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Abstract— Traffic regulation is a key component in pro-
viding quality-of-service guarantees in high performance
networks. In this paper, we propose a novel traffic regula-
tor called ”Partially Stopped Leaky Bucket” (PSLB) that
can accurately capture a general class of traffic patterns,
yet has a constant time implementation. PSLB is based
on the well-known leaky bucket regulator, but is able to
capture the important property of decreasing traffic rate
over sufficiently large intervals. We derive a number of key
properties of the PSLB and compare its performance to
the general D-BIND model, which has a polynomial time
implementation. We show that the PSLB model retains
the important properties of the D-BIND model, yet has a
much more efficient implementation.

Keywords—Network Calculus, envelope functions, traffic
regulators, leaky bucket, quality of service.

I. Introduction

Providing deterministic quality of service (QoS), espe-
cially to critical real-time network applications, is an im-
portant issue that continues to receive a lot of attention.
The difficulty in providing deterministic QoS stems from
application-level heterogeneity and the resulting complex-
ity in network support mechanisms. Two major architec-
tural components used to provide deterministic QoS are
the traffic constraint functions, also called envelopes, and
the scheduling algorithms. Constraint functions specify
an upper bound on input arrival traffic during each inter-
val of time. Usually, the specification is time-invariant,
in the sense that for each interval of length t, an upper-
bound of f(t) is imposed [17]. Time-varying constraint
functions are also considered in the literature [16]. The
scheduling algorithms specify the order and timeliness of
how the input arrivals will depart from a network ele-
ment. Many such algorithms have been proposed and
extensively studied. An excellent review of these may be
found in [10].

In this paper we propose a new traffic regulator, the
Partially Stopped Leaky Bucket (PSLB), that captures
the characteristics of a general class of traffic patterns,

yet has an efficient constant time implementation. The
intuitive idea of our model is a leaky bucket whose token
generation rate goes to 0 during specific intervals of time.
The name of the model expresses this idea.

We will discuss the PSLB model in the context of
both the properties of traffic constraint functions and the
implementation of the corresponding traffic regulators.
With respect to the first issue, in terms of description
and implementation, there are simple models like (σ, ρ)
and (Xmin, Xave, I, Smax) which capture traffic informa-
tion such as temporary burst and long-term rate. More
complex models like (−→σ ,−→ρ ) or D-BIND (deterministic
bounding interval-length dependent) describe the traffic
such that the traffic rate may decrease over long intervals
[9]. The D-BIND model is more general than the (−→σ ,−→ρ )
model because it can capture properties such as the rate
being greater over a longer time interval than a shorter
one. Despite the generality of D-BIND, its shortcoming
comes from the polynomial implementation of the corre-
sponding traffic regulator. Our primary goal herein is to
give a description of a new envelope model, as general as
possible, yet having an O(1) implementation of the corre-
sponding traffic regulator.

The rest of the paper is structured as follows. First,
we review some concepts of deterministic traffic models.
Then, we present the PSLB model and derive its key prop-
erties. Finally, we will give a constant time implementa-
tion of PSLB and compare it to the implementation of
D-BIND.

II. Background

Let us consider a network element E, usually a switch,
an equidistant division of time with increment 1 and a
discrete-time input arrival process a(t), t = 0, 1, ..., with
the convention that a(0) = 0. The incoming packets will
have a length of 1 and will be served at a rate of 1. The
non-negative, non-decreasing function A : N → N with
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A(t) =
t∑

s=0
a(s) will denote the cumulative arrival process.

For simplicity, we will simply denote by A the arrival
process. The output process will be denoted by B and
the relation between A and B will be considered causal;
also, we will consider a perfect cut-through transmission
through each network element.

We give now some useful definitions from the functional
analysis:

Definition 1: A function f : R → R is concave if the
following inequality holds:

f(αs + (1− α)t) ≥ αf(s) + (1− α)f(t) (∀) s ≤ t and
(∀) 0 ≤ α ≤ 1.

Definition 2: A function f : R → R is subadditive if
the following holds:

f(s + t) ≤ f(s) + f(t) (∀) s, t.

Definition 3: A function f : R → R is superadditive if
the following holds:

f(s + t) ≥ f(s) + f(t) (∀) s, t.

For the purpose of our paper, the following definition
is crucial:

Definition 4: A function f : N → N with the property
that

A(t)−A(s) ≤ f(t− s) (∀) 0 ≤ s ≤ t, (1)

will denote a traffic constraint function or an envelope of
A.

The relation between A and f will be denoted by A ≺ f .
Without loss of generality, f is assumed to be subaddi-
tive in the sense that if A ≺ f , then A ≺ f∗, where f∗

represents the subadditive closure of f . For more details
about the subadditivity of envelope functions, see [17].

The tightest envelope of A is given by the so-called
empirical envelope [11] or minimal envelope process [6]
and is defined as

εA(t) = sup
s≥0

(A(s + t)−A(s)). (2)

In practice, all the traffic constraint models try to ap-
proximate εA. Of future help will the following:

Lemma 1: If f is an envelope for a given arrival system
and there is an input pattern A such that f = A, then f
is the minimal envelope of that system.

Proof: Let us suppose by contradiction that there
exists a minimal envelope g with g < f . We have that:
f(t) = A(t) = A(t)−A(0) ≤ g(t−0) = g(t) which is false.

In the following, we briefly review several well-known
traffic envelope functions that have been discussed in
the literature. The affine model (σ, ρ) is the simplest
among the traffic constraint functions [3]. It is defined
as f(t) = σ + ρt, where σ ≥ 0 represents the maxi-
mal allowable burst of A, while ρ > 0 represents the

long term average rate of A. An immediate observa-
tion is that the envelope function f is subadditive. The
(Xmin, Xave, I, Smax) model, also called the Xmin model,
is defined in [1] and specifies that the minimum inter-
arrival time of two consecutive packets is delimited by
Xmin, the maximum packