

1
The local sojourn time (aka delay) of a job at some queue is the sum of the corresponding local waiting time and service

time. The (end-to-end) sojourn/waiting times of a job are the sums of the corresponding local sojourn/waiting times along

its whole network path.

Author’s Contact Information: Florin Ciucu and Sima Mehri, University of Warwick, UK.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM XXXX-XXXX/2025/4-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: April 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 Florin Ciucu and Sima Mehri

Similar results on sojourn times exist with a notable exception. A very general result is a product-

form expression for the joint LST over a so-called quasi overtake-free path in both open and closed

product-form networks (e.g., BCMP). This is stated in the survey of Boxma and Daduna [7] (see

Theorem 2.4 therein) and generalizes prior results for open or closed networks; the same survey

also addresses the issue of numerical computations of inverting the LST and several approximation

techniques in both product- and non product-form networks. For a more focused survey on numer-

ical computations of sojourn times’ quantiles see Harrison and Knottenbelt [21]. As mentioned

earlier, unlike the local waiting times in an𝑀/𝑀/1 → 𝑀/𝑀/1 tandem, the local sojourn times are

independent. This exceptional property immediately extends to feedforward Jackson networks,

and as an immediate consequence the sojourn time has an Erlang distribution when all service

rates are equal. Walrand and Varaiya [38] generalized this result to open Jackson networks subject

to non-overtaking paths (for a more comprehensive survey see Disney and König [16]).

The big challenge in queueing networks is to address the case of non-Poisson arrivals. One

versatile approach to relax the Poisson assumption characteristic to Jackson, BCMP, or Kelly

networks is large deviations. Ganesh [20] studied the sojourn time S in tandem queues under

essentially the same general conditions as in this paper and proved the logarithmic asymptotics

lim

𝑥→∞
lnP (S > 𝑥)

𝑥
= −𝜃

for some asymptotic decay rate 𝜃 ; the particular case of two queues was treated by Foss [19].

An alternative approach is (stochastic) network calculus (see Chang [10] or Jiang and Liu [22]).

While intrinsically also based on large deviations, network calculus explicitly computes the pre-

factor of the exponential instead of discarding it through the limit lim𝑥→∞
lnP(S>𝑥 )

𝑥
. In this way,

non-asymptotic bounds on the tails of S and W follow in a more or less straightforward manner.

Such results can be obtained for broad classes of arrivals, including non-renewal or heavy-tailed

processes (e.g., Liebeherr et al. [27]), but their proverbial drawback is the poor numerical accuracy.

This paper studies the tails P (W > 𝑥) and P (S > 𝑥) in tandem queues (networks) with non-

Poisson arrivals and finite 𝑥 . We consider the 𝐺𝐼/𝐺/1 → ·/𝐺/1 → · · · → ·/𝐺/1 tandem with 𝑀

queues, general arrivals, and light-tailed service times (i.e., having a moment generating function

which is finite around zero). At a high level, our approach follows the standard 𝐺𝐼/𝐺/1 analysis of

formulating and analyzing a fixed-point integral/renewal equation. The crucial difference is that

instead of using the very distribution P(W ≤ 𝑥) as the integrand, we first decomposeW, and also

S, into𝑀 maxima of (nested) random walks and use their joint distribution as the integrand.

This new approach enables solving a relaxed version of the fixed-point integral equation, by

changing the equality into an inequality; the solution lends itself to polynomial-exponential bounds

on the tails P (W > 𝑥) and P (S > 𝑥). Closed-form bounds are obtained in the 𝐺𝐼/𝑀/1 → ·/𝑀/1

case with exponential service times, recovering the exact results in the case of Poisson arrivals.

Numerical results for deterministic and Erlang arrivals illustrate that the bounds are not only

sharp, but also that their polynomial-exponential structure is instrumental in capturing the concave

behavior of the tails (on a linear-log scale); in turn, alternative bounds obtained using large-

deviations are loose by many orders of magnitude. Additional closed-form bounds are derived for a

𝐺𝐼/𝐻𝑛/1 → ·/𝐻𝑛/1 tandem with hyperexponential service times which are subject to coefficients

of variation greater than one; numerical results show that increasing the coefficients of variation

only marginally degrades the bounds’ accuracy.

In the following we fully treat the case of a tandem with𝑀 = 2 queues. Then, in § 3, we derive

closed-form bounds for 𝐺𝐼/𝑀/1 → ·/𝑀/1 and 𝐺𝐼/𝐻𝑛/1 → ·/𝐻𝑛/1 tandems, and compare them

against simulations and alternative bounds based on large-deviations. In § 4 we present the main

results for the general case of a tandem with𝑀 queues, which is more challenging from a notational
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perspective than the𝑀 = 2 case, and defer the proofs to Appendix § B; the Appendix also contains

the derivations of the large-deviations-based bounds for the 𝑀 = 2 case, remaining proofs, and

auxiliary technical results. Conclusions and some open questions are discussed in § 5.

2 A Tandem of TwoQueues
We start with the special case of a tandem 𝐺𝐼/𝐺/1 → ·/𝐺/1 with two queues, each with infinite

capacity. There are 𝑛 + 1 jobs denoted by 0, 1, . . . , 𝑛 and traversing the tandem. Job 0 arrives at time

0 to an empty system, whereas the interarrival time between jobs 𝑘 − 1 and 𝑘 is denoted by 𝑋𝑛+3−𝑘
for 𝑘 = 1, . . . , 𝑛; the arrival time of job 𝑘 is thus

∑𝑘
𝑖=1
𝑋𝑛+3−𝑖 . The service times of job 𝑘 at the first

and second queues are 𝑌𝑛+2−𝑘 and 𝑍𝑛+1−𝑘 , respectively. All sequences (𝑋𝑛), (𝑌𝑛), and (𝑍𝑛) are i.i.d.
and mutually independent.

Fig. 1. Inter-arrival and service times for job 𝑘 in a tandem of two queues

For keeping track of notation, note that job 1 arrives precisely at time 𝑋𝑛+2, whereas its service

times are 𝑌𝑛+1 and 𝑍𝑛 . At the other extreme, the last job 𝑛 arrives 𝑋3 time units after the previous

job 𝑛 − 1, and its service times are 𝑌2 and 𝑍1.
2
We shall focus on the waiting and sojourn times of

job 𝑛 in the stationary limit 𝑛 → ∞, by first deriving its exit time for finite 𝑛.

The service times are assumed to be light-tailed, i.e., they admit finite moment generating

functions. For instance, at the first queue, we assume that

𝜃+ := sup{𝜃 > 0 : E[𝑒𝜃 (𝑌−𝑋 ) ] < ∞} ∈ (0,∞] .

Here, 𝑋 and 𝑌 are shorthand notations for 𝑋1 and 𝑌1. If E[𝑒𝜃
+ (𝑌−𝑋 ) ] ≥ 1, which covers most cases

of interest, then E[𝑒𝜃 (𝑌−𝑋 ) ] = 1 admits a unique solution which dictates the asymptotic decay rates

of waiting/sojourn times (Kingman [24]). Otherwise, if E[𝑒𝜃+ (𝑌−𝑋 ) ] < 1, then the asymptotic decay

rate would be 𝜃+; for an example of a service time distribution with this property see Appendix §D.

Before providing a novel representation of the waiting and sojourn times of job 𝑛 in the stationary

limit 𝑛 → ∞, we quickly highlight what makes it particulary very challenging to deal with end-to-

end metrics.

2.1 Sums of Waiting Times vs Product-Form Results
The fundamental difficulty in treating sums of local waiting times can be understood from Burke’s

proof [9] on their lack of independence; a similar argument was informally made by Harrison and

Knottenbelt [21].

Consider the𝑀/𝑀/1 → 𝑀/𝑀/1 special case in steady-state and denote by 𝑁1 (𝑡) and 𝑁2 (𝑡) the
number of jobs in the two queues at (the same) time 𝑡 , and by𝑊1 and𝑊2 the local waiting times of

the same arbitrary job. Burke showed that

P(𝑊2 = 0 |𝑊1 = 0) > P(𝑊2 = 0)

by explicitly computing the left term; the right term is simply P(𝑁2 (𝑡) = 0) by using the Arrival

Theorem for Jackson networks (see, e.g., Walrand [37], p. 73).

2
The notation/indexing 𝑋3, 𝑌2, 𝑍1 for the main components of job 𝑛 is deliberate in order to simplify the notation for the

exit, waiting, and sojourn times of job 𝑛 in the tandem. The apparently superfluous index 𝑛 for a generic job 𝑘 is also

purposely used to simplify the notations/expressions for the same metrics.
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4 Florin Ciucu and Sima Mehri

Denoting by 𝑋 and 𝑌 the arrival and service times of a job experiencing zero waiting time in the

first queue, the previous relation becomes

P (𝑁2 (𝑋 + 𝑌 ) = 0 | 𝑁1 (𝑋 ) = 0) > P(𝑁2 (𝑋 + 𝑌 ) = 0) ,
i.e., 𝑁1 (𝑋 ) and 𝑁2 (𝑋 + 𝑌 ) are not independent, even if 𝑋 is a stopping time independent of 𝑌 .

It should now be apparent that a key difficulty in jointly dealing with𝑊1 and𝑊2 is the equivalence

with jointly and implicitly dealing with 𝑁1 and 𝑁2 at different (random) times where independence

lacks. This is unlike the product-form result dealing with 𝑁1 and 𝑁2 at the same time, i.e.,

P(𝑁1 (𝑡) = 𝑛1, 𝑁2 (𝑡) = 𝑛2) = P(𝑁1 (𝑡) = 𝑛1)P(𝑁2 (𝑡) = 𝑛2) .

2.2 A novel representation for waiting and sojourn times in a tandem
Denote for all jobs 𝑘 = 0, 1, . . . , 𝑛

𝜏
(1)
𝑘

:= max

𝑛+2−𝑘≤ 𝑗≤𝑛+2

𝑋𝑛+2 + · · · + 𝑋 𝑗+1 + 𝑌𝑗 + · · · + 𝑌𝑛+2−𝑘

𝜏
(2)
𝑘

:= max

𝑛+1−𝑘≤𝑖< 𝑗≤𝑛+2

𝑋𝑛+2 + · · · + 𝑋 𝑗+1 + 𝑌𝑗 + · · · + 𝑌𝑖+1 + 𝑍𝑖 + · · · + 𝑍𝑛+1−𝑘 .

By convention, all empty sums are set to 0. It can be quickly shown that 𝜏
(1)
𝑘

is the exit time of job

𝑘 from the first queue using induction and Lindley’s recursion

𝜏
(1)
𝑘+1

= max{𝜏 (1)
𝑘
, 𝑋𝑛+2 + · · · + 𝑋𝑛+2−𝑘 } + 𝑌𝑛+1−𝑘 .

Note that the second term in the ‘max’ and 𝑌𝑛+1−𝑘 are the arrival and service times of job 𝑘 + 1

at the first queue, respectively. Similarly, 𝜏
(2)
𝑘

is the exit time of job 𝑘 from the second queue (i.e.,

from the tandem) using induction and Lindley’s recursion

𝜏
(2)
𝑘+1

= max{𝜏 (2)
𝑘
, 𝜏

(1)
𝑘+1

} + 𝑍𝑛−𝑘 .
Therefore, the exit time of job 𝑛 from the tandem is

𝜏𝑛 := max

1≤𝑖< 𝑗≤𝑛+2

𝑋𝑛+2 + · · · + 𝑋 𝑗+1 + 𝑌𝑗 + · · · + 𝑌𝑖+1 + 𝑍𝑖 + · · · + 𝑍1 . (1)

Note that 𝜏𝑛 = 𝜏
(2)
𝑛 . The previous sum may be more conveniently read backwards as 𝑍1 + · · · + 𝑍𝑖 +

𝑌𝑖+1 + · · · + 𝑌𝑗 + 𝑋 𝑗+1 + · · · + 𝑋𝑛+2, while also recalling that 𝑍1 is the service time of job 𝑛.

Since 𝑋3 + · · · + 𝑋𝑛+2 is the arrival time of job 𝑛 to the tandem, it then immediately follows that

the waiting time of job 𝑛 in the tandem has the same distribution as

W𝑛 := 𝜏𝑛 − (𝑍1 + 𝑌2 + 𝑋3 + · · · + 𝑋𝑛+2) .
Here, 𝑋3 + · · · + 𝑋𝑛+2, 𝑌2, and 𝑍1 are the arrival time and service times at the two queues of job 𝑛,

respectively.

Let us now introduce the notations 𝑢+ := max {𝑢, 0} and (𝑈 ,𝑉 ) ≃ (𝑌 − 𝑋,𝑍 − 𝑋 ), where ‘≃’
stands for equality in distribution

3
. Define now the maxima of random walks

𝑇 1

𝑘
:= max

𝑘≤𝑖<∞
𝑌𝑘 +𝑈𝑘+1 + · · · +𝑈𝑖

𝑇 2

𝑘
:= max

𝑘≤𝑖< 𝑗<∞
𝑍𝑘 +𝑉𝑘+1 + · · · +𝑉𝑖 +𝑈𝑖+1 + · · · +𝑈 𝑗 ,

for 𝑘 ≥ 1. These are crucial for our main results in that they will feature as the central terms in

the expressions of the stationary waiting and sojourn times W and S when taking 𝑛 → ∞. Recall

that empty sums are set to 0, e.g., 𝑇 1

𝑘
= max{𝑌𝑘 , 𝑌𝑘 + 𝑈𝑘+1, 𝑌𝑘 + 𝑈𝑘+1 + 𝑈𝑘+2, . . . } where the first

3
We make the convention to drop subscripts when clear from the context, e.g., (𝑈 ,𝑉 ) ≃ (𝑌 − 𝑋,𝑍 − 𝑋 ) stands for
(𝑈𝑖 ,𝑉𝑖 ) ≃ (𝑌𝑖 − 𝑋𝑖 , 𝑍𝑖 − 𝑋𝑖 ) for all 𝑖’s.
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term corresponds to 𝑖 = 𝑘 , in which case 𝑈𝑘+1 + · · · +𝑈𝑖 = 0. Let us mention that 𝑇 1

𝑘
, except for the

leading term 𝑌𝑘 , is essentially the maximum of the random walk featuring in the analysis of the

stationary waiting time𝑊1 at the first queue, i.e., P(𝑊1 > 𝑥) = P (max1≤𝑖<∞𝑈1 + · · · +𝑈𝑖 > 𝑥); the
introduction of 𝑌𝑘 is purposely to simplify our main result from Theorem 1. In turn, 𝑇 2

𝑘
, except for

the leading term 𝑍𝑘 , plays the same role as 𝑇 1

𝑘
but for the waiting time across the tandem (see the

large-deviations analysis from §A.1).

Note the recurrences:

𝑇 1

𝑘
= max{𝑌𝑘 , 𝑌𝑘 +𝑈𝑘+1, 𝑌𝑘 +𝑈𝑘+1 +𝑈𝑘+2, . . . }
= 𝑌𝑘 +

(
𝑇 1

𝑘+1
− 𝑋𝑘+1

)
+ (2)

and

𝑇 2

𝑘
= max{𝑍𝑘 +𝑈𝑘+1, 𝑍𝑘 +𝑈𝑘+1 +𝑈𝑘+2, 𝑍𝑘 +𝑈𝑘+1 +𝑈𝑘+2 +𝑈𝑘+3, . . . ,

𝑍𝑘 +𝑉𝑘+1 +𝑈𝑘+2, 𝑍𝑘 +𝑉𝑘+1 +𝑈𝑘+2 +𝑈𝑘+3, 𝑍𝑘 +𝑉𝑘+1 +𝑈𝑘+2 +𝑈𝑘+3 +𝑈𝑘+4, . . . ,

𝑍𝑘 +𝑉𝑘+1 +𝑉𝑘+2 +𝑈𝑘+3, 𝑍𝑘 +𝑉𝑘+1 +𝑉𝑘+2 +𝑈𝑘+3 +𝑈𝑘+4, . . . ,

. . . }
= max{𝑇 1

𝑘+1
,𝑇 2

𝑘+1
} + 𝑍𝑘 − 𝑋𝑘+1 , (3)

by using𝑈𝑘+1 = 𝑌𝑘+1 − 𝑋𝑘+1, 𝑉𝑘+1 = 𝑍𝑘+1 − 𝑋𝑘+1, and regrouping terms.

Under the stability condition E[𝑋1] > max{E[𝑌1],E[𝑍1]}, it is known that the distribution of

W𝑛 converges as 𝑛 → ∞ to a unique stationary distribution (Loynes [29]) corresponding to that of

W := max

{
0,𝑇 1

3
− 𝑋3 + (𝑍2 − 𝑌2)+ ,𝑇 2

3
− 𝑋3 + 𝑍2 − 𝑌2

}
(4)

described in terms of the previous two maxima of randomwalks𝑇 1

3
and𝑇 2

3
; this follows immediately

by taking the limit 𝑛 → ∞ in the expression of the exit time 𝜏𝑛 . Similarly, the distribution of

the sojourn time of job 𝑛, i.e., W𝑛 + 𝑌2 + 𝑍1 also converges to a unique stationary distribution

corresponding to that of

S := W + 𝑍1 + 𝑌2 = max{𝑌2,𝑇
1

3
− 𝑋3 + max{𝑍2, 𝑌2},𝑇 2

3
− 𝑋3 + 𝑍2} + 𝑍1

= max{𝑇 1

2
,𝑇 2

2
} + 𝑍1 . (5)

2.3 Alternative Interpretation and Representation
In addition to the previous “random walk" interpretation of the terms𝑇 1

𝑘
and𝑇 2

𝑘
, let us next provide

a more intuitive “queueing" interpretation. The term 𝑇 1

2
featuring in the expression of S from (5)

is essentially the sojourn time of job 𝑛 at the first queue in the stationary limit 𝑛 → ∞. In turn,

the term 𝑇 2

2
is the difference between the exit time of job 𝑛 − 1 from the second queue and the

arrival time of job 𝑛 at the first queue, again, in the stationary limit 𝑛 → ∞; recall also that the term

𝑍1 from (5) is the service time of job 𝑛 at the second queue. For a visualization of all the possible

relevant scenarios of arrivals and departures involving the jobs 𝑛 − 1 and 𝑛 see Fig. 2; note that,

in case (a), the value of 𝑇 2

2
is negative. More generally, the term 𝑇

𝑗

𝑘
, for 𝑗 = 1, 2, is the difference

between the exit time of job 𝑛 + 3−𝑘 − 𝑗 from queue 𝑗 and the arrival time of job 𝑛 + 2−𝑘 at queue

1, in the stationary limit 𝑛 → ∞.

While the queueing interpretation of 𝑇 1

2
is clear from the “Lindley-like" recursion of 𝑇 1

𝑘
from (2),

the corresponding interpretation of 𝑇 2

2
in connection to the recurrence of 𝑇 2

𝑘
from (3) is not. For

this reason, in Fig. 2.(c), we have additionally included a departure scenario of job 𝑛 − 2 from queue

2, in which case max{𝑇 1

3
,𝑇 2

3
} = 𝑇 1

3
and clearly𝑇 2

2
= 𝑇 1

3
+𝑍2 −𝑋3. If job 𝑛 − 2 departs queue 2 before

job 𝑛 − 1 arrives at queue 1 then, again, max{𝑇 1

3
,𝑇 2

3
} = 𝑇 1

3
. Otherwise, if job 𝑛 − 2 departs from
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queue 2 after job 𝑛 − 1 arrives at queue 2, then max{𝑇 1

3
,𝑇 2

3
} = 𝑇 2

3
and clearly 𝑇 2

2
= 𝑇 2

3
+ 𝑍2 − 𝑋3.

The same argument, involving job 𝑛 − 2, can be repeated in the scenarios from (a) and (b).

Queue 1

Queue 2

T
1
2

n

nn-1

n-1
T

2
2-

(a)

Queue 1

Queue 2

T
1
2

T
2
2

n

nn-1

n-1

(b)

Queue 1

Queue 2

T
1
2

T
2
2

n

nn-1

n-1

n-1

n-2

T
1
3

Z

X3

2T
2
3

(c)

Fig. 2. Queueing interpretation of the representation of S from (5) (arrivals / departures are depicted by
arrows pointing to / leaving the horizontal (time) lines). In (a): job 𝑛 − 1 departs from queue 2 before job 𝑛
arrives at queue 1; in (b): job 𝑛 − 1 departs from queue 2 in between the arrival times of job 𝑛 at the two
queues; in (c): job 𝑛− 1 departs from queue 2 after the arrival time of job 𝑛 at queue 2; in addition from (a) and
(b), a departure case of job 𝑛 − 2 from queue 2 is included to illustrate the recurrence of 𝑇 2

𝑘
from (3) for 𝑘 = 2.

Lastly, we mention that S typically appears in the literature (e.g., Ganesh [20] or Foss [19]) as

max

0≤𝑖≤ 𝑗≤∞
𝑍0 + · · · + 𝑍𝑖 + 𝑌𝑖 + · · · + 𝑌𝑗 − (𝑋0 + · · · + 𝑋 𝑗−1) ,

by slightly re-indexing (𝑋𝑛), (𝑌𝑛), and (𝑍𝑛). The reason for explicitly isolating the maxima of

random walks 𝑇 1

2
and 𝑇 2

2
in our formulation from (5) will become apparent in the main result

of the paper, i.e., Theorem 1.(a), which establishes that the joint distribution of 𝑇 1

1
and 𝑇 2

1
is the

unique solution of a fixed-point integral equation. Variations of the main result in terms of integral

inequalities (Theorem 1.(b,c)) will further enable, in Corollary 2, the construction of upper and

lower bounds on the tails of W and S.

2.4 Main Result: An Integral Equation
First we denote 𝑢 ∧ 𝑣 := min{𝑢, 𝑣} and 𝑢 ∨ 𝑣 := max{𝑢, 𝑣}, and define the compact set

D2 := {(𝑢 ∧ 𝑣, 𝑣) ∈ ¯R2
: 𝑢 ≥ 0} = {(𝑣, 𝑣) : 𝑣 ≤ 0} ∪ {(𝑢, 𝑣) : 𝑢 ≤ 𝑣 ≤ 0}

which is a closed subset of the compact set
¯R2
; by notation,

¯R := R ∪ {±∞}

Theorem 1. Let𝑈 = 𝑌 − 𝑋 and 𝑉 = 𝑍 − 𝑋 be two random variables satisfying P(𝑈 > 0) > 0 and
P(𝑉 > 0) > 0, and where 𝑋 , 𝑌 , and 𝑍 are non-negative and independent.
(a) The integral equation

E
[
1l{𝑢≥𝑌 }𝜓 ((𝑢 −𝑈 ) ∧ (𝑣 −𝑉 ), 𝑣 −𝑉 )

]
= 𝜓 (𝑢, 𝑣) (6)

admits a unique solution in the class of bounded functions 𝜓 : D2 → R having the limit
𝜓 (∞,∞) = lim𝑢,𝑣→∞𝜓 (𝑢, 𝑣) = 1. This is given by

𝜓 (𝑢, 𝑣) := P(𝑇 1

1
≤ 𝑢,𝑇 2

1
≤ 𝑣) .

(b) Assume that the function 𝛾 : D2 → (−∞, 𝐾𝛾 ], for some finite 𝐾𝛾 , satisfies for all (𝑢, 𝑣) ∈
supp (𝛾 ∨ 0)

E
[
1l{𝑢≥𝑌 }𝛾 ((𝑢 −𝑈 ) ∧ (𝑣 −𝑉 ), 𝑣 −𝑉 )

]
≥ 𝛾 (𝑢, 𝑣) . (7)

If 𝛾 (∞,∞) := lim sup𝑢,𝑣→∞ 𝛾 (𝑢, 𝑣) = 1 then𝜓 ≥ 𝛾 .
(c) Assume that the function 𝜂 : D2 → [0,∞) satisfies for all (𝑢, 𝑣) ∈ supp (𝜓 )

E
[
1l{𝑢≥𝑌 }𝜂 ((𝑢 −𝑈 ) ∧ (𝑣 −𝑉 ), 𝑣 −𝑉 )

]
≤ 𝜂 (𝑢, 𝑣) . (8)

If 𝜂 (∞,∞) := lim inf𝑢,𝑣→∞ 𝜂 (𝑢, 𝑣) = 1 then𝜓 ≤ 𝜂.
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Recall the notation convention to drop subcripts when clear from the context, e.g., in𝑈 = 𝑌 −𝑋 ,
𝑌 and 𝑋 refer to service and interarrival times, as in the model.

As shown shortly in Corollary 2, the problem of finding upper and lower bounds on the tails of

W and S reduces to the problem of finding the functions 𝛾 and 𝜂 in (b) and (c), respectively.

Proof. For part (a) we first prove that the given 𝜓 satisfies (6); uniqueness will follow after

proving (b). We have

𝜓 (𝑢, 𝑣) = P(𝑇 1

1
≤ 𝑢,𝑇 2

1
≤ 𝑣)

= P
(
𝑇 1

2
≤ (𝑢 − 𝑌1 + 𝑋2) ∧ (𝑣 − 𝑍1 + 𝑋2),𝑇 2

2
≤ 𝑣 − 𝑍1 + 𝑋2, 𝑌1 ≤ 𝑢

)
,

= P
(
𝑇 1

1
≤ (𝑢 −𝑈 ) ∧ (𝑣 −𝑉 ),𝑇 2

1
≤ 𝑣 −𝑉 ,𝑌 ≤ 𝑢

)
,

where (𝑈 ,𝑉 ) is independent of (𝑇 1

1
,𝑇 2

1
). So

= E
[
1l{𝑢≥𝑌 }𝜓 ((𝑢 −𝑈 ) ∧ (𝑣 −𝑉 ), 𝑣 −𝑉 )

]
.

To prove part (b), i.e.,𝜓 ≥ 𝛾 , define first the function

𝑓 (𝑢, 𝑣) := lim sup

(𝑥,𝑦)→(𝑢,𝑣)
(𝛾 (𝑥,𝑦) −𝜓 (𝑥,𝑦)) ∀(𝑢, 𝑣) ∈ D2 ,

which is upper-semi continuous and attains its maximum on the compact set D2 (see § C.1,2). Let

𝐾 := max

(𝑢,𝑣) ∈D2

𝑓 (𝑢, 𝑣) .

If 𝐾 ≤ 0 the proof is complete; assume otherwise that 𝐾 > 0. Define

K := {(𝑢, 𝑣) ∈ D2 : 𝑓 (𝑢, 𝑣) = 𝐾} ,

which is a closed subset of D2, and

𝑎 := min{𝑢 ∈ ¯R : ∃𝑣 ∈ ¯R : (𝑢, 𝑣) ∈ K}

𝑏 := min{𝑣 ∈ ¯R : (𝑎, 𝑣) ∈ K} .
Since 𝑓 (𝑎, 𝑏) = 𝐾 > 0, there exists a sequence (𝑎𝑛, 𝑏𝑛) ∈ supp (𝛾 ∨ 0) such that (𝑎𝑛, 𝑏𝑛) → (𝑎, 𝑏)
as 𝑛 → ∞ and

𝐾 = 𝑓 (𝑎, 𝑏) = lim

𝑛→∞
(𝛾 −𝜓 ) (𝑎𝑛, 𝑏𝑛)

≤ lim sup

𝑛→∞
E

[
1l{𝑎𝑛≥𝑌 } (𝛾 −𝜓 ) ((𝑎𝑛 −𝑈 ) ∧ (𝑏𝑛 −𝑉 ), 𝑏𝑛 −𝑉 )

]
Since 𝛾 −𝜓 ≤ 𝐾𝛾 < ∞, we can further use Fatou’s lemma

≤ E
[
lim sup

𝑛→∞
1l{𝑎𝑛≥𝑌 } (𝛾 −𝜓 ) ((𝑎𝑛 −𝑈 ) ∧ (𝑏𝑛 −𝑉 ), 𝑏𝑛 −𝑉 )

]
≤ E

[
lim sup

𝑛→∞
1l{𝑎𝑛≥𝑌 } ((𝛾 −𝜓 ) ((𝑎𝑛 −𝑈 ) ∧ (𝑏𝑛 −𝑉 ), 𝑏𝑛 −𝑉 ) ∨ 0)

]
≤ E

[
1l{𝑎≥𝑌 } (𝑓 ((𝑎 −𝑈 ) ∧ (𝑏 −𝑉 ), 𝑏 −𝑉 ) ∨ 0)

]
≤ 𝐾 · P(𝑎 ≥ 𝑌 ) ,

using the definitions of 𝐾 and 𝑓 ; note that ((𝑎𝑛 −𝑈 ) ∧ (𝑏𝑛 −𝑉 ), 𝑏𝑛 −𝑉 ) ∈ D2 on {𝑎𝑛 ≥ 𝑌 }. It then
follows that P(𝑎 ≥ 𝑌 ) = 1, such that necessarily

𝑓 ((𝑎 −𝑈 ) ∧ (𝑏 −𝑉 ), 𝑏 −𝑉 ) = 𝐾 (9)

holds almost surely (a.s.) for the inequalities above to hold as equalities.
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Next we claim that (𝑎, 𝑏) = (∞,∞). Assume by contradiction that 𝑎 < ∞. Then (9) and P(𝑈 >

0) > 0 contradict with the choice of 𝑎, and hence 𝑎 = ∞. Similarly, assume by contradiction that

𝑏 < ∞. Then (9) and P(𝑉 > 0) > 0 contradict with the choice of 𝑏, and hence 𝑏 = ∞ as well. Finally,

𝐾 = 𝑓 (∞,∞) = lim sup

𝑢,𝑣→∞
(𝛾 −𝜓 ) (𝑢, 𝑣) = 0

from the limiting conditions on 𝛾 and 𝜓 , which contradicts the assumption that 𝐾 > 0. Hence

𝜓 ≥ 𝛾 .
We can now prove the uniqueness of𝜓 solving for (6). Let𝜓1 and𝜓2 be two bounded solutions

satisfying𝜓𝑖 (∞,∞) = lim𝑢,𝑣→∞𝜓𝑖 (𝑢, 𝑣) = 1. Applying the second part of the theorem with𝜓 = 𝜓𝑖
and 𝛾 = 𝜓3−𝑖 (note that the proof only needs that 𝜓 satisfies (6), is bounded, and 𝜓 (∞,∞) =

lim𝑢,𝑣→∞𝜓 (𝑢, 𝑣) = 1) we obtain that𝜓𝑖 ≥ 𝜓3−𝑖 for 𝑖 = 1, 2, and hence𝜓1 = 𝜓2.

Finally, for part (c), we need to show that𝜓 ≤ 𝜂. Define
𝑓 (𝑢, 𝑣) := lim sup

(𝑥,𝑦)→(𝑢,𝑣)
(𝜓 (𝑥,𝑦) − 𝜂 (𝑥,𝑦)) .

As in part (b), 𝑓 is upper-semi continuous and takes its maximum on the compact set D2, i.e.,

𝐾 := max

(𝑢,𝑣) ∈D2

𝑓 (𝑢, 𝑣) .

If 𝐾 ≤ 0 the proof is complete. Otherwise, assume that 𝐾 > 0 and define

K := {(𝑢, 𝑣) ∈ D2 : 𝑓 (𝑢, 𝑣) = 𝐾}
which is closed subset of

¯R2
, and

𝑎 := min{𝑢 ∈ ¯R : ∃𝑣 ∈ ¯R : (𝑢, 𝑣) ∈ K}

𝑏 := min{𝑣 ∈ ¯R : (𝑎, 𝑣) ∈ K} .
Since 𝑓 (𝑎, 𝑏) = 𝐾 > 0, there exists a sequence (𝑎𝑛, 𝑏𝑛) ∈ supp (𝜓 ), such that (𝑎𝑛, 𝑏𝑛) → (𝑎, 𝑏) and

𝐾 = 𝑓 (𝑎, 𝑏) = lim

𝑛→∞
(𝜓 − 𝜂) (𝑎𝑛, 𝑏𝑛)

≤ lim sup

𝑛→∞
E

[
1l{𝑎𝑛≥𝑌 } (𝜓 − 𝜂) ((𝑎𝑛 −𝑈 ) ∧ (𝑏𝑛 −𝑉 ), 𝑏𝑛 −𝑉 )

]
Since𝜓 − 𝜂 ≤ 1, we can apply Fatou’s lemma

≤ E
[
lim sup

𝑛→∞
1l{𝑎𝑛≥𝑌 } (𝜓 − 𝜂) ((𝑎𝑛 −𝑈 ) ∧ (𝑏𝑛 −𝑉 ), 𝑏𝑛 −𝑉 )

]
≤ E

[
lim sup

𝑛→∞
1l{𝑎𝑛≥𝑌 } ((𝜓 − 𝜂) ((𝑎𝑛 −𝑈 ) ∧ (𝑏𝑛 −𝑉 ), 𝑏𝑛 −𝑉 ) ∨ 0)

]
≤ E

[
1l{𝑎≥𝑌 } (𝑓 ((𝑎 −𝑈 ) ∧ (𝑏 −𝑉 ), 𝑏 −𝑉 ) ∨ 0)

]
≤ 𝐾 · P(𝑎 ≥ 𝑌 ) ,

using the definitions of 𝐾 and 𝑓 . It then follows that P(𝑎 ≥ 𝑌 ) = 1 such that necessarily

𝑓 ((𝑎 −𝑈 ) ∧ (𝑏 −𝑉 ), 𝑏 −𝑉 ) = 𝐾 a.s. (10)

Next we claim that (𝑎, 𝑏) = (∞,∞). Otherwise, if 𝑎 < ∞ then (10) and P(𝑈 > 0) > 0 contradict

with the choice of 𝑎 and hence 𝑎 = ∞. Similarly, if 𝑏 < ∞ then (10) and P(𝑉 > 0) > 0 contradict

with the choice of 𝑏 and hence 𝑏 = ∞ too. Finally,

𝐾 = 𝑓 (∞,∞) = lim sup

𝑢,𝑣→∞
(𝜓 − 𝜂) (𝑢, 𝑣) = 0

from the limiting conditions on𝜓 and 𝜂 contradicting the assumption that 𝐾 > 0. Hence𝜓 ≤ 𝜂.
□
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We are now able to make the connection between the generic functions 𝛾 and 𝜂 from Parts (b)

and (c) of Theorem 1, and bounds on P(W > 𝑥) and P(S > 𝑥).

Corollary 2. (Generic Upper and Lower Bounds) Consider the functions 𝜓 , 𝛾 , and 𝜂 as in
Theorem 1. Then the waiting time of a job 𝑛 → ∞ satisfies for all 𝑥 ≥ 0

1 − E
[
1l{𝑥+𝑋3+𝑌2≥𝑍2 }𝜂 (𝑥 + 𝑋3 − (𝑍2 − 𝑌2)+, 𝑥 + 𝑋3 − (𝑍2 − 𝑌2))

]
≤ P(W > 𝑥)

= 1 − E
[
1l{𝑥+𝑋3+𝑌2≥𝑍2 }𝜓 (𝑥 + 𝑋3 − (𝑍2 − 𝑌2)+, 𝑥 + 𝑋3 − (𝑍2 − 𝑌2))

]
≤ 1 − E

[
1l{𝑥+𝑋3+𝑌2≥𝑍2 }𝛾 (𝑥 + 𝑋3 − (𝑍2 − 𝑌2)+, 𝑥 + 𝑋3 − (𝑍2 − 𝑌2))

]
.

The corresponding sojourn time satisfies

1 − E
[
1l{𝑥≥𝑍1 }𝜂 (𝑥 − 𝑍1, 𝑥 − 𝑍1)

]
≤ P(S > 𝑥) = 1 − E [𝜓 (𝑥 − 𝑍1, 𝑥 − 𝑍1)]

≤ 1 − E
[
1l{𝑥≥𝑍1 }𝛾 (𝑥 − 𝑍1, 𝑥 − 𝑍1)

]
.

This corollary shows that closed-form bounds on P(W > 𝑥) and P(S > 𝑥) can be obtained once

constructing explicit functions 𝛾 and 𝜂 satisfying the conditions from parts (b) and (c) of Theorem 1,

respectively.

Proof. From W’s representation from (4) it follows for all 𝑥 ≥ 0

P(W > 𝑥) = 1 − P(W ≤ 𝑥) = 1 − P(max

{
0,𝑇 1

3
− 𝑋3 + (𝑍2 − 𝑌2)+,𝑇 2

3
− 𝑋3 + 𝑍2 − 𝑌2

}
≤ 𝑥)

= 1 − P
(
𝑇 1

3
≤ 𝑥 + 𝑋3 − (𝑍2 − 𝑌2)+,𝑇 2

3
≤ 𝑥 + 𝑋3 − (𝑍2 − 𝑌2)

)
= 1 − E

[
1l{𝑥+𝑋3+𝑌2≥𝑍2 }𝜓 (𝑥 + 𝑋3 − (𝑍2 − 𝑌2)+, 𝑥 + 𝑋3 − (𝑍2 − 𝑌2))

]
,

using that 𝑇 1

3
≥ 0. Since (𝑥 + 𝑋3 − (𝑍2 − 𝑌2)+, 𝑥 + 𝑋3 − (𝑍2 − 𝑌2)) ∈ D2 and 𝛾 ≤ 𝜓 ≤ 𝜂 on D2, the

upper and lower bounds on P(W > 𝑥) follow immediately.

Lastly, we can write for the sojourn time S from (5) for 𝑥 ≥ 0

P(S > 𝑥) = 1 − P(S ≤ 𝑥) = 1 − E [𝜓 (𝑥 − 𝑍1, 𝑥 − 𝑍1)]
= 1 − E

[
1l𝑥≥𝑍1

𝜓 (𝑥 − 𝑍1, 𝑥 − 𝑍1)
]
,

using that𝜓 (𝑢, 𝑣) = 0 for 𝑢 < 0 (note that 𝑇 1

1
≥ 0 a.s.). The rest follows from 𝛾 ≤ 𝜓 ≤ 𝜂 on D2. □

2.5 The Integral Equation (6) vs Related Work
At the core of Theorem 1, which enables the generic construction of upper and lower bounds on

the tails ofW and S, stands the integral equation (6) which can be rewritten as a two-dimensional

renewal equation

𝜓 (𝑢, 𝑣) =
∫ ∞

0

∫ 𝑢

0

∫ ∞

0

𝜓 ((𝑢 + 𝑥 − 𝑦) ∧ (𝑣 + 𝑥 − 𝑧), 𝑣 + 𝑥 − 𝑧) 𝑑𝐹 (𝑥,𝑦, 𝑧) , (11)

where 𝐹 is the joint distribution of (𝑋,𝑌, 𝑍 ); the ‘renewalness’ stems from expressing the underlying

maxima of random walks in𝑇 1

1
and𝑇 2

1
in terms of𝑇 1

2
and𝑇 2

2
, by extracting the first increments and

further using stationarity.

From a conceptual point of view, (11) relates to the standard𝐺𝐼/𝐺/1 analysis. Indeed, solving

for the distribution P(𝑊1 ≤ 𝑥) of the local waiting time in the first queue from Fig. 1 reduces to

solving for

P(𝑊1 ≤ 𝑥) =
∫ 𝑥

−∞
P(𝑊1 ≤ 𝑥 − 𝑢)𝑑𝐺 (𝑢) , (12)

where 𝐺 is the distribution of 𝑈 := 𝑌 − 𝑋 , by applying the renewal argument and Lebesgue

Convergence Theorem.
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The crucial difference between (12) and (11) stands in the integrand itself. While (12) uses the

very distribution P(𝑊1 ≤ 𝑥) which is being sought after, the integrand in (11) is based on the joint

distribution P(𝑇 1

1
≤ 𝑢,𝑇 2

1
≤ 𝑣) stemming from the underlying maxima of random walks in W; as

shown earlier in Theorem 1.(a), this joint distribution is also the unique solution of (11).

Despite a vast amount of related literature (see, e.g., Cohen [15]) there is no exact and closed-form

solution to (12), partly due to outstanding numerical challenges associated to Wiener-Hopf type

of integral equations. The equation does however lend itself to a generic and especially simple

construction of upper and lower bounds. Indeed, by assuming the existence of a function 𝛾 (𝑥)
satisfying for all 𝑥 ≥ 0 ∫ 𝑥

−∞
𝛾 (𝑢)𝑑𝐺 (𝑢) ≥ 𝛾 (𝑥) , (13)

then

P(𝑊1 > 𝑥) ≤ 1 − 𝛾 (𝑥) .
The proof is immediate using the same renewal argument and induction (see Kingman [25]).

One such function is 𝛾 (𝑥) = 1 − 𝑒−𝜃𝑥 , where 𝜃 > 0 satisfies E[𝑒𝜃𝑈 ] = 1 (or, more generally,

𝜃 = sup{𝑟 > 0 : E[𝑒𝑟𝑈 ] ≤ 1}); the corresponding bound P(𝑊1 > 𝑥) ≤ 𝑒−𝜃𝑥 is known as the

Kingman’s bound for 𝐺𝐼/𝐺/1 queues, a.k.a. the Lundberg’s inequality in Financial Mathematics

(e.g., Mandjes and Boxma [30]), and which can alternatively be obtained using a martingale-based

argument (Kingman [24]).

It is instructive to apply the integral equation (6) for the 𝐺𝐼/𝐺/1 queue by letting 𝑍 = 0 (i.e.,

instantaneous service times at the second queue from Fig. 1). Then, according to Theorem 1.(b) and

Corollary 2, the derivation of an upper bound reduces to finding a function 𝛾 (𝑢, 𝑣) satisfying
E

[
1l{𝑢≥𝑌 }𝛾 ((𝑢 − (𝑌 − 𝑋 )) ∧ (𝑣 + 𝑋 ), 𝑣 + 𝑋 )

]
≥ 𝛾 (𝑢, 𝑣) , (14)

for all (𝑢, 𝑣) ∈ supp (𝛾 ∨ 0) ⊆ D2 = {(𝑢 ∧ 𝑣, 𝑣) ∈ ¯R2
: 𝑢 ≥ 0} and 𝛾 (∞,∞) = 1. As expected,

Kingman’s bound is recovered by letting

𝛾 (𝑢, 𝑣) = 1 − 𝑒−𝜃𝑢 .
Similarly, both (13) and (14) recover the tighter bound

P(𝑊1 > 𝑥) ≤ 1

inf𝑢≥0 E
[
𝑒𝜃 (𝑈 −𝑢 ) | 𝑈 > 𝑢

] 𝑒−𝜃𝑥
which is exact in the𝐺𝐼/𝑀/1 case (Ross [35]); this can be simply done bymultiplying the exponential

in 𝛾 (𝑥) and 𝛾 (𝑢, 𝑣) by the prefactor from the bound.

2.6 Existence of Polynomial-Exponential Bounds
Before explicitly constructing functions 𝛾 : D2 → R which can lend themselves to sharp (upper)

bounds on P(W > 𝑥) and P(S > 𝑥), we first prove their polynomial-exponential structure. For

this very purpose, in the proof of the next “Existence” theorem, we are not concerned yet with the

sharpness of the polynomial’s coefficients.

Recall the notation (𝑈 ,𝑉 ) ≃ (𝑌 − 𝑋,𝑍 − 𝑋 ), where 𝑋 stands for the interarrival times, and 𝑌

and 𝑍 stand for the service times at the two nodes.

Theorem 3. (Existence of polynomial-exponential Upper Bounds) Define

𝜃1 := sup{𝑟 > 0 : E[𝑒𝑟𝑈 ] ≤ 1}, 𝜃2 := sup{𝑟 > 0 : max{E[𝑒𝑟𝑈 ],E[𝑒𝑟𝑉 ]} ≤ 1}

𝐼𝑈 (𝑟 ) :=

{
1 if E[𝑒𝑟𝑈 ] = 1

0 otherwise
, 𝐼𝑉 (𝑟 ) :=

{
1 if E[𝑒𝑟𝑉 ] = 1

0 otherwise
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for random variables𝑈 ,𝑉 . Assume that there exists a constant 𝐾 such that for all 𝑣 ≥ 0

E
[
(𝑉 − 𝑣)𝑒𝜃2 (𝑉 −𝑣) | 𝑉 > 𝑣

]
≤ 𝐾 < ∞ .

Then there exist a positive constant 𝑃1 ≥ 0 and a polynomial 𝑃2 : R2 → R of degree 𝐼𝑉 (𝜃2) and
satisfying 𝑃2 (𝑢, 𝑣) ≥ 0 ∀𝑣 ≥ 𝑢 ≥ 0, such that

𝛾 (𝑢, 𝑣) := 1l{𝑣≥𝑢≥0}
[
1 − 𝑃1𝑒

−𝜃1𝑢 − 𝑃2 (𝑢, 𝑣)𝑒−𝜃2𝑣
]
∀(𝑢, 𝑣) ∈ D2

satisfies the requirements from part (b) of Theorem 1.

Note that 𝛾 (𝑢,𝑢) = 0 for 𝑢 < 0. The polynomial-exponential structure of 𝛾 involves a mix

of two exponentials and corresponding polynomials. If the queues are homogeneous, implying

that 𝑈 and 𝑉 have the same law, then 𝜃1 = 𝜃2 and hence a single exponential. Otherwise, the

polynomial-exponential structure is more nuanced and depends on the location of the ‘bottleneck’.

For instance, if the distributions of𝑈 and 𝑉 are in the same class, but 𝐸 [𝑈 ] > 𝐸 [𝑉 ], then the first

queue is the bottleneck, 𝜃1 = 𝜃2, and 𝐼𝑉 (𝜃2) = 0, i.e., the degree of 𝑃2 is 0. Otherwise, if 𝐸 [𝑈 ] < 𝐸 [𝑉 ],
then the second node is the bottleneck; under the additional condition E[𝑒𝜃+𝑈 ] ≥ 1 (recall the

description on ‘light-tailedness’ from the beginning of § 2), then 𝜃1 > 𝜃2 and 𝐼𝑉 (𝜃2) = 1; thus, the

polynomial-exponential structure involves two exponentials whereas the degree of 𝑃2 is 1.

We also mention that the existence of a matching polynomial-exponential structure for 𝜂, needed

for lower bounds on P(W > 𝑥) and P(S > 𝑥), is still open.

Proof. We proceed in two steps.

Step 1: First we prove that there exist a constant 𝑄1 ≥ 0 and a polynomial 𝑄2 : R→ R of degree

𝐼𝑉 (𝜃2) with non-negative coefficients such that for all 𝑢 ≥ 0, 𝑣 ≥ 0

𝑄1𝑒
−𝜃1𝑢 ≥ E

[
1l{𝑢≥𝑌 }𝑄1𝑒

𝜃1 (𝑈 −𝑢 )
]
+ P(𝑌 > 𝑢) (15)

𝑄2 (𝑣)𝑒−𝜃2𝑣 ≥ E
[
1l{𝑣≥𝑉 }

(
𝑄1𝑒

𝜃1 (𝑉 −𝑣) +𝑄2 (𝑣 −𝑉 )𝑒𝜃2 (𝑉 −𝑣)
)]

+ P(𝑉 > 𝑣) . (16)

Proof: Inequality (15) holds immediately for

𝑄1 :=

(
inf

𝑢≥0

E
[
𝑒𝜃1 (𝑈 −𝑢 ) | 𝑌 > 𝑢

] )−1

by splitting 1l{𝑢≥𝑌 } = 1 − 1l{𝑌>𝑢} and rewriting E[1l{𝑌>𝑢}𝑒
𝜃1 (𝑈 −𝑢 ) ] = 𝐸 [𝑒𝜃1 (𝑈 −𝑢 ) | 𝑌 > 𝑢]P(𝑌 > 𝑢).

Let𝑄2 (𝑣) := 𝐴0 +𝐴1𝑣 . To also prove (16) it is sufficient to show that there exist the non-negative

constants 𝐴0, 𝐴1 such that

𝐴0

{
𝑒−𝜃2𝑣 − E

[
1l{𝑣≥𝑉 }𝑒

𝜃2 (𝑉 −𝑣)
]}

+𝐴1

{
𝑣𝑒−𝜃2𝑣 − E

[
1l{𝑣≥𝑉 } (𝑣 −𝑉 )𝑒𝜃2 (𝑉 −𝑣)

]}
≥ E

[
1l{𝑣≥𝑉 }𝑄1𝑒

𝜃1 (𝑉 −𝑣)
]
+ P(𝑉 > 𝑣) .

(17)

For 𝑣 ≥ 0, and using that 𝜃1 ≥ 𝜃2, the right side can be bounded as

E
[
1l{𝑣≥𝑉 }𝑄1𝑒

𝜃1 (𝑉 −𝑣)
]
+ P(𝑉 > 𝑣)

≤ E
[
1l{𝑣≥𝑉 }𝑄1𝑒

𝜃2 (𝑉 −𝑣)
]
+ P(𝑉 > 𝑣)

= E
[
𝑄1𝑒

𝜃2 (𝑉 −𝑣)
]
+ P(𝑉 > 𝑣) − E

[
𝑄1𝑒

𝜃2 (𝑉 −𝑣) | 𝑉 > 𝑣

]
P(𝑉 > 𝑣)

≤ 𝑄1E[𝑒𝜃2𝑉 ]𝑒−𝜃2𝑣 + P(𝑉 > 𝑣) .
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In turn, on the left side of (17), we bound the coefficient of 𝐴0 in the opposite direction

𝑒−𝜃2𝑣 − E
[
1l{𝑣≥𝑉 }𝑒

𝜃2 (𝑉 −𝑣)
]
≥

(
1 − E

[
𝑒𝜃2𝑉

] )
𝑒−𝜃2𝑣 + P(𝑉 > 𝑣)

and similarly the coefficient of 𝐴1

𝑣𝑒−𝜃2𝑣 − E
[
1l{𝑣≥𝑉 } (𝑣 −𝑉 ) 𝑒𝜃2 (𝑉 −𝑣)

]
= 𝑣𝑒−𝜃2𝑣 − E

[
(𝑣 −𝑉 ) 𝑒𝜃2 (𝑉 −𝑣)

]
+ E

[
1l{𝑉>𝑣} (𝑣 −𝑉 ) 𝑒𝜃2 (𝑉 −𝑣)

]
≥

(
1 − E

[
𝑒𝜃2𝑉

] )
𝑣𝑒−𝜃2𝑣 + E

[
𝑉𝑒𝜃2𝑉

]
𝑒−𝜃2𝑣 − 𝐾P(𝑉 > 𝑣) .

Therefore, it is sufficient to determine the coefficients 𝐴0 and 𝐴1 satisfying the tighter version

of (16)

𝐴0

{(
1 − E

[
𝑒𝜃2𝑉

] )
𝑒−𝜃2𝑣 + P(𝑉 > 𝑣)

}
+𝐴1

{(
1 − E

[
𝑒𝜃2𝑉

] )
𝑣𝑒−𝜃2𝑣 + E

[
𝑉𝑒𝜃2𝑉

]
𝑒−𝜃2𝑣 − 𝐾P(𝑉 > 𝑣)

}
≥ 𝑄1E[𝑒𝜃2𝑉 ]𝑒−𝜃2𝑣 + P(𝑉 > 𝑣) .

(18)

There are two cases. If E
[
𝑒𝜃2𝑉

]
< 1 then

𝐴1 := 0 and 𝐴0 := max

{
𝑄1E[𝑒𝜃2𝑉 ]
1 − E[𝑒𝜃2𝑉 ]

, 1

}
satisfy (17) and 𝑄2 (𝑣) = 𝐴0 has degree 𝐼𝑉 (𝜃2) = 0.

In the other case, if E
[
𝑒𝜃2𝑉

]
= 1, then

𝐴1 :=
𝑄1

E[𝑉𝑒𝜃2𝑉 ]
and 𝐴0 := 1 +𝐴1𝐾

also satisfy (17); moreover 𝑄2 (𝑣) = 𝐴0 +𝐴1𝑣 has degree 𝐼𝑉 (𝜃 ) = 1. Note that 𝐴1 > 0 because the

function 𝑓 (𝜃 ) := E[𝑒𝜃𝑉 ] is convex, 𝑓 (0) = 𝑓 (𝜃2) = 1, and hence 𝑓 ′ (𝜃2) = E[𝑉𝑒𝜃2𝑉 ] > 0.

Step 2: Let 𝑃1 := 𝑄1 and 𝑃2 (𝑢, 𝑣) := 𝑄2 (𝑣) from Step 1. Then 𝛾 satisfies (7).

Proof: Note first that the ‘marginal’ function of 𝛾 for the first queue

𝛾1 (𝑢) := (1 − 𝑃1𝑒
−𝜃1𝑢)1l{𝑢≥0}

satisfies for all 𝑢 ≥ 0

E
[
1l{𝑢≥𝑌 }𝛾1 (𝑢 −𝑈 )

]
= E

[
1l{𝑢≥𝑌 }

(
1 −𝑄1𝑒

𝜃1 (𝑈 −𝑢 )
)]

≥ 1 −𝑄1𝑒
−𝜃1𝑢 = 𝛾1 (𝑢) (19)

using the definition of 𝑄1. Note also that

supp (𝛾 ∨ 0) = {(𝑢, 𝑣) ∈ D2 : 1 > 𝑄1𝑒
−𝜃1𝑢 +𝑄2 (𝑣)𝑒−𝜃2𝑣} .

We can now prove condition (7) for 𝛾 . For all (𝑢, 𝑣) ∈ D2

E
[
1l{𝑢≥𝑌 }𝛾 ((𝑢 −𝑈 ) ∧ (𝑣 −𝑉 ), 𝑣 −𝑉 )

]
= E

[
1l{𝑢≥𝑌,𝑣≥𝑉 }

[
1 −𝑄1𝑒

−𝜃1 ( (𝑣−𝑉 )∧(𝑢−𝑈 ) ) −𝑄2 (𝑣 −𝑉 )𝑒−𝜃2 (𝑣−𝑉 ) ] ]
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Since 𝑄1 ≥ 0 and using max{𝑥,𝑦} ≤ 𝑥 + 𝑦 for 𝑥,𝑦 ≥ 0 we can continue with

≥ E
[
1l{𝑢≥𝑌,𝑣≥𝑉 }

(
1 −𝑄1𝑒

𝜃1 (𝑈 −𝑢 ) −
(
𝑄1𝑒

𝜃1 (𝑉 −𝑣) +𝑄2 (𝑣 −𝑉 )𝑒𝜃2 (𝑉 −𝑣) ) )]
= E

[
1l{𝑢≥𝑌,𝑣<𝑉 }

(
− 1 +𝑄1𝑒

𝜃1 (𝑈 −𝑢 ) ) ] + E[1l{𝑢≥𝑌 }
(
1 −𝑄1𝑒

𝜃1 (𝑈 −𝑢 ) ) ]
− E

[
1l{𝑢≥𝑌,𝑣≥𝑉 }

(
𝑄1𝑒

𝜃1 (𝑉 −𝑣) +𝑄2 (𝑣 −𝑉 )𝑒𝜃2 (𝑉 −𝑣) ) ] .
Using 𝑄1 ≥ 0 for the first expectation and (19) for the second, we can further continue

≥ −P (𝑢 ≥ 𝑌, 𝑣 < 𝑉 ) +
(
1 −𝑄1𝑒

−𝜃1𝑢
)
− E

[
1l{𝑢≥𝑌,𝑣≥𝑉 }

(
𝑄1𝑒

𝜃1 (𝑉 −𝑣) +𝑄2 (𝑣 −𝑉 )𝑒𝜃2 (𝑉 −𝑣) ) ]
≥ −P (𝑣 < 𝑉 ) − E

[
1l{𝑣≥𝑉 }

(
𝑄1𝑒

𝜃1 (𝑉 −𝑣) +𝑄2 (𝑣 −𝑉 )𝑒𝜃2 (𝑉 −𝑣) ) ] + (
1 −𝑄1𝑒

−𝜃1𝑢
)

≥ 1 −𝑄1𝑒
−𝜃1𝑢 −𝑄2 (𝑣)𝑒−𝜃2𝑣 = 𝛾 (𝑢, 𝑣) .

In the second inequality we discarded the event {𝑢 ≥ 𝑌 } and in the last we used (16) from Step 1.

The remaining conditions from Theorem 1.(b), i.e., 𝛾 is bounded and 𝛾 (∞,∞) = 1 hold trivially.

□

3 Closed-Form Polynomial-Exponential Bounds + Numerics
Here we provide closed-form bounds for two types of tandem queues with general inter-arrival

times distributions and equal service rates: 𝐺𝐼/𝑀/1 → ·/𝑀/1, with exponential service times,

and 𝐺𝐼/𝐻𝑛/1 → ·/𝐻𝑛/1 with hyperexponential service times. In the former case we also provide

alternative bounds obtained using large-deviations and investigate the numerical accuracy. In the

latter case we further investigate the impact of the service times’ coefficient of variation on the

bounds’ accuracy.

Denote 𝑈 := 𝑌 − 𝑋 and 𝑉 := 𝑍 − 𝑋 , where 𝑋 , 𝑌 , and 𝑍 are independent, and assume that

E[𝑒𝜃𝑈 ] = E[𝑒𝜃𝑉 ] = 1 for some 𝜃 > 0; existence follows from the stability condition 𝜌 < 1, where 𝜌

is the utilization factor. Let for 𝑅 ∈ {𝑌, 𝑍 }, 𝑟 ≥ 0, and 𝑗 ≥ 0

𝐾𝑅
𝑗 (𝑟 ) := E[(𝑅 − 𝑟 ) 𝑗𝑒𝜃 (𝑅−𝑟 ) | 𝑅 > 𝑟 ] .

In order to invoke Corollary 2, which provides the generic structure of the bounds in terms of

the function 𝛾 (·, ·), we first need a closed-form construction of 𝛾 (·, ·). According to Theorem 1.(b)

and the constructed polynomial-exponential structure of the functions 𝛾 (𝑢, 𝑣) from the “Existence”

Theorem 3, we need to find the constants 𝐴, 𝐵,𝐶, 𝐷 such that, by defining 𝛾 : D2 → R

𝛾 (𝑢, 𝑣) := 1l{𝑣≥𝑢≥0}
[
1 −𝐴𝑒−𝜃𝑢 − (𝐵 +𝐶𝑢 + 𝐷𝑣)𝑒−𝜃𝑣

]
, (20)

the following inequalities hold: 𝐴 ≥ 0, 𝐵 +𝐶𝑢 + 𝐷𝑣 ≥ 0 ∀𝑣 ≥ 𝑢 ≥ 0, and (7) from Theorem 1, i.e.,

E

[
1l{𝑢≥𝑌,𝑣≥𝑉 }

[
1 −𝐴𝑒−𝜃 [ (𝑢−𝑈 )∧(𝑣−𝑉 ) ] − (𝐵 +𝐶 [(𝑢 −𝑈 ) ∧ (𝑣 −𝑉 )] + 𝐷 (𝑣 −𝑉 )) 𝑒−𝜃 (𝑣−𝑉 )

] ]
≥ 1 −𝐴𝑒−𝜃𝑢 − (𝐵 +𝐶𝑢 + 𝐷𝑣)𝑒−𝜃𝑣 ,

(21)

for all (𝑢, 𝑣) ∈ supp (𝛾 ∨ 0).
To find the parameters 𝐴, 𝐵,𝐶, 𝐷 for (21) to hold, we provide next a sufficient set of inequalities

which are much easier to handle separately.
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Lemma 4. The following five inequalities are sufficient for (21) to hold:

𝐴𝐾𝑌
0
(𝑢)E[𝑒−𝜃𝑋 ] ≥ 1

𝐶𝐾𝑍
1
(𝑣 − 𝑢 + 𝑌 ) +𝐴(1 − 𝐾𝑍

0
(𝑣 − 𝑢 + 𝑌 )) ≥ 0

𝐶E
[
𝑈𝑒𝜃𝑉

]
+ 𝐷E

[
𝑉𝑒𝜃𝑉

]
≥ 0

𝐵 +𝐶E
[
(𝑢 −𝑈 )𝑒𝜃𝑉 | 𝑌 > 𝑢

]
+ 𝐷E

[
(𝑣 −𝑉 )𝑒𝜃𝑉

]
≥ 0

(𝐴 + 𝐵)𝐾𝑍
0
(𝑣 + 𝑋 ) − (𝐶 + 𝐷)𝐾𝑍

1
(𝑣 + 𝑋 ) ≥ 1 .

If all inequalities hold as equalities then 𝛾 = 𝜓 .

The five inequalities are obtained by expanding (21) and grouping terms from its left and right

sides; for convenience, we depict each group in a different colour; for the proof see Appendix §A.

As already hinted, the above grouping is likely sub-optimal, i.e., different groupings or other more

direct approaches not involving simplifying groups may lend themselves to better 𝐴, 𝐵,𝐶, 𝐷 in

the sense of obtaining tighter bounds on P(W > 𝑥) and P(S > 𝑥). Also, different (polynomial-

exponential) expressions of 𝛾 (𝑢, 𝑣) than the one from (20), which was inspired by the existence

result from Theorem 3, may be more efficient.

3.1 𝐺𝐼/𝑀/1 → ·/𝑀/1

For the 𝐺𝐼/𝑀/1 → ·/𝑀/1 model, i.e., 𝑌, 𝑍 ≃ 𝐸𝑥𝑝 (𝜇) and E[𝑋 ] = 1

𝜇𝜌
, let 𝜃 > 0 such that

E[𝑒𝜃 (𝑌−𝑋 ) ] = 1, or, equivalently, E[𝑒−𝜃𝑋 ] = (𝜇 − 𝜃 )/𝜇. Observing first that

𝐾𝑌
𝑗 (𝑥) =

𝜇 × 𝑗 !

(𝜇 − 𝜃 ) 𝑗+1
,

and denoting 𝛼 := E
[
𝑋𝑒−𝜃𝑋

]
, three of the four parameters of 𝛾 (𝑢, 𝑣) from (20) follow immediately

4

from the inequalities 1, 2, 3 from Lemma 4:

𝐴 = 1, 𝐶 =
𝜃 (𝜇 − 𝜃 )

𝜇
, 𝐷 = 𝐶 ×

(
𝛼

𝜇

𝜇−𝜃 − 1

𝜇

1

𝜇−𝜃 − 𝛼 𝜇

𝜇−𝜃
∨ 0

)
.

The remaining parameter 𝐵 can be obtained by treating separately the remaining inequalities 4

and 5 from Lemma 4: from the fourth we define

𝐵1 := 𝐶

(
1

𝜇
− 𝛼 𝜇

𝜇 − 𝜃

)
+ 𝐷

(
1

𝜇 − 𝜃 − 𝛼 𝜇

𝜇 − 𝜃

)
= 𝐶

(
1

𝜇
− 𝛼 𝜇

𝜇 − 𝜃

)
∨ 0

and from the fifth we define

𝐵2 :=
𝜇 − 𝜃
𝜇

+ 𝐶 + 𝐷
𝜇 − 𝜃 −𝐴 =

𝐷

𝜇 − 𝜃 .

We can finally define 𝐵 := 𝐵1 ∨ 𝐵2 = 𝐵11l{𝐷=0} + 𝐵21l{𝐷>0} .
We can now apply Corollary 2 to obtain the bounds on the tail of W, i.e.,

P(W > 𝑥) ≤ 1 − E
{
1l{𝑥+𝑋+𝑌 ≥𝑍 }

[
1 −𝐴𝑒−𝜃 (𝑥+𝑋−(𝑍−𝑌 )+ )

− (𝐵 +𝐶 (𝑥 + 𝑋 − (𝑍 − 𝑌 )+) + 𝐷 (𝑥 + 𝑋 − (𝑍 − 𝑌 )))𝑒−𝜃 (𝑥+𝑋−(𝑍−𝑌 ) )
]}
.

4
For more complete derivations see the treatment of the more general𝐺𝐼/𝐻𝑛/1 → ·/𝐻𝑛/1 case.
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The bound becomes

P(W > 𝑥) ≤ E
[
𝑒−𝜇 (𝑥+𝑋 )

2

+𝐴
(
(2𝜇 − 𝜃 )𝑒−𝜃𝑥

2𝜇
− 𝜇𝑒−𝜇 (𝑥+𝑋 )

2(𝜇 − 𝜃 )

)
+ 𝐵

(
𝜇𝑒−𝜃𝑥

𝜇 + 𝜃 − 𝜇𝑒−𝜇 (𝑥+𝑋 )

2(𝜇 − 𝜃 )

)
+𝐶

(
𝜇2 (𝑥 + 𝑋 )𝑒−𝜃 (𝑥+𝑋 )

𝜇2 − 𝜃 2
+ 𝜇𝑒

−𝜇 (𝑥+𝑋 )

2(𝜇 − 𝜃 )2
− 𝑒−𝜃𝑥

2(𝜇 − 𝜃 )

)
+ 𝐷

(
𝜇2 (𝑥 + 𝑋 )𝑒−𝜃 (𝑥+𝑋 )

𝜇2 − 𝜃 2
− 2𝜇𝜃𝑒−𝜃𝑥

(𝜇2 − 𝜃 2) (𝜇 + 𝜃 ) +
𝜇𝑒−𝜇 (𝑥+𝑋 )

2(𝜇 − 𝜃 )2

) ]
. (22)

In turn,

P(S > 𝑥) ≤ 1 − E
[
1l{𝑥≥𝑍 } (1 − (𝐴 + 𝐵) + (𝐶 + 𝐷) (𝑥 − 𝑍 )) 𝑒−𝜃 (𝑥−𝑍 )

]
= 𝑒−𝜇𝑥 + 𝜇

𝜇 − 𝜃 (𝐴 + 𝐵)
(
𝑒−𝜃𝑥 − 𝑒−𝜇𝑥

)
+ 𝜇

(𝜇 − 𝜃 )2
(𝐶 + 𝐷)

(
((𝜇 − 𝜃 )𝑥 − 1)𝑒−𝜃𝑥 + 𝑒−𝜇𝑥

)
.

Denoting 𝛽 := E
[
𝑒−𝜇𝑋

]
and collecting terms we obtain the polynomial-exponential bounds:

P(W > 𝑥) ≤

(
1 − 2𝜃 2

𝜇 (𝜇+𝜃 ) +
𝜃 (𝜇−𝜃 )
𝜇+𝜃 𝑥

)
𝑒−𝜃𝑥 + 𝛽

(
𝜃𝜇𝛼

2(𝜇−𝜃 ) −
𝜃
2𝜇

)
𝑒−𝜇𝑥(

1 − 2𝜃
𝜇
+ 2𝜃 2 (2−𝛼𝜇 )

(𝜇+𝜃 )2 (1−𝛼𝜇 ) +
𝜃 2 (𝜇−𝜃 )

𝜇 (𝜇+𝜃 ) (1−𝛼𝜇 ) 𝑥
)
𝑒−𝜃𝑥

P(S > 𝑥) ≤
{
(1 + 𝜃𝑥)𝑒−𝜃𝑥 + 𝜃

(
1

𝜇
− 𝛼𝜇

𝜇−𝜃

) (
𝑒−𝜃𝑥 − 𝑒−𝜇𝑥

)
(1 + 𝜃 2

𝜇 (1−𝛼𝜇 ) 𝑥)𝑒
−𝜃𝑥 ,

(23)

where the top branches hold when 𝛼 ≤ 𝜇−𝜃
𝜇2

, which is equivalent to𝐷 = 0, and the bottom otherwise.

We observe that the bounds on P(W > 𝑥) and P(S > 𝑥) for 𝛼 ≤ 𝜇−𝜃
𝜇2

have a mixed polynomial-

exponential structure as they involve two exponentials (in 𝜃 and 𝜇) along with corresponding

polynomials.

In the𝑀/𝑀/1 → ·/𝑀/1 special case, we have 𝛼 =
𝜇−𝜃
𝜇2

, 𝐵 = 𝐷 = 0, and the five inequalities in

Lemma 4 become equalities. So 𝛾 = 𝜓 and

P(W > 𝑥) =
(
1 − 2𝜃 2

𝜇 (𝜇 + 𝜃 ) +
𝑥 (𝜇 − 𝜃 )𝜃
𝜇 + 𝜃

)
𝑒−𝜃𝑥 , P(S > 𝑥) = (1 + 𝜃𝑥)𝑒−𝜃𝑥 .

The former result first appeared in [26].

Next we numerically illustrate the sojourn-time bound from (23) against the corresponding

one from (30) based on large-deviations (for the derivations see Appendix §A.1). We also include

simulation results obtained from 10
6
runs and sample paths of 10

4
points (i.e., the number of jobs);

the running time for this setting is 10
14
due to the nested ‘max’ in the expression of S from (5),

requiring itself 10
8
time.

Fig. 3 displays the results for the 𝐷/𝑀/1 → ·/𝑀/1 tandem, for several values of the utilization

factor 𝜌 ; the service rate is 𝜇 = 1 and the inter-arrival times are 𝑋 = 1

𝜌𝜇
. The (extremely) poor

accuracy of the large-deviations-based bounds is particularly pronounced at high utilizations,

despite the 𝐷/𝑀 setting; this is due not only to the nested ‘max’, and consequently the nested

infinite application of the Union Bound, but also to the relatively small space in running the

optimization ‘inf {0<𝜃<𝜇:𝛽<1} ’, as opposed to scenarios with lower 𝜌 . In turn, in addition to the

overall accuracy of the bounds from (23), we highlight their ability to capture the initial concave

‘bend’ which is clearly visible in (c) around small 𝑥 ; this feature is precisely due to the polynomial-

exponential structure of the bounds.
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Fig. 3. The sojourn time CCDF P(S > 𝑥) for the 𝐷/𝑀/1 → ·/𝑀/1 tandem: Large-Deviations Upper Bounds
from (30) vs. Polynomial-Exponential Upper Bounds from (23) vs. Simulations
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Fig. 4. The sojourn time CCDF P(S > 𝑥) for the 𝐸𝑟𝑙𝑎𝑛𝑔(2)/𝑀/1 → ·/𝑀/1 tandem: Large-Deviations Upper
Bounds from (30) vs. Polynomial-Exponential Upper Bounds from (23) vs. Simulations

Fig. 4 illustrates results for the 𝐸𝑟𝑙𝑎𝑛𝑔(2)/𝑀/1 → ·/𝑀/1 tandem, as a special case with Gamma

distributed input, and reveals similar observations as in the 𝐷/𝑀 case.

3.2 𝐺𝐼/𝐻𝑛/1 → ·/𝐻𝑛/1

We now address the case of hyperexponential service times, i.e., 𝑌, 𝑍 ≃ ∑𝑛
𝑖=1
𝑝𝑖𝐸𝑥𝑝 (𝜇𝑖 ) where

𝑝1, . . . , 𝑝𝑛 ∈ [0, 1], ∑𝑖 𝑝𝑖 = 1, and, without loss of generality, 𝜇1 ≤ 𝜇2 ≤ · · · ≤ 𝜇𝑛 . The coefficient of

variation is

𝐶𝑉𝑌 =

√︄∑︁
𝑖

2𝑝𝑖

𝜇2

𝑖

− E[𝑌 ]2

/
E[𝑌 ] ,

where E[𝑌 ] = ∑
𝑖
𝑝𝑖
𝜇𝑖
; it is known that 𝐶𝑉𝑌 ≥ 1.

Let 𝜃 > 0 such that E[𝑒𝜃 (𝑌−𝑋 ) ] = 1, or, equivalently, E[𝑒−𝜃𝑋 ] =

(∑
𝑖

𝑝𝑖𝜇𝑖
𝜇𝑖−𝜃

)−1

; note that 𝜃 ≤
min𝑖 𝜇𝑖 . For brevity, we only derive bounds on P(𝑆 > 𝑥).
First, using elementary integration, we obtain

𝐾𝑌
𝑗 (𝑥) =

∑
𝑖
𝑝𝑖𝜇𝑖𝑒

−𝜇𝑖𝑥× 𝑗 !

(𝜇𝑖−𝜃 ) 𝑗+1∑
𝑖 𝑝𝑖𝑒

−𝜇𝑖𝑥 ∀𝑗 ≥ 0∀𝑥 ≥ 0 .

The rest follows according to the same procedure described in the 𝐺𝐼/𝑀/1 → ·/𝑀/1 case, i.e.,

match the parameters 𝐴, 𝐵, 𝐶 , and 𝐷 to satisfy the five inequalities from Lemma 4. From the first
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we define

𝐴 :=
E

[
𝑒𝜃𝑌

]
inf𝑥≥0 𝐾

𝑌
0
(𝑥)

=

∑
𝑖

𝑝𝑖𝜇𝑖
𝜇𝑖−𝜃

inf𝑥≥0

∑
𝑖

𝑝𝑖𝜇𝑖
𝜇𝑖−𝜃 𝑒

−𝜇𝑖𝑥
/ ∑

𝑖 𝑝𝑖𝑒
−𝜇𝑖𝑥

= 1 .

Next, from the second inequality we define

𝐶 := sup

𝑥≥0

𝐾𝑌
0
(𝑥) − 1

𝐾𝑌
1
(𝑥)

= sup

𝑥≥0

∑
𝑖

𝑝𝑖 𝜇𝑖
𝜇𝑖 −𝜃

𝑒−𝜇𝑖𝑥∑
𝑖 𝑝𝑖𝑒

−𝜇𝑖𝑥 − 1∑
𝑖

𝑝𝑖 𝜇𝑖

(𝜇𝑖 −𝜃 )2
𝑒−𝜇𝑖𝑥∑

𝑖 𝑝𝑖𝑒
−𝜇𝑖𝑥

= 𝜃

∑
𝑖

𝑝𝑖
𝜇𝑖−𝜃∑

𝑖
𝑝𝑖𝜇𝑖

(𝜇𝑖−𝜃 )2

.

Furthermore, from the third inequality we define

𝐷 := −𝐶
E

[
(𝑌 − 𝑋 )𝑒𝜃 (𝑍−𝑋 ) ]

E
[
(𝑍 − 𝑋 )𝑒𝜃 (𝑍−𝑋 ) ] ∨ 0 = 𝐶 ×

©­­­­«
𝛼

∑
𝑖

𝑝𝑖𝜇𝑖
𝜇𝑖−𝜃 − ∑

𝑖
𝑝𝑖
𝜇𝑖∑

𝑖
𝑝𝑖 𝜇𝑖

(𝜇𝑖 −𝜃 )2∑
𝑖

𝑝𝑖 𝜇𝑖
𝜇𝑖 −𝜃

− 𝛼 ∑
𝑖

𝑝𝑖𝜇𝑖
𝜇𝑖−𝜃

∨ 0

ª®®®®¬
,

where 𝛼 := E
[
𝑋𝑒−𝜃𝑋

]
. Note the additional requirement that 𝐷 ≥ 0 to satisfy 𝐵 +𝐶𝑢 +𝐷𝑣 ≥ 0 ∀𝑣 ≥

𝑢 ≥ 0, as mentioned just before Lemma 4.

The remaining parameter 𝐵 can be obtained by treating separately the inequalities 4 and 5. From

the former we define

𝐵1 := 𝐶 sup

𝑢≥0

E
[
(𝑌 − 𝑋 − 𝑢)𝑒𝜃 (𝑍−𝑋 ) | 𝑌 > 𝑢

]
+ 𝐷 sup

𝑣≥0

E
[
(𝑍 − 𝑋 − 𝑣)𝑒𝜃 (𝑍−𝑋 )

]
.

Using E
[
𝑒𝜃 (𝑍−𝑋 ) ] = 1 and the independence of 𝑋,𝑌 , and 𝑍 , the term inside the first supremum

can be written as

E
[
𝑌𝑒𝜃 (𝑍−𝑋 )

1l𝑌>𝑢

]
P(𝑌 > 𝑢) −

E
[
𝑋𝑒𝜃 (𝑍−𝑋 )

1l𝑌>𝑢

]
P(𝑌 > 𝑢) − 𝑢 =

𝑢
∑

𝑖 𝑝𝑖𝑒
−𝜇𝑖𝑢 + ∑

𝑖
𝑝𝑖
𝜇𝑖
𝑒−𝜇𝑖𝑢∑

𝑖 𝑝𝑖𝑒
−𝜇𝑖𝑢 − 𝛼

∑︁
𝑖

𝑝𝑖𝜇𝑖

𝜇𝑖 − 𝜃
− 𝑢

=

∑
𝑖
𝑝𝑖
𝜇𝑖
𝑒−𝜇𝑖𝑢∑

𝑖 𝑝𝑖𝑒
−𝜇𝑖𝑢 − 𝛼

∑︁
𝑖

𝑝𝑖𝜇𝑖

𝜇𝑖 − 𝜃
.

Using 𝜇1 ≤ 𝜇2 ≤ · · · ≤ 𝜇𝑛 the value of the supremum is
1

𝜇1

− 𝛼 ∑
𝑖

𝑝𝑖𝜇𝑖
𝜇𝑖−𝜃 ; note that the underlying

function in 𝑢 is nondecreasing. In turn, the second supremum is obviously attained at 𝑣 = 0 and

takes the value ∑
𝑖 𝑝𝑖𝜇𝑖/ (𝜇𝑖 − 𝜃 )2∑
𝑖 𝑝𝑖𝜇𝑖/ (𝜇𝑖 − 𝜃 )

− 𝛼
∑︁
𝑖

𝑝𝑖𝜇𝑖

𝜇𝑖 − 𝜃
.

We then obtain

𝐵1 = 𝐶

(
1

𝜇1

− 𝛼
∑︁
𝑖

𝑝𝑖𝜇𝑖

𝜇𝑖 − 𝜃
∧

∑︁
𝑖

𝑝𝑖

𝜇𝑖

)
.

Finally, from inequality 5 we define

𝐵2 := sup

𝑢≥0

1 + (𝐶 + 𝐷) ∑
𝑖

𝑝𝑖𝜇𝑖
(𝜇𝑖−𝜃 )2

𝑒−𝜇𝑖𝑢
/ ∑

𝑖 𝑝𝑖𝑒
−𝜇𝑖𝑢∑

𝑖
𝑝𝑖𝜇𝑖
𝜇𝑖−𝜃 𝑒

−𝜇𝑖𝑢
/ ∑

𝑖 𝑝𝑖𝑒
−𝜇𝑖𝑢

− 1 =
𝐶 + 𝐷
𝜇1 − 𝜃

− 𝜃

𝜇1

,

using again that 𝜇1 ≤ 𝜇2 ≤ · · · ≤ 𝜇𝑛 ; note also that the function inside the ‘sup’ is nondecreasing

in 𝑢 such that the ‘sup’ is attained by taking 𝑢 → ∞.
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Defining now 𝐵 := 𝐵1 ∨ 𝐵2, which satisfies the additional requirement that 𝐵 ≥ 0 because

𝐵1 ≥ 𝐶
(

1

𝜇1

− ∑
𝑖
𝑝𝑖
𝜇𝑖

)
≥ 0, we obtain from Corollary 2

P(S > 𝑥) ≤ 1 − E
[
1l{𝑥≥𝑍 } (1 − (𝐴 + 𝐵) + (𝐶 + 𝐷) (𝑥 − 𝑍 )) 𝑒−𝜃 (𝑥−𝑍 )

]
=

𝑛∑︁
𝑖=1

𝑝𝑖

{
𝑒−𝜇𝑖𝑥 + 𝜇𝑖

𝜇𝑖 − 𝜃
(𝐴 + 𝐵)

(
𝑒−𝜃𝑥 − 𝑒−𝜇𝑖𝑥

)
+ 𝜇𝑖

(𝜇𝑖 − 𝜃 )2
(𝐶 + 𝐷)

(
((𝜇𝑖 − 𝜃 )𝑥 − 1)𝑒−𝜃𝑥 + 𝑒−𝜇𝑖𝑥

) }
.

(24)
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Fig. 5. The sojourn time CCDF P(S > 𝑥) for the 𝐸𝑟𝑙𝑎𝑛𝑔(2)/𝐻2/1 → ·/𝐻2/1 tandem: Polynomial-Exponential
Upper Bounds from (24) vs. Simulations

Fig. 5 shows numerical results for several values of the coefficient of variation 𝐶𝑉𝑌 and the

utilization factor 𝜌 in the case of the 𝐸𝑟𝑙𝑎𝑛𝑔(2)/𝐻2/1 → ·/𝐻2/1 tandem. The service rates are set

to E[𝑌 ] = E[𝑍 ] = 1, 𝑝2 = 0.9, and 𝜇2 = 1.69, 𝜇2 = 3, and 𝜇2 = 11.5, corresponding to 𝐶𝑉𝑌 = 2,

𝐶𝑉𝑌 = 3, and 𝐶𝑉𝑌 = 4, respectively; note that 𝜇1 =
𝑝1𝜇2

𝜇2−𝑝2

. While the bounds’ accuracy slightly

degrades in comparison to the 𝐸𝑟𝑙𝑎𝑛𝑔(2)/𝑀/1 → ·/𝑀/1 tandem, by increasing 𝐶𝑉𝑌 from 1 to 2,

we note that further increasing𝐶𝑉𝑌 does not (visually) decrease the bounds’ accuracy. We mention

that similar observations hold a 𝐷/𝐻2/1 → ·/𝐻2/1 tandem (the numerics are omitted for brevity).

4 Generalization: Tandem of𝑀 Queues
Here we generalize the previous results to a tandem𝐺𝐼/𝐺/1 → ·/𝐺/1 → · · · → ·/𝐺/1 of𝑀 queues.

The extension is more or less straightforward, except for the increase in notational complexity due

to the need of keeping track of the queues using an additional index.

There are 𝑛 + 1 jobs denoted by 0, 1, . . . , 𝑛 and traversing the tandem. Job 0 arrives at time

0 to an empty system, and the interarrival time between jobs 𝑘 − 1 and 𝑘 is 𝑋𝑀+𝑛−𝑘+1 for 𝑘 =

1, . . . , 𝑛; the arrival time of job 𝑘 is thus

∑𝑘
𝑖=1
𝑋𝑀+𝑛−𝑖+1. The service times of job 𝑘 at the queues

𝑗 ∈ {1, 2, . . . , 𝑀} are light-tailed and denoted
5
by 𝑌

( 𝑗 )
𝑀+𝑛− 𝑗+1−𝑘 ; see Fig. 6. All sequences are i.i.d. and

mutually independent, and we assume the stability condition E[𝑋𝑀 ] > max𝑗 E[𝑌 ( 𝑗 )
𝑀− 𝑗+1

].
As in the 𝑀 = 2 particular case, we point out that the apparent cumbersome indexing for the

jobs’ interarrival and service times lends itself to simple/clean expressions for the exit, waiting,

and sojourn times, to be derived in Appendix § B.1; in turn, a simpler indexing in the model would

make the notation for the waiting and sojourn times, and of most incoming derivations in the

paper, as extremely cumbersome.

5
Superscript indexes mainly stand for the queues’ positions in the tandem. Recall also the convention to drop subscripts

when clear from the context; for instance, 𝑋 would stand for a r.v. with the same distribution as 𝑋1, i.e., 𝑋 ≃ 𝑋1.
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Fig. 6. Inter-arrival and service times for job 𝑘 in a tandem of𝑀 queues

Define the compact set

D𝑀 :=
{
(𝑣1 ∧ 𝑣2, . . . , 𝑣𝑀−1 ∧ 𝑣𝑀 , 𝑣𝑀 ) : 𝑣1 ≥ 0, (𝑣1, . . . , 𝑣𝑀 ) ∈ ¯R𝑀

}
,

which is a closed subset of the compact set
¯R𝑀 . Denote also the maxima of random walks

𝑇
𝑗

𝑘
:= max

𝑘≤𝑖 𝑗<𝑖 𝑗−1<· · ·<𝑖1<∞
𝑌

( 𝑗 )
𝑘

+𝑉 ( 𝑗 )
𝑘+1

· · · +𝑉 ( 𝑗 )
𝑖 𝑗

+𝑉 ( 𝑗−1)
𝑖 𝑗+1

+ · · · +𝑉 ( 𝑗−1)
𝑖 𝑗−1

+ · · · +𝑉 (1)
𝑖2+1

+ · · · +𝑉 (1)
𝑖1

,

for 1 ≤ 𝑗 ≤ 𝑀 and 𝑘 ≥ 1, where 𝑉 (𝑖 ) = 𝑌 (𝑖 ) − 𝑋 ; according to the dropping subscripts convention,

𝑉 (𝑖 ) ≃ 𝑌 (𝑖 ) −𝑋 stands for 𝑉
(𝑖 )
𝑘

≃ 𝑌 (𝑖 )
𝑘

−𝑋𝑘 ∀𝑘 . Note also that 𝑉 (1)
and 𝑉 (2)

play the roles of the𝑈

and 𝑉 from the𝑀 = 2 case.

Next we present the main result which establishes that the joint distribution of the maxima of

randomwalks𝑇
𝑗

1
, for 𝑗 = 1, . . . , 𝑀 , which drive the representations ofW andS (see Appendix § B.1),

is the unique solution of a fixed-point integral equation.

Theorem 5. (Main Result: Generic Construction of Upper and Lower Bounds) Let 𝑉 (𝑖 ) =
𝑌 (𝑖 ) − 𝑋 be random variables satisfying P(𝑉 (𝑖 ) > 0) > 0 for 𝑖 = 1, . . . , 𝑀 , and where 𝑌 (1) , . . . , 𝑌 (𝑀 ) ,
and 𝑋 are independent. Let (𝑉 (1)

1
, . . . ,𝑉

(𝑀 )
1

), (𝑉 (1)
2
, . . . ,𝑉

(𝑀 )
2

), . . . be i.i.d. copies of (𝑉 (1) , . . . ,𝑉 (𝑀 ) ).
Denote the vector

V(𝑣1, . . . , 𝑣𝑀 ) :=

( ∧
1≤𝑖≤2

(
𝑣𝑖 −𝑉 (𝑖 )

)
, . . . ,

∧
𝑀−1≤𝑖≤𝑀

(
𝑣𝑖 −𝑉 (𝑖 )

)
, 𝑣𝑀 −𝑉 (𝑀 )

)
.

(a) The integral equation

E
[
1l{𝑣1≥𝑌 (1) }𝜓 (V(𝑣1, . . . , 𝑣𝑀 ))

]
= 𝜓 (𝑣1, . . . , 𝑣𝑀 ) (25)

admits a unique solution in the class of bounded functions 𝜓 : D𝑀 → R having the limit
𝜓 (∞, . . . ,∞) := lim𝑣1,...,𝑣𝑀→∞𝜓 (𝑣1, . . . , 𝑣𝑀 ) = 1. This is given by

𝜓 (𝑣1, . . . , 𝑣𝑀 ) := P
(
𝑇 1

1
≤ 𝑣1, . . . ,𝑇

𝑀
1

≤ 𝑣𝑀
)
.

(b) Assume that the function 𝛾 : D𝑀 → (−∞, 𝐾𝛾 ], for some finite 𝐾𝛾 , satisfies for all (𝑣1, . . . , 𝑣𝑀 ) ∈
supp (𝛾 ∨ 0)

E
[
1l{𝑣1≥𝑌 (1) }𝛾 (V(𝑣1, . . . , 𝑣𝑀 ))

]
≥ 𝛾 (𝑣1, . . . , 𝑣𝑀 ) . (26)

If 𝛾 (∞, . . . ,∞) := lim sup𝑣1,...,𝑣𝑀→∞ 𝛾 (𝑣1, . . . , 𝑣𝑀 ) = 1 then𝜓 ≥ 𝛾 .
(c) Assume that the function 𝜂 : D𝑀 → [0,∞) satisfies for all (𝑣1, . . . , 𝑣𝑀 ) ∈ supp (𝜓 )

E
[
1l{𝑣1≥𝑌 (1) }𝜂 (V(𝑣1, . . . , 𝑣𝑀 ))

]
≤ 𝜂 (𝑣1, . . . , 𝑣𝑀 ) (27)

If 𝜂 (∞, . . . ,∞) := lim inf𝑣1,...,𝑣𝑀→∞ 𝜂 (𝑣1, . . . , 𝑣𝑀 ) = 1 then𝜓 ≤ 𝜂.

As in the𝑀 = 2 case, the problem of finding upper and lower bounds on the tails ofW and S
reduces to the problem of finding the functions 𝛾 and 𝜂 in (b) and (c), respectively; the connection

is provided in the next result.
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Corollary 6. (Generic Upper and Lower Bounds) Consider the functions 𝜓 , 𝛾 , and 𝜂 as in
Theorem 5. Then the waiting time W and sojourn time S of a job 𝑛 → ∞ satisfies for all 𝑥 ≥ 0

1 − E
[
1l{𝑥+𝑋+𝑆1

𝑀
≥𝑆2

𝑀 }𝜂
(
𝑥 + 𝑋 + 𝑆1

𝑀 − 𝑆1

𝑀 ∨ 𝑆2

𝑀 , . . . , 𝑥 + 𝑋 + 𝑆1

𝑀 − 𝑆𝑀𝑀
)]

≤ P(W > 𝑥)

= 1 − E
[
1l{𝑥+𝑋+𝑆1

𝑀
≥𝑆2

𝑀 }𝜓
(
𝑥 + 𝑋 + 𝑆1

𝑀 − 𝑆1

𝑀 ∨ 𝑆2

𝑀 , . . . , 𝑥 + 𝑋 + 𝑆1

𝑀 − 𝑆𝑀𝑀
)]

≤ 1 − E
[
1l{𝑥+𝑋+𝑆1

𝑀
≥𝑆2

𝑀 }𝛾
(
𝑥 + 𝑋 + 𝑆1

𝑀 − 𝑆1

𝑀 ∨ 𝑆2

𝑀 , . . . , 𝑥 + 𝑋 + 𝑆1

𝑀 − 𝑆𝑀𝑀
)]

and

1 − E
[
1l{𝑥≥𝑆2

𝑀−1
}𝜂

(
𝑥 − 𝑆2

𝑀−1
, 𝑥 − 𝑆2

𝑀−1
∨ 𝑆3

𝑀−1
, . . . , 𝑥 − 𝑆𝑀𝑀−1

)]
≤ P(S > 𝑥)

= 1 − E
[
1l{𝑥≥𝑆2

𝑀−1
}𝜓

(
𝑥 − 𝑆2

𝑀−1
, 𝑥 − 𝑆2

𝑀−1
∨ 𝑆3

𝑀−1
, . . . , 𝑥 − 𝑆𝑀𝑀−1

)]
≤ 1 − E

[
1l{𝑥≥𝑆2

𝑀−1
}𝛾

(
𝑥 − 𝑆2

𝑀−1
, 𝑥 − 𝑆2

𝑀−1
∨ 𝑆3

𝑀−1
, . . . , 𝑥 − 𝑆𝑀𝑀−1

)]
.

Next we prove the existence of polynomial-exponential bounds on the tails of W and S.

Theorem 7. (Existence of polynomial-exponential Upper Bounds) Denote 𝜃𝑖 := sup{𝑟 > 0 :

∀1 ≤ 𝑗 ≤ 𝑖 : E[𝑒𝑟𝑉 ( 𝑗 ) ] ≤ 1} for 𝑖 ∈ {1, 2, . . . , 𝑀} and let

𝐼𝑖 (𝜃 ) :=

{
1 if E[𝑒𝜃𝑉 (𝑖 ) ] = 1

0 otherwise
(28)

and
𝑑1 (𝜃 ) := 0, 𝑑𝑖 (𝜃 ) := 𝐼2 (𝜃 ) + . . . + 𝐼𝑖 (𝜃 ), 2 ≤ 𝑖 ≤ 𝑀 .

Suppose that for all 𝑣 ≥ 0 and all 𝑖 ∈ {1, 2, . . . , 𝑀} and 𝑗 ≤ (2 ⌊(𝑑𝑖 (𝜃𝑖 ) − 1) /2⌋ + 1) ∨ 0

E

[(
𝑉 (𝑖 ) − 𝑣

) 𝑗
𝑒𝜃𝑖 (𝑉

(𝑖 )−𝑣) | 𝑉 (𝑖 ) > 𝑣

]
≤ 𝐾𝑖, 𝑗 < +∞ ,

for some positive constants 𝐾𝑖, 𝑗 . Then there exist the polynomials 𝑄𝑖 : R→ R with degrees 𝑑𝑖 (𝜃𝑖 ) and
𝑄𝑖 (𝑣) ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑀 and 𝑣 ≥ 0, such that 𝛾 :

¯R𝑀 → (−∞, 1], defined by

𝛾 (𝑣1, . . . , 𝑣𝑀 ) := 1l{ (𝑣1,...,𝑣𝑀 ) ∈ [0,∞]𝑀 }

[
1 −

𝑀∑︁
𝑖=1

𝑄𝑖 (𝑣𝑖 )𝑒−𝜃𝑖 𝑣𝑖
]
,

satisfies (26) for all (𝑣1, . . . , 𝑣𝑀 ) ∈ supp (𝛾 ∨ 0). In particular, the restricted function

𝛾 |D𝑀
(𝑣1, . . . , 𝑣𝑀 ) := 1l{ (𝑣1,...,𝑣𝑀 ) ∈ [0,∞]𝑀∩D𝑀 }

[
1 −

𝑀∑︁
𝑖=1

𝑄𝑖 (𝑣𝑖 )𝑒−𝜃𝑖 𝑣𝑖
]

satisfies (26) for all (𝑣1, . . . , 𝑣𝑀 ) ∈ supp (𝛾 |D𝑀
∨ 0).

Note that 2⌊𝑑−1

2
⌋ + 1 is the largest odd integer smaller or equal than an integer 𝑑 . The degree

of the polynomial 𝑄𝑀 (𝑣𝑀 ), which dictates the behaviors of P(W > 𝑥) and P(S > 𝑥) according
to Corollary 6, depends on the indicator functions from (28). At one extreme, if all queues are

homogeneous and E[𝑒𝜃+ (𝑌−𝑋 ) ] ≥ 1 (recall the discussion on ‘light-tailedness’), then the degree of

𝑄𝑀 is𝑀 − 1, as all indicators 𝐼𝑖 but the first are 1. At another extreme, if there is a single bottleneck,

and E[𝑒𝜃+ (𝑌−𝑋 ) ] ≥ 1, then the degree of 𝑃𝑀 depends on the position of the bottleneck: if it comes
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first then the degree is 0, otherwise it is 1 regardless the position (e.g., second or last). Another

extreme in the homogeneous case is when E[𝑒𝜃+ (𝑌−𝑋 ) ] < 1, i.e., the service times are subject to a

‘very light-tailed’ distribution as in Appendix §D, in which case the degree of 𝑃𝑀 would be 0.

5 Conclusions
This paper aims to improve queueing bounds available for general arrival processes but proverbially

very loose. Unlike prior work dedicated to single queues (e.g., [2, 13, 14, 17, 32, 35]), the target here

is a tandem queueing network which is renowned to pose extraordinary technical difficulties.

The breakthrough is the formulation of the stationary waiting and sojourn times in terms of

random walks’ maxima, whose joint distribution obeys a fundamental fixed-point integral equation.

Relaxing this equation as an inequality lends itself to closed-form polynomial-exponential upper-

bounds on the tails P(W > 𝑥) and P(S > 𝑥). In the 𝐺𝐼/𝑀/1 → ·/𝑀/1 tandem case, numerical

results indicate that the obtained bounds are very sharp both in heavy and light traffic, and improve

upon alternative large-deviations-based bounds by many orders of magnitude.

More general closed-form bounds were derived for a 𝐺𝐼/𝐻𝑛/1 → ·/𝐻𝑛/1 tandem with hyperex-

ponential service times; numerical results revealed a slight accuracy loss when considering service

times with coefficient of variations larger than one. This indicates that the specific polynomial-

exponential structure of the bounds, as provided by the “Existence” Theorem 3, or the matching

procedure of the underlying parameters from Lemma 4 can potentially be significantly improved.

A more fundamental open question concerns the existence, or disproval, of matching lower bounds

for the upper ones from Theorem 3; should the former be true, then obtaining exact closed-form

distributions for W and S would be within reach.
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𝐹𝐵 (𝑢, 𝑣) := 𝑒−𝜃𝑣 − E
[
1l{𝑢≥𝑌,𝑣≥𝑉 }𝑒

𝜃 (𝑉 −𝑣)
]

= E
[
1l{𝑢<𝑌 }𝑒

𝜃 (𝑉 −𝑣)
]
+ E

[
1l{𝑢≥𝑌,𝑣<𝑉 }𝑒

𝜃 (𝑉 −𝑣)
]

= 𝑒−𝜃𝑣P(𝑌 > 𝑢)+E[𝐾𝑍
0
(𝑣 + 𝑋 )1l{𝑍>𝑣+𝑋,𝑌 ≤𝑢}] .

The last equality is obtained by using standard properties of conditional expectation and the

independence of 𝑋 , 𝑌 , 𝑍 :

E
[
1l{𝑢≥𝑌,𝑣<𝑉 }𝑒

𝜃 (𝑉 −𝑣)
]
= E

[
E

[
1l{𝑍>𝑋+𝑣}1l{𝑌 ≤𝑢}𝑒

𝜃 (𝑍−𝑋−𝑣) | 𝑋
] ]

= E
[
E

[
1l{𝑍>𝑋+𝑣}𝑒

𝜃 (𝑍−𝑋−𝑣) | 𝑋
]

1l{𝑌 ≤𝑢}
]

= E
[
E

[
𝑒𝜃 (𝑍−𝑋−𝑣) | 𝑍 > 𝑋 + 𝑣, 𝑋

]
P(𝑍 > 𝑋 + 𝑣 | 𝑋 )1l{𝑌 ≤𝑢}

]
= E

[
𝐾𝑍

0
(𝑋 + 𝑣)P(𝑍 > 𝑋 + 𝑣 | 𝑋 )1l{𝑌 ≤𝑢}

]
= E

[
E

[
𝐾𝑍

0
(𝑋 + 𝑣)1l{𝑍>𝑋+𝑣}1l{𝑌 ≤𝑢} | 𝑋

] ]
= E

[
𝐾𝑍

0
(𝑋 + 𝑣)1l{𝑍>𝑋+𝑣}1l{𝑌 ≤𝑢}

]
.

In the next to last line we used the measurability of 𝐾𝑍
0
(𝑋 + 𝑣) and P(𝑍 > 𝑋 + 𝑣 | 𝑋 ) with respect

to the 𝜎-field generated by 𝑋 . The indicator 1l{𝑌 ≤𝑢} easily expands to obtain the last two lines from

the previous equation (for the formation of the convenient ‘coloured’ groups). We will use the same

argument in the expansions of 𝐹𝐴, 𝐹𝐶 , and 𝐹𝐷 :

𝐹𝐴 (𝑢, 𝑣) := 𝑒−𝜃𝑢 − E
[
1l{𝑢≥𝑌,𝑣≥𝑉 }𝑒

−𝜃 ( (𝑢−𝑈 )∧(𝑣−𝑉 ) )
]

= E
[
1l{𝑢<𝑌 or 𝑣<𝑉 }𝑒

−𝜃𝑢+𝜃𝑈
]

+ E
[
1l{𝑢≥𝑌,𝑣≥𝑉 }

{
𝑒−𝜃𝑢+𝜃𝑈 − 𝑒−𝜃 ( (𝑢−𝑈 )∧(𝑣−𝑉 ) )

}]
= E

[
1l{𝑢<𝑌 }𝑒

−𝜃𝑢+𝜃𝑈
]
+ E

[
1l{𝑢≥𝑌,𝑉>𝑣}𝑒

−𝜃𝑢+𝜃𝑈
]

+ E
[
1l{𝑢≥𝑌,0≥𝑉 −𝑣≥𝑈 −𝑢}

{
𝑒−𝜃𝑢+𝜃𝑈 − 𝑒−𝜃𝑣+𝜃𝑉

}]
= E

[
1l{𝑢<𝑌 }𝑒

−𝜃𝑢+𝜃𝑈
]
+ E

[
1l{𝑢≥𝑌,𝑉 −𝑣≥𝑈 −𝑢}𝑒

−𝜃𝑢+𝜃𝑈
]

− E
[
1l{𝑢≥𝑌,𝑉 −𝑣≥𝑈 −𝑢}𝑒

−𝜃𝑣+𝜃𝑉
]
+ E

[
1l{𝑢≥𝑌,𝑉>𝑣}𝑒

−𝜃𝑣+𝜃𝑉
]

= E[𝐾𝑌
0
(𝑢)1l{𝑌>𝑢}𝑒

−𝜃𝑋 ]

+E
[
(1 − 𝐾𝑍

0
(𝑣 − 𝑢 + 𝑌 ))1l{𝑍≥𝑣−𝑢+𝑌,𝑌 ≤𝑢}𝑒

𝜃 (𝑌−𝑋−𝑢 )
]

+E[𝐾𝑍
0
(𝑣 + 𝑋 )1l{𝑍>𝑣+𝑋,𝑌 ≤𝑢}] .
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𝐹𝐶 (𝑢, 𝑣) := 𝑢𝑒−𝜃𝑣 − E
[
1l{𝑢≥𝑌,𝑣≥𝑉 } ((𝑢 −𝑈 ) ∧ (𝑣 −𝑉 )) 𝑒𝜃 (𝑉 −𝑣)

]
= E

[
1l{𝑢<𝑌 or 𝑣<𝑉 } (𝑢 −𝑈 )𝑒−𝜃𝑣+𝜃𝑉

]
+ E

[
𝑈𝑒𝜃 (𝑉 −𝑣)

]
+ E

[
1l{𝑢≥𝑌,0≥𝑉 −𝑣≥𝑈 −𝑢} (𝑢 − 𝑣 −𝑈 +𝑉 ) 𝑒𝜃 (𝑉 −𝑣)

]
= E

[
1l{𝑢<𝑌 } (𝑢 −𝑈 )𝑒−𝜃𝑣+𝜃𝑉

]
+ E

[
1l{𝑢≥𝑌,𝑉>𝑣} (𝑣 −𝑉 )𝑒−𝜃𝑣+𝜃𝑉

]
+ E

[
𝑈𝑒𝜃 (𝑉 −𝑣)

]
+ E

[
1l{𝑢≥𝑌,𝑉 −𝑣≥𝑈 −𝑢} (𝑢 − 𝑣 −𝑈 +𝑉 ) 𝑒𝜃 (𝑉 −𝑣)

]
= E[𝑈𝑒𝜃𝑉 ]𝑒−𝜃𝑣+E[(𝑢 −𝑈 )𝑒𝜃𝑉 | 𝑌 > 𝑢]P(𝑌 > 𝑢)𝑒−𝜃𝑣

−E[𝐾𝑍
1
(𝑣 + 𝑋 )1l{𝑍>𝑣+𝑋,𝑌 ≤𝑢}]

+E
[
𝐾𝑍

1
(𝑣 − 𝑢 + 𝑌 )1l{𝑍≥𝑣−𝑢+𝑌,𝑌 ≤𝑢}𝑒

𝜃 (𝑌−𝑋−𝑢 )
]
.

𝐹𝐷 (𝑢, 𝑣) := 𝑣𝑒−𝜃𝑣 − E
[
1l{𝑢≥𝑌,𝑣≥𝑉 } (𝑣 −𝑉 )𝑒𝜃 (𝑉 −𝑣)

]
= E

[
1l{𝑌>𝑢 or𝑉>𝑣} (𝑣 −𝑉 )𝑒−𝜃𝑣+𝜃𝑉

]
+ E

[
𝑉𝑒𝜃 (𝑉 −𝑣)

]
= 𝑒−𝜃𝑣E

[
(𝑣 −𝑉 )𝑒𝜃𝑉

]
P(𝑌 > 𝑢)+E

[
𝑉𝑒𝜃𝑉

]
𝑒−𝜃𝑣

−E[𝐾𝑍
1
(𝑣 + 𝑋 )1l{𝑍>𝑣+𝑋,𝑌 ≤𝑢}] .

Lastly

𝐹1 (𝑢, 𝑣) := P(𝑌 > 𝑢) + P(𝑉 > 𝑣, 𝑌 ≤ 𝑢)
= P(𝑌 > 𝑢)+P(𝑍 > 𝑣 + 𝑋,𝑌 ≤ 𝑢) .

□

A.1 A Large-Deviations / Network Calculus Approach
Here we present alternative bounds using the standard large-deviations / network calculus approach,

which crucially relies on the Union Bound

E [max{𝑋,𝑌 }] ≤ E[𝑋 ] + E[𝑌 ] or P(𝐴 ∪ 𝐵) ≤ P(𝐴) + P(𝐵) ,

for positive r.v. 𝑋 and 𝑌 , or events 𝐴 and 𝐵. One advantage of this approach is that it yields

the exact asymptotic decay rates (e.g., for P(S > 𝑥), see Ganesh [20]). Another, as shown in

several applications of network calculus, is that it enables the analysis of queueing networks with

broad classes of arrivals, service times, or scheduling algorithms, and can further lead to the exact

asymptotic scaling of sojourn times ([8, 10, 12, 18, 22, 28]).

The drawback of this class of results is poor numerical tightness, particularly in non-asymptotic

regimes (i.e., for finite values of 𝑥 in the case of P(S > 𝑥)). This issue was brought up in the

context of the (large-deviations-based) effective bandwidth literature from the late 80’s - 90’s.

Choudhury et al. [11] revealed large numerical discrepancies, of several orders of magnitude,

between effective bandwidth results and simulations in the case of Markovian arrivals. More

recently, similar numerical issues have been reported about network calculus results concerning

single queues only; in addition, it was shown that relying on Kingman’s GI/G/1 bound (recall § 2.5),

as opposed to the Union Bound, can largely fix the issue of numerical tightness in single queues
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(Poloczek and Ciucu [33]) and broad arrival patterns in heavy-traffic; at the other extreme, in the

case of light-traffic, ultra-sharp bounds have been recently obtained in Ciucu et al. [13].
The large numerical inaccuracies mainly stem from the obliviousness of the Union Bound to the

underlying correlations; this issue is particularly pronounced in non-Poisson/non-memoryless type

of events, as indicated by Talagrand [36]. Moreover, the underlying numerical errors accumulate

over an infinite number of applications of the Union Bound, as waiting/sojourn times involve whole

sample-paths.

For example, when aiming for the sojourn time S, the network calculus / large-deviations

approach proceeds by first computing the bounds
P (max3≤𝑖<∞𝑈3 + · · · +𝑈𝑖 > 𝑥) ≤ (𝛽 + 𝛽2 + 𝛽3 + . . . )𝑒−𝜃𝑥 =

𝛽

1−𝛽 𝑒
−𝜃𝑥

P
(
max2≤𝑖< 𝑗<∞𝑉3 + · · · +𝑉𝑖 +𝑈𝑖+1 + · · · +𝑈 𝑗 > 𝑥

)
≤ (𝛽 + 2𝛽2 + 3𝛽3 + . . . )𝑒−𝜃𝑥 =

𝛽

(1−𝛽 )2
𝑒−𝜃𝑥

by repeatedly using the Chernoff and Union Bounds, where 𝛽 := E
[
𝑒𝜃 (𝑌−𝑋 ) ]

and 𝜃 > 0 is chosen

such that 𝛽 < 1 (to guarantee the convergence of the infinite series). The former bound concerns

the maximum of a random walk, an event characteristic to single queues, and follows by infinitely

applying the Union Bound – at the expense of disregarding correlations within the partial sums

𝑈3 + · · · +𝑈𝑖 . In turn, the latter concerns an event involving a double-maximum (over 𝑖 and 𝑗 ), which

is characteristic to a tandem of two queues; the bound itself follows from a nested infinite application

of the Union Bound, while also disregarding correlations within the underlying partial sums. The

numerical inaccuracies associated with the former bound, as reported in the single-queues literature,

naturally exacerbate in the case of the latter bound targeting tandem queues.

In the case when 𝑌 and 𝑍 are exponentially distributed with rate 𝜇, we obtain by applying the

Union Bound one more time, along with double integration, that

P(S > 𝑥) ≤ P(𝑌 + 𝑍 > 𝑥) + P
(

max

3≤𝑖<∞
𝑈3 + · · · +𝑈𝑖 > 𝑥 − 𝑌 − 𝑍 ≥ 0

)
+ P

(
max

2≤𝑖< 𝑗<∞
𝑉3 + · · · +𝑉𝑖 +𝑈𝑖+1 + · · · +𝑈 𝑗 > 𝑥 − 𝑌 − 𝑍 ≥ 0

)
≤ (1 + 𝜇𝑥)𝑒−𝜇𝑥 + inf

{0<𝜃<𝜇:𝛽<1}

𝛽 (2 − 𝛽)
(1 − 𝛽)2

𝜇2

(𝜇 − 𝜃 )2

(
𝑒−𝜃𝑥 − (1 + (𝜇 − 𝜃 )𝑥)𝑒−𝜇𝑥

)
. (30)

Due to the underlying transcendental nature of the bound, the optimal value of 𝜃 requires a

numerical search.

B Generalization: Tandem of𝑀 Queues
B.1 A Novel Representation of Waiting and Sojourn Times
Using induction and Lindley’s recursion, the exit time of job 𝑛 from the tandem is

𝜏𝑛 := max

1≤𝑖𝑀<𝑖𝑀−1<...<𝑖1≤𝑀+𝑛
𝑌

(𝑀 )
1

+ · · · + 𝑌 (𝑀 )
𝑖𝑀

+ 𝑌 (𝑀−1)
𝑖𝑀+1

+ · · · + 𝑌 (𝑀−1)
𝑖𝑀−1

+ · · · + 𝑌 (1)
𝑖2+1

+ · · · + 𝑌 (1)
𝑖1

+ 𝑋𝑖1+1 + · · · + 𝑋𝑀+𝑛 .

The expression is an immediate generalization of the exit time shown for𝑀 = 2 queues (see (1)).

Note that, when 𝑀 = 2, 𝑌
(2)
𝑖

corresponds to 𝑍𝑖 (the service times at the second queue), whereas

𝑌
(1)
𝑖

corresponds to 𝑌𝑖 (the service times at the first queue).
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(Re)denoting 𝑉
(𝑖 )
𝑘

≃ 𝑌 (𝑖 )
𝑘

− 𝑋𝑘 let us redefine for convenience the maxima of random walks

𝑇
𝑗

𝑘
:= max

𝑘≤𝑖 𝑗<𝑖 𝑗−1<· · ·<𝑖1<∞
𝑌

( 𝑗 )
𝑘

+𝑉 ( 𝑗 )
𝑘+1

· · · +𝑉 ( 𝑗 )
𝑖 𝑗

+𝑉 ( 𝑗−1)
𝑖 𝑗+1

+ · · · +𝑉 ( 𝑗−1)
𝑖 𝑗−1

+ · · · +𝑉 (1)
𝑖2+1

+ · · · +𝑉 (1)
𝑖1

for 1 ≤ 𝑗 ≤ 𝑀 and 𝑘 ≥ 1. These are subject to the recursions

𝑇
𝑗

𝑘
= 𝑌

( 𝑗 )
𝑘

− 𝑋𝑘+1 +𝑇 𝑗−1

𝑘+1
∨𝑇 𝑗

𝑘+1
∀𝑗 = 2, . . . , 𝑀 (31)

and𝑇 1

𝑘
= 𝑌

(1)
𝑘

+
(
𝑇 1

𝑘+1
− 𝑋𝑘+1

)
∨ 0 for all 𝑘 ≥ 1. The derivations follow immediately as in the𝑀 = 2

case by conveniently regrouping terms (see § 2.2).

To obtain W and S we also need to define

𝑆𝑀
𝑘

:= 𝑌
(𝑀 )

1
+ · · · + 𝑌 (𝑀 )

𝑘
∀𝑘 ≥ 1 ,

𝑆
𝑗

𝑘
:= max

1≤𝑖𝑀<...<𝑖 𝑗+1<𝑘
𝑌

(𝑀 )
1

+ · · · + 𝑌 (𝑀 )
𝑖𝑀

+ 𝑌 (𝑀−1)
𝑖𝑀+1

+ · · · + 𝑌 (𝑀−1)
𝑖𝑀−1

+ · · · + 𝑌 ( 𝑗 )
𝑖 𝑗+1+1

+ · · · + 𝑌 ( 𝑗 )
𝑘

for 1 ≤ 𝑗 ≤ 𝑀 − 1 and 𝑘 ≥ 𝑀 − 𝑗 + 1. These are partial sums of the service times across the queues,

and are subject to the recursions 𝑆1

𝑀
= 𝑆2

𝑀−1
+ 𝑌 (1)

𝑀
, 𝑆

𝑗

𝑀
= 𝑆

𝑗

𝑀−1
∨ 𝑆 𝑗+1

𝑀−1
+ 𝑌 ( 𝑗 )

𝑀
for 𝑗 = 2, . . . , 𝑀 − 1,

and 𝑆𝑀
𝑀

= 𝑆𝑀
𝑀−1

+ 𝑌 (𝑀 )
𝑀

, obtained by regrouping terms.

Using also the recursion from (31), we can express the waiting time of jobs in the limit 𝑛 → ∞ as

W := lim

𝑛→∞

{
𝜏𝑛 − [𝑌 (𝑀 )

1
+ 𝑌 (𝑀−1)

2
+ · · · + 𝑌 (1)

𝑀
+ 𝑋𝑀+1 + 𝑋𝑀+2 + · · · + 𝑋𝑀+𝑛]

}
= max

1≤ 𝑗≤𝑀

{
𝑇

𝑗

𝑀+1
− 𝑋𝑀+1 + 𝑆 𝑗𝑀 ∨ 𝑆 ( 𝑗+1)∧𝑀

𝑀
− 𝑆1

𝑀

}
∨ 0 , (32)

which is subject to a unique stationary distribution (Loynes [29]).

In turn, the sojourn time of job 𝑛 → ∞ is the sum of the waiting and the local service times, i.e.,

S := W + 𝑌 (1)
𝑀

+ · · · + 𝑌 (𝑀 )
1

= max

1≤ 𝑗≤𝑀

{
𝑇

𝑗

𝑀
+ 𝑆 𝑗∨2

𝑀−1
∨ 𝑆 ( 𝑗+1)∧𝑀

𝑀−1

}
.

This follows from the expression of W from (32)

To further familiarize with notation, note that the superscript pairs ( 𝑗 ∨ 2, ( 𝑗 + 1) ∧ 𝑀) for
𝑗 = 1, . . . , 𝑀 span the pairs {(2, 2), (2, 3), (3, 4), . . . , (𝑀 − 1, 𝑀), (𝑀,𝑀)}. In the case when𝑀 = 2

S = max{𝑇 1

2
+ 𝑆2

1
∨ 𝑆2

1
,𝑇 2

2
+ 𝑆2

1
∨ 𝑆2

1
} ,

which recovers the expression of S from (5) since 𝑆2

1
= 𝑌

(2)
1

and 𝑌
(2)

1
= 𝑍1 in the notation from the

𝑀 = 2 case. In turn, in the case when𝑀 = 3, we would have

S = max{𝑇 1

3
+ 𝑆2

2
∨ 𝑆2

2
,𝑇 2

3
+ 𝑆2

2
∨ 𝑆3

2
,𝑇 3

3
+ 𝑆3

2
∨ 𝑆3

2
} ,

where 𝑆2

2
= 𝑌

(3)
1

+ 𝑌 (2)
2

and 𝑆3

2
= 𝑌

(3)
1

.
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B.2 Proofs
Proof. (of Theorem 5) For (a) we can write for all (𝑣1, . . . , 𝑣𝑀 ) ∈ D𝑀

𝜓 (𝑣1, . . . , 𝑣𝑀 ) = P(𝑇 1

1
≤ 𝑣1, . . . ,𝑇

𝑀
1

≤ 𝑣𝑀 )

= P

(
𝑌

(1)
1

≤ 𝑣1, 𝑌
(1)

1
− 𝑋2 +𝑇 1

2
≤ 𝑣1, 𝑌

(2)
1

− 𝑋2 +𝑇 1

2
∨𝑇 2

2
≤ 𝑣2, . . . ,

𝑌
(𝑀 )

1
− 𝑋2 +𝑇𝑀−1

2
∨𝑇𝑀

2
≤ 𝑣𝑀

)
= P

(
𝑌

(1)
1

≤ 𝑣1,𝑇
1

2
≤

∧
1≤𝑖≤2

(
𝑣𝑖 + 𝑋2 − 𝑌 (𝑖 )

1

)
, . . . ,

𝑇𝑀−1

2
≤

∧
𝑀−1≤𝑖≤𝑀

(
𝑣𝑖 + 𝑋2 − 𝑌 (𝑖 )

1

)
,𝑇𝑀

2
≤ 𝑣𝑀 + 𝑋2 − 𝑌 (𝑀 )

1

)
= E

[
1l{𝑣1≥𝑌 (1) }𝜓

( ∧
1≤𝑖≤2

(
𝑣𝑖 −𝑉 (𝑖 )

)
, . . . ,

∧
𝑀−1≤𝑖≤𝑀

(
𝑣𝑖 −𝑉 (𝑖 )

)
, 𝑣𝑀 −𝑉 (𝑀 )

)]
= E

[
1l{𝑣1≥𝑌 (1) }𝜓 (V(𝑣1, . . . , 𝑣𝑀 ))

]
.

To show the uniqueness of𝜓 we first prove (b) and (c) and denote

𝜙1 := 𝛾 −𝜓, 𝜙2 := 𝜓 − 𝜂

and

𝑓𝑖 (𝑣1, . . . , 𝑣𝑀 ) := lim sup

(𝑢1,...,𝑢𝑀 )→(𝑣1,...,𝑣𝑀 )
𝜙𝑖 (𝑢1, . . . , 𝑢𝑀 ) ,

which are upper semi-continuous and attain their maximums on the compact setD𝑀 (see Appendix

C)

𝐾𝑖 := max

(𝑣1,...,𝑣𝑀 ) ∈D𝑀

𝑓𝑖 (𝑣1, . . . , 𝑣𝑀 ), 𝑖 = 1, 2 .

Since 𝑓𝑖 (∞, . . . ,∞) = 0 it follows that 𝐾𝑖 ≥ 0. If 𝐾𝑖 = 0 the proof is complete; assume otherwise

that 𝐾𝑖 > 0. Let

K𝑖 := {(𝑣1, . . . , 𝑣𝑀 ) ∈ D𝑀 : 𝑓𝑖 (𝑣1, . . . , 𝑣𝑀 ) = 𝐾𝑖 }

and define for 𝑖 = 1, 2 and 𝑗 = 2, . . . , 𝑀

𝑎
(𝑖 )
1

:= min{𝑣1 ∈ ¯R : ∃(𝑣2, . . . , 𝑣𝑀 ) ∈ ¯R𝑀−1
: (𝑣1, . . . , 𝑣𝑀 ) ∈ K𝑖 }

𝑎
(𝑖 )
𝑗

:= min{𝑣 𝑗 ∈ ¯R : ∃(𝑣 𝑗+1, . . . , 𝑣𝑀 ) ∈ ¯R𝑀− 𝑗 , (𝑎 (𝑖 )
1
, . . . , 𝑎

(𝑖 )
𝑗−1
, 𝑣 𝑗 , . . . , 𝑣𝑀 ) ∈ K𝑖 } ,

which are well-defined since 𝑓𝑖 is upper semi-continuous; also,

(𝑎 (1)
1
, . . . , 𝑎

(1)
𝑀

) ∈ K1 ⊆ supp (𝛾 ∨ 0), (𝑎 (2)
1
, . . . , 𝑎

(2)
𝑀

) ∈ K2 ⊆ supp (𝜓 ).
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We can now write

𝐾𝑖 = 𝑓𝑖 (𝑎 (𝑖 )
1
, . . . , 𝑎

(𝑖 )
𝑀
)

= lim sup

(𝑣1,...,𝑣𝑀 )→(𝑎 (𝑖 )
1

,...,𝑎
(𝑖 )
𝑀

)
𝜙𝑖 (𝑣1, . . . , 𝑣𝑀 )

≤ lim sup

(𝑣1,...,𝑣𝑀 )→(𝑎 (𝑖 )
1

,...,𝑎
(𝑖 )
𝑀

)
E

[
1l{𝑣1≥𝑌 (1) }𝜙𝑖 (V(𝑣1, . . . , 𝑣𝑀 ))

]
≤ E

 lim sup

(𝑣1,...,𝑣𝑀 )→(𝑎 (𝑖 )
1

,...,𝑎
(𝑖 )
𝑀

)
1l{𝑣1≥𝑌 (1) }𝜙𝑖 (V(𝑣1, . . . , 𝑣𝑀 ))


≤ E

 lim sup

(𝑣1,...,𝑣𝑀 )→(𝑎 (𝑖 )
1

,...,𝑎
(𝑖 )
𝑀

)
1l{𝑣1≥𝑌 (1) } (𝜙𝑖 (V(𝑣1, . . . , 𝑣𝑀 )) ∨ 0)


≤ E

[
1l{𝑎 (𝑖 )

1
≥𝑌 (1) }

(
𝑓𝑖

(
V

(
𝑎
(𝑖 )
1
, . . . , 𝑎

(𝑖 )
𝑀

))
∨ 0

)]
≤ 𝐾𝑖 · P(𝑎 (𝑖 )

1
≥ 𝑌 (1) )

Hence P(𝑎 (𝑖 )
1

≥ 𝑌 (1) ) = 1 and

𝑓𝑖

(
V

(
𝑎
(𝑖 )
1
, . . . , 𝑎

(𝑖 )
𝑀

))
= 𝑓𝑖

( ∧
1≤ 𝑗≤2

(
𝑎
(𝑖 )
𝑗

−𝑉 ( 𝑗 )
)
, . . . ,

∧
𝑀−1≤ 𝑗≤𝑀

(
𝑎
(𝑖 )
𝑗

−𝑉 ( 𝑗 )
)
, 𝑎

(𝑖 )
𝑀

−𝑉 (𝑀 )

)
= 𝐾𝑖 a.s.

(33)

We now prove by contradiction that (𝑎 (𝑖 )
1
, . . . , 𝑎

(𝑖 )
𝑀
) = (∞, . . . ,∞). Letting

𝑗0 := min{ 𝑗 ∈ {1, 2, . . . ,𝑚}, 𝑎 (𝑖 )
𝑗

< ∞}

it then follows from (33) and the choice of 𝑎
(𝑖 )
𝑗0

that P(𝑉 ( 𝑗0 ) > 0) = 0, thus contradicting the

assumption that P(𝑉 ( 𝑗0 ) > 0) > 0. Therefore

𝐾𝑖 = 𝑓𝑖 (∞, . . . ,∞) = 0 ,

which contradicts with the assumption that 𝐾𝑖 > 0, and hence𝜓 ≤ 𝛾 and 𝜂 ≤ 𝜓 .
We can now prove the uniqueness of𝜓 solving for (25). Let𝜓1 and𝜓2 be two bounded solutions

satisfying

𝜓𝑖 (∞, . . . ,∞) = lim

𝑣1,...,𝑣𝑀→∞
𝜓𝑖 (𝑣1, . . . , 𝑣𝑀 ) = 1 .

Applying the second part of the theorem with𝜓 = 𝜓𝑖 and 𝛾 = 𝜓3−𝑖 (note that the proof only needs

that𝜓 satisfies (25), is bounded, and𝜓 (∞, . . . ,∞) = lim𝑣1,...,𝑣𝑀→∞𝜓 (𝑣1, . . . , 𝑣𝑀 ) = 1) we obtain that

𝜓𝑖 ≥ 𝜓3−𝑖

for 𝑖 = 1, 2, and hence𝜓1 = 𝜓2. For more details about various steps in the proof see the proof for

𝑀 = 2 from Appendix § 2.4. □
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Proof. (of Corollary 6) We have for 𝑥 ≥ 0

P(W > 𝑥) = 1 − P
(

max

1≤ 𝑗≤𝑀
{𝑇 𝑗

𝑀+1
+ 𝑆 𝑗

𝑀
∨ 𝑆 ( 𝑗+1)∧𝑀

𝑀
} ≤ 𝑥 + 𝑋𝑀+1 + 𝑆1

𝑀

)
= 1 − P

(
∀1 ≤ 𝑗 ≤ 𝑀,𝑇

𝑗

𝑀+1
≤ 𝑥 + 𝑋𝑀+1 + 𝑆1

𝑀 − 𝑆 𝑗
𝑀
∨ 𝑆 ( 𝑗+1)∧𝑀

𝑀

)
= 1 − E

[
1l{𝑥+𝑋+𝑆1

𝑀
≥𝑆2

𝑀 }𝜓
(
𝑥 + 𝑋 + 𝑆1

𝑀 − 𝑆1

𝑀 ∨ 𝑆2

𝑀 , . . . , 𝑥 + 𝑋 + 𝑆1

𝑀 − 𝑆𝑀𝑀
) ]
,

from the stationarity of 𝑇
𝑗

𝑘
for all 𝑘 ∈ N. Since(

𝑥 + 𝑋 + 𝑆1

𝑀 − 𝑆1

𝑀 ∨ 𝑆2

𝑀 , . . . , 𝑥 + 𝑋 + 𝑆1

𝑀 − 𝑆𝑀𝑀
)
∈ D𝑀

and 𝜂 ≤ 𝜓 ≤ 𝛾 on D𝑀 , the upper and lower bounds on P(W > 𝑥) follow immediately. In turn, in

the case of the sojourn time, we have for 𝑥 ≥ 0

P(S > 𝑥) = 1 − P
(

max

1≤ 𝑗≤𝑀
{𝑇 𝑗

𝑀
+ 𝑆 𝑗∨2

𝑀−1
∨ 𝑆 ( 𝑗+1)∧𝑀

𝑀−1
} ≤ 𝑥

)
= 1 − P

(
∀1 ≤ 𝑗 ≤ 𝑀,𝑇

𝑗

𝑀
≤ 𝑥 − 𝑆 𝑗∨2

𝑀−1
∨ 𝑆 ( 𝑗+1)∧𝑀

𝑀−1
, 𝑥 ≥ 𝑆2

𝑀−1

)
= 1 − E

[
1l{𝑥≥𝑆2

𝑀−1
}𝜓

(
𝑥 − 𝑆2

𝑀−1
, 𝑥 − 𝑆2

𝑀−1
∨ 𝑆3

𝑀−1
, . . . , 𝑥 − 𝑆𝑀𝑀−1

)]
.

Since (
𝑥 − 𝑆2

𝑀−1
, 𝑥 − 𝑆2

𝑀−1
∨ 𝑆3

𝑀−1
, . . . , 𝑥 − 𝑆𝑀𝑀−1

)
∈ D𝑀

and 𝜂 ≤ 𝜓 ≤ 𝛾 on D𝑀 , the upper and lower bounds on P(S > 𝑥) follow immediately. □

Proof. (of Corollary 7) We proceed in two steps.

Step 1: First we prove by induction on 𝑖 ≥ 1 that there exist the polynomials 𝑄𝑖 : R→ R, 𝑖 ∈
{1, 2, . . . , 𝑀} with degrees at most 𝑑𝑖 (𝜃𝑖 ), respectively, having non-negative values on [0,∞), such
that for all 𝑣 ≥ 0

𝑄1𝑒
−𝜃1𝑣 ≥ E

[
1l{𝑣≥𝑌 (1) }𝑄1𝑒

𝜃1 (𝑉 (1)−𝑣)
]
+ P(𝑣 < 𝑌 (1) ) (34)

and for all 2 ≤ 𝑖 ≤ 𝑀 and 𝑣 ≥ 0

𝑄𝑖 (𝑣)𝑒−𝜃𝑖 𝑣 ≥ E
[
1l{𝑣≥𝑉 (𝑖 ) }

𝑖∑︁
𝑙=𝑖−1

𝑄𝑙

(
𝑣 −𝑉 (𝑖 )

)
𝑒𝜃𝑙 (𝑉

(𝑖 )−𝑣)

]
+ P(𝑣 < 𝑉 (𝑖 ) ) . (35)

Proof of Step 1: The case 𝑖 = 1 follows immediately by letting

𝑄1 :=

(
inf

𝑣≥0

E
[
𝑒𝜃1 (𝑉 (1)−𝑣) | 𝑌 (1) > 𝑣

] )−1

.

For some 𝑘 ≥ 2 we next assume the existence of the polynomials𝑄𝑖 for 𝑖 ≤ 𝑘 − 1. We need to prove

that there exists 𝑄𝑘 (𝑣) :=
∑𝑑𝑘 (𝜃𝑘 )

𝑗=0
𝐴 𝑗𝑣

𝑗
such that (35) holds for 𝑖 = 𝑘 . It is thus sufficient to show

that there exists the non-negative constants 𝐴𝑑𝑘 (𝜃𝑘 ) , . . . , 𝐴0 such that

𝑑𝑘 (𝜃𝑘 )∑︁
𝑗=0

𝐴 𝑗

{
𝑣 𝑗𝑒−𝜃𝑘 𝑣 − E

[
1l{𝑣≥𝑉 (𝑘 ) }

(
𝑣 −𝑉 (𝑘 )

) 𝑗
𝑒𝜃𝑘 (𝑉

(𝑘 )−𝑣)
]}

≥ E
[
1l{𝑣≥𝑉 (𝑘 ) }𝑄𝑘−1

(
𝑣 −𝑉 (𝑘 )

)
𝑒𝜃𝑘−1 (𝑉 (𝑘 )−𝑣)

]
+ P(𝑣 < 𝑉 (𝑘 ) ) .

(36)
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Next we bound both sides and then show the existence of the 𝐴 𝑗 ’s for the tighter inequality. An

upper bound on the first term from the right side is

E
[
1l{𝑣≥𝑉 (𝑘 ) }𝑄𝑘−1

(
𝑣 −𝑉 (𝑘 )

)
𝑒𝜃𝑘−1 (𝑉 (𝑘 )−𝑣)

]
≤ E

[
1l{𝑣≥𝑉 (𝑘 ) }

{
𝐶1l{𝜃𝑘−1>𝜃𝑘 } + 1l{𝜃𝑘−1=𝜃𝑘 }𝑄𝑘−1

(
𝑣 −𝑉 (𝑘 )

)}
𝑒𝜃𝑘 (𝑉

(𝑘 )−𝑣)
]

= E
[{
𝐶1l{𝜃𝑘−1>𝜃𝑘 } + 1l{𝜃𝑘−1=𝜃𝑘 }𝑄𝑘−1

(
𝑣 −𝑉 (𝑘 )

)}
𝑒𝜃𝑘 (𝑉

(𝑘 )−𝑣)
]

− E
[{
𝐶1l{𝜃𝑘−1>𝜃𝑘 } + 1l{𝜃𝑘−1=𝜃𝑘 }𝑄𝑘−1

(
𝑣 −𝑉 (𝑘 )

)}
𝑒𝜃𝑘 (𝑉

(𝑘 )−𝑣) | 𝑉 (𝑘 ) > 𝑣
]

× P(𝑉 (𝑘 ) > 𝑣)
≤

{
𝐶1l{𝜃𝑘−1>𝜃𝑘 } + 1l{𝜃𝑘−1=𝜃𝑘 }𝑅𝑑𝑘−1 (𝜃𝑘−1 ) (𝑣)

}
𝑒−𝜃𝑘 𝑣

− inf

𝑣≥0

E
[{
𝐶1l{𝜃𝑘−1>𝜃𝑘 } + 1l{𝜃𝑘−1=𝜃𝑘 }𝑄𝑘−1

(
𝑣 −𝑉 (𝑘 )

)}
𝑒𝜃𝑘 (𝑉

(𝑘 )−𝑣) | 𝑉 (𝑘 ) > 𝑣
]

× P(𝑉 (𝑘 ) > 𝑣)

≤
{
𝐶1l{𝜃𝑘−1>𝜃𝑘 } + 1l{𝜃𝑘−1=𝜃𝑘 }𝑅𝑑𝑘−1 (𝜃𝑘−1 ) (𝑣)

}
𝑒−𝜃𝑘 𝑣

+
(
𝐶1l{𝜃𝑘−1>𝜃𝑘 } +𝐶1l{𝜃𝑘−1=𝜃𝑘 }

⌊ (𝑑𝑘−1 (𝜃𝑘−1 )−1)/2⌋∨0∑︁
𝑙=0

𝐾2𝑙+1

𝑘

)
P(𝑉 (𝑘 ) > 𝑣)

≤
{
𝐶1l{𝜃𝑘−1>𝜃𝑘 } + 1l{𝜃𝑘−1=𝜃𝑘 }𝑅𝑑𝑘−1 (𝜃𝑘−1 ) (𝑣)

}
𝑒−𝜃𝑘 𝑣 +𝐶P(𝑉 (𝑘 ) > 𝑣) ,

where 𝑅𝑑𝑘−1 (𝜃𝑘−1 ) is a polynomial of degree at most 𝑑𝑘−1 (𝜃𝑘−1) and 𝐶 is some positive constant. In

the last inequality we used the induction hypothesis on 𝑄𝑘−1 and only bounded the odd powers of

(𝑣 −𝑉 (𝑘 ) ) using the assumption on the conditional expectations; the other terms are positive.

Next we lower bound the terms in brackets from the left side of (36). For 𝑗 ≥ 1

𝑣 𝑗𝑒−𝜃𝑘 𝑣 − E
[
1l{𝑣≥𝑉 (𝑘 ) }

(
𝑣 −𝑉 (𝑘 )

) 𝑗
𝑒𝜃𝑘 (𝑉

(𝑘 )−𝑣)
]

= 𝑣 𝑗𝑒−𝜃𝑘 𝑣 − E
[(
𝑣 −𝑉 (𝑘 )

) 𝑗
𝑒𝜃𝑘 (𝑉

(𝑘 )−𝑣)
]
+ E

[
1l{𝑉 (𝑘 )>𝑣}

(
𝑣 −𝑉 (𝑘 )

) 𝑗
𝑒𝜃𝑘 (𝑉

(𝑘 )−𝑣)
]

≥
(
1 − E

[
𝑒𝜃𝑘𝑉

(𝑘 )
] )
𝑣 𝑗𝑒−𝜃𝑘 𝑣 + 𝑗E

[
𝑉 (𝑘 )𝑒𝜃𝑘𝑉

(𝑘 )
]
𝑣 𝑗−1𝑒−𝜃𝑘 𝑣 + 𝑅̃ 𝑗−2 (𝑣)𝑒−𝜃𝑘 𝑣

+ inf

𝑣≥0

E

[(
𝑣 −𝑉 (𝑘 )

) 𝑗
𝑒𝜃𝑘 (𝑉

(𝑘 )−𝑣) | 𝑉 (𝑘 ) > 𝑣

]
P(𝑉 (𝑘 ) > 𝑣)

≥
(
1 − E

[
𝑒𝜃𝑘𝑉

(𝑘 )
] )
𝑣 𝑗𝑒−𝜃𝑘 𝑣 + 𝑗E

[
𝑉 (𝑘 )𝑒𝜃𝑘𝑉

(𝑘 )
]
𝑣 𝑗−1𝑒−𝜃𝑘 𝑣

+ 𝑅̃ 𝑗−2 (𝑣)𝑒−𝜃𝑘 𝑣 − 𝐾 𝑗

𝑘
1l{ 𝑗∈2Z+1}P(𝑉 (𝑘 ) > 𝑣) ,

where 𝑅̃ 𝑗−2 is a polynomial of degree at most 𝑗 − 2; in the last inequality we only bounded the

conditional expectation with 𝐾
𝑗

𝑘
when 𝑗 is odd, by accounting for the underlying sign. Also, for

𝑗 = 0,

𝑒−𝜃𝑘 𝑣 − E
[
1l{𝑣≥𝑉 (𝑘 ) }𝑒

𝜃𝑘 (𝑉 (𝑘 )−𝑣)
]

≥
(
1 − E

[
𝑒𝜃𝑘𝑉

(𝑘 )
] )
𝑒−𝜃𝑘 𝑣 + inf

𝑣≥0

E
[
𝑒𝜃𝑘 (𝑉

(𝑘 )−𝑣) | 𝑉 (𝑘 ) > 𝑣
]
P(𝑉 (𝑘 ) > 𝑣)

≥
(
1 − E

[
𝑒𝜃𝑘𝑉

(𝑘 )
] )
𝑒−𝜃𝑘 𝑣 + P(𝑉 (𝑘 ) > 𝑣) .
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It is thus sufficient to find the coefficients 𝐴 𝑗 ’s satisfying the tighter inequality:

𝐴0

{(
1 − E

[
𝑒𝜃𝑘𝑉

(𝑘 )
] )
𝑒−𝜃𝑘 𝑣 + P(𝑉 (𝑘 ) > 𝑣)

}
+

𝑑𝑘 (𝜃𝑘 )∑︁
𝑗=1

𝐴 𝑗

{ (
1 − E

[
𝑒𝜃𝑘𝑉

(𝑘 )
] )
𝑣 𝑗𝑒−𝜃𝑘 𝑣 + 𝑗E

[
𝑉 (𝑘 )𝑒𝜃𝑘𝑉

(𝑘 )
]
𝑣 𝑗−1𝑒−𝜃𝑘 𝑣

+ 𝑅̃ 𝑗−2 (𝑣)𝑒−𝜃𝑘 𝑣 − 𝐾 𝑗

𝑘
1l{ 𝑗∈2Z+1}P(𝑉 (𝑘 ) > 𝑣)

}
≥

{
𝐶1l{𝜃𝑘−1>𝜃𝑘 } + 1l{𝜃𝑘−1=𝜃𝑘 }𝑅𝑑𝑘−1 (𝜃𝑘−1 ) (𝑣)

}
𝑒−𝜃𝑘 𝑣 + (𝐶 + 1)P(𝑉 (𝑘 ) > 𝑣) .

(37)

There are two main cases:

If 𝜃𝑘 < 𝜃𝑘−1 (Case 1), i.e., node 𝑘 is the first bottleneck in the sequence (1, 2, . . . , 𝑘), then
𝑑𝑘 (𝜃𝑘 ) = 𝐼𝑘 (𝜃𝑘 ) ∈ {0, 1}; in this case, 𝐼𝑘 (𝜃𝑘 ) = 0 happens when E[𝑒𝜃 (𝑌 (𝑘 )−𝑋 ) ] < 1 ∀𝜃 > 0. If

E[𝑒𝜃𝑘𝑉 (𝑘 ) ] < 1 (Case 1.1) then we first choose 𝐴1 = 0. It is easy to see that 𝐴0 > 0 sufficiently large

is sufficient to satisfy (37). If E[𝑒𝜃𝑘𝑉 (𝑘 ) ] = 1 (Case 1.2) then 𝑑𝑘 (𝜃𝑘 ) = 1 and the existence of 𝐴0 and

𝐴1 is obvious.

In the other main case, i.e., 𝜃𝑘 = 𝜃𝑘−1 (Case 2), the terms containing P(𝑉 (𝑘 ) > 𝑣) are properly
bounded by choosing a sufficiently large 𝐴0 > 0. If E[𝑒𝜃𝑘𝑉 (𝑘 ) ] < 1 (Case 2.1) then the coefficient of

𝐴 𝑗 is a polynomial of degree 𝑗 with positive dominant coefficient, and since the right side of (37)

has degree 𝑑𝑘−1 (𝜃𝑘−1) = 𝑑𝑘 (𝜃𝑘 ) (because E[𝑒𝜃𝑘𝑉
(𝑘 ) ] < 1 ⇒ 𝐼𝑘 (𝜃𝑘 ) = 0) there exist non-negative

𝐴𝑑𝑘 (𝜃𝑘 ) , . . . , 𝐴0 satisfying (37). Similarly, if E[𝑒𝜃𝑘𝑉 (𝑘 ) ] = 1, the coefficient of 𝐴 𝑗 is a polynomial

of degree 𝑗 − 1 with positive dominant coefficient and since the right side of (37) has degree

𝑑𝑘−1 (𝜃𝑘−1) = 𝑑𝑘 (𝜃𝑘 ) − 1 (because E[𝑒𝜃𝑘𝑉 (𝑘 ) ] = 1 ⇒ 𝐼𝑘 (𝜃𝑘 ) = 1) it follows that there exist non-

negative 𝐴𝑑𝑘 (𝜃𝑘 ) , . . . , 𝐴0 satisfying (37). Step 1 is thus complete.

Step 2: Let the 𝑄 𝑗 ’s from Step 1 and define

𝛾 (𝑣1, . . . , 𝑣𝑀 ) := 1l{ (𝑣1,...,𝑣𝑀 ) ∈ [0,∞]𝑀 }

[
1 −

𝑀∑︁
𝑗=1

𝑄 𝑗 (𝑣 𝑗 )𝑒−𝜃 𝑗 𝑣𝑗

]
.

Then 𝛾 satisfies (26) for all (𝑣1, . . . , 𝑣𝑀 ) ∈ supp (𝛾 ∨ 0).

Proof of Step 2: We prove by induction on𝑚 = 1, . . . , 𝑀 that the marginal functions 𝛾𝑚 of 𝛾 (i.e.,

restricted to the first𝑚 components), defined by

𝛾𝑚 (𝑣1, . . . , 𝑣𝑚) := 1l{ (𝑣1,...,𝑣𝑚 ) ∈ [0,∞]𝑚 }

[
1 −

𝑚∑︁
𝑗=1

𝑄 𝑗 (𝑣 𝑗 )𝑒−𝜃 𝑗 𝑣𝑗

]
satisfy (26) for all (𝑣1, . . . , 𝑣𝑚) ∈ supp (𝛾𝑚 ∨ 0)6. For𝑚 = 1,

𝛾1 (𝑣1) := (1 −𝑄1𝑒
−𝜃1𝑣1 )1l{𝑣1≥0}

satisfies for all 𝑣1 ≥ 0

E
[
1l{𝑣1≥𝑌 (1) }𝛾1 (𝑣1 −𝑉 (1) )

]
= E

[
1l{𝑣1≥𝑌 (1) }

(
1 −𝑄1𝑒

−𝜃1𝑣1+𝜃1𝑉
(1)

)]
≥ 1 −𝑄1𝑒

−𝜃1𝑣1 = 𝛾1 (𝑣1) ,
according to the construction from (34).

6
With abuse of notation, in Step 2, when referring for some𝑚 to (26) or other expressions in𝑀 , we mean the corresponding

restrictions as if𝑀 =𝑚.
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For the induction step we assume that the statement holds for ‘𝑚 − 1’ and we need to prove it

for ‘𝑚’. Because 𝑄 𝑗 ’s satisfy Step 1 for 𝑗 = 1, . . . ,𝑚 − 1 and the random variables 𝑉 (1) , . . . ,𝑉 (𝑚−1)
,

we have that

𝛾𝑚−1 (𝑣1, . . . , 𝑣𝑚−1) := 1l{ (𝑣1,...,𝑣𝑚−1 ) ∈ [0,∞]𝑚−1 }

[
1 −

𝑚−1∑︁
𝑗=1

𝑄 𝑗 (𝑣 𝑗 )𝑒−𝜃 𝑗 𝑣𝑗

]

satisfies (26) for all (𝑣1, . . . , 𝑣𝑚−1) ∈ supp (𝛾𝑚−1 ∨ 0). Noting that

supp (𝛾𝑚 ∨ 0) := {(𝑣1, . . . , 𝑣𝑚) ∈ [0,∞]𝑚 : 1 >

𝑚∑︁
𝑗=1

𝑄 𝑗 (𝑣 𝑗 )𝑒−𝜃 𝑗 𝑣𝑗 }

it follows that if (𝑣1, . . . , 𝑣𝑚) ∈ supp (𝛾𝑚 ∨ 0) then (𝑣1, . . . , 𝑣𝑚−1) ∈ supp (𝛾𝑚−1 ∨ 0). For all
(𝑣1, . . . , 𝑣𝑚) ∈ supp (𝛾𝑚 ∨ 0),

E

[
1l{𝑣1≥𝑌 (1) }𝛾𝑚

( ∧
1≤𝑖≤2

(
𝑣𝑖 −𝑉 (𝑖 )

)
, . . . ,

∧
𝑚−1≤𝑖≤𝑚

(
𝑣𝑖 −𝑉 (𝑖 )

)
, 𝑣𝑚 −𝑉 (𝑚)

)]
= E

[
1l{𝑣1≥𝑌 (1) ,∀2≤𝑖≤𝑚:𝑣𝑖≥𝑉 (𝑖 ) }{
1 −

𝑚−1∑︁
𝑗=1

𝑄 𝑗

( ∧
𝑗≤𝑖≤ 𝑗+1

(
𝑣𝑖 −𝑉 (𝑖 )

) )
𝑒−𝜃 𝑗 (∧𝑗≤𝑖≤ 𝑗+1 (𝑣𝑖−𝑉 (𝑖 ) ))

−𝑄𝑚

(
𝑣𝑚 −𝑉 (𝑚)

)
𝑒−𝜃𝑚 (𝑣𝑚−𝑉 (𝑚) )

}]

Since 𝑄𝑚−1 (𝑥) ≥ 0 ∀𝑥 ≥ 0, by construction, we can continue

≥ E
[
1l{𝑣1≥𝑌 (1) ,∀2≤𝑖≤𝑚:𝑣𝑖≥𝑉 (𝑖 ) }{
1 −

𝑚−1∑︁
𝑗=1

𝑄 𝑗

( ∧
𝑗≤𝑖≤( 𝑗+1)∧(𝑚−1)

(
𝑣𝑖 −𝑉 (𝑖 )

) )
𝑒−𝜃 𝑗 (∧𝑗≤𝑖≤( 𝑗+1)∧(𝑚−1) (𝑣𝑖−𝑉 (𝑖 ) ))

−
𝑚∑︁

𝑗=𝑚−1

𝑄 𝑗

(
𝑣𝑚 −𝑉 (𝑚)

)
𝑒−𝜃 𝑗 (𝑣𝑚−𝑉 (𝑚) )

}]
= E

[
1l{𝑣1≥𝑌 (1) ,𝑣𝑚<𝑉 (𝑚) ,∀2≤𝑖≤𝑚−1,𝑣𝑖≥𝑉 (𝑖 ) }{
− 1 +

𝑚−1∑︁
𝑗=1

𝑄 𝑗

( ∧
𝑗≤𝑖≤( 𝑗+1)∧(𝑚−1)

(
𝑣𝑖 −𝑉 (𝑖 )

) )
𝑒−𝜃 𝑗 (∧𝑗≤𝑖≤( 𝑗+1)∧(𝑚−1) (𝑣𝑖−𝑉 (𝑖 ) ))

}]
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+ E
[
1l{𝑣1≥𝑌 (1) ,∀2≤𝑖≤𝑚−1,𝑣𝑖≥𝑉 (𝑖 ) }{

1 −
𝑚−1∑︁
𝑗=1

𝑄 𝑗

( ∧
𝑗≤𝑖≤( 𝑗+1)∧(𝑚−1)

(
𝑣𝑖 −𝑉 (𝑖 )

) )
𝑒−𝜃 𝑗 (∧𝑗≤𝑖≤( 𝑗+1)∧(𝑚−1) (𝑣𝑖−𝑉 (𝑖 ) ))

}]
− E

[
1l{𝑣𝑚≥𝑉 (𝑚) }

𝑚∑︁
𝑗=𝑚−1

𝑄 𝑗

(
𝑣𝑚 −𝑉 (𝑚)

)
𝑒−𝜃 𝑗 (𝑣𝑚−𝑉 (𝑚) )

]
Using the positivity of the𝑄 𝑗 ’s for the first expectation and the induction hypothesis for the second

we can continue

≥ −P
(
𝑣𝑚 < 𝑉 (𝑚)

)
+

(
1 −

𝑚−1∑︁
𝑗=1

𝑄 𝑗 (𝑣 𝑗 )𝑒−𝜃 𝑗 𝑣𝑗

)
− E

[
1l{𝑣𝑚≥𝑉 (𝑚) }

𝑚∑︁
𝑗=𝑚−1

𝑄 𝑗

(
𝑣𝑚 −𝑉 (𝑚)

)
𝑒−𝜃 𝑗 (𝑣𝑚−𝑉 (𝑚) )

]

≥ 1 −
𝑚∑︁
𝑗=1

𝑄 𝑗 (𝑣 𝑗 )𝑒−𝜃 𝑗 𝑣𝑗 = 𝛾𝑚 (𝑣1, . . . , 𝑣𝑚) .

In the last inequality we applied Step 1 on the event 𝑣𝑚 ≥ 𝑉 (𝑚)
.

Finally, the remaining conditions from part (b) of Theorem 5, i.e., 𝛾 is bounded and 𝛾 (∞, . . . ,∞) =
1 hold trivially. □

C Semi-Continuous Functions
In our proofs we need two results from analysis. Let D be a compact subset of

¯R𝑀 , 𝜙 : D → ¯R be

an arbitrary function, and define 𝑓 : D → ¯R

𝑓 (𝑥) := lim sup

𝑦→𝑥

𝜙 (𝑦) ∀𝑥 ∈ D .

1. The first result is that 𝑓 is an upper semi-continuous function, i.e., for every convergent

sequence 𝑥𝑛 → 𝑥 in D,

𝑓 (𝑥) ≥ lim sup

𝑥𝑛→𝑥

𝑓 (𝑥𝑛) .

Indeed, from the definition of 𝑓 (𝑥𝑛), there exists 𝑦𝑛 ∈ D such that |𝑦𝑛 − 𝑥𝑛 | < 𝑛−1
and 𝜙 (𝑦𝑛) ≥

𝑓 (𝑥𝑛) −𝑛−1
. Since 𝑥𝑛 → 𝑥 , we get |𝑦𝑛 −𝑥 | ≤ |𝑦𝑛 −𝑥𝑛 | + |𝑥𝑛 −𝑥 | → 0 as 𝑛 → ∞, and hence 𝑦𝑛 → 𝑥

as well. From 𝜙 (𝑦𝑛) ≥ 𝑓 (𝑥𝑛) − 𝑛−1
it then follows that

𝑓 (𝑥) = lim sup

𝑦→𝑥

𝜙 (𝑦) ≥ lim sup

𝑛→∞
𝜙 (𝑦𝑛) ≥ lim sup

𝑛→∞
𝑓 (𝑥𝑛) ,

thus proving that 𝑓 is upper semi-continuous.

2. The second result is that any upper semi-continuous function on compact domain attains its

maximum, according to Weierstrass Maximum Theorem (Borden [6], p. 40). In particular, 𝑓 attains

its maximum, i.e., if 𝐾 := sup𝑥∈D 𝑓 (𝑥) then

K := {𝑥 ∈ D : 𝑓 (𝑥) = 𝐾}
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is non-empty and closed. Furthermore,

𝑎1 := inf{𝑥1 ∈ ¯R : ∃(𝑥2, . . . , 𝑥𝑀 ) ∈ ¯R𝑀−1
: (𝑥1, . . . , 𝑥𝑀 ) ∈ K}

𝑎 𝑗 := inf{𝑥 𝑗 ∈ ¯R : ∃(𝑥 𝑗 , . . . , 𝑥𝑀 ) ∈ ¯R𝑀− 𝑗+1
: (𝑎1, . . . , 𝑎 𝑗−1, 𝑥 𝑗 , . . . , 𝑥𝑀 ) ∈ K}

are well defined and 𝑎 := (𝑎1, . . . , 𝑎𝑀 ) ∈ K . Moreover, if 𝐾 > 0, then there exists a sequence 𝑥𝑛 → 𝑎

such that 𝜙 (𝑥𝑛) > 0 and 𝑥𝑛 ∈ supp (𝜙 ∨ 0).
Note the standard notation for a function’s support, i.e.,

supp (𝜙) := {𝑥 ∈ D : 𝜙 (𝑥) ≠ 0} and supp (𝜙 ∨ 0) := {𝑥 ∈ D : 𝜙 (𝑥) > 0} .

D Light-Tailed Distributions
Let a random variable 𝑌 with density 𝑓𝑌 (𝑦) = 𝛼1l𝑦≥0𝑒

−𝜇𝑦/(1 + 𝑦2), for 𝜇 > 0 and a suitable value

of 𝛼 . Let also a random variable 𝑋 independent of 𝑌 and satisfying 𝑋 > E[𝑌 ] ∨ (ln(𝛼𝜋/2)/𝜇) a.s.
Then

𝜃+ := sup{𝜃 ∈ R : E[𝑒𝜃 (𝑌−𝑋 ) ] < ∞} = 𝜇
and

E[𝑒𝜃+ (𝑌−𝑋 ) ] = E[𝑒𝜇 (𝑌−𝑋 ) ] = 𝛼E[𝑒−𝜇𝑋 ]
∫ ∞

0

1

1 + 𝑥2
𝑑𝑥 = 𝛼𝜋E[𝑒−𝜇𝑋 ]/2 < 1 .

We note that the distribution of 𝑌 belongs to the class of Type-II distributions (see Abate and

Whitt [1]).
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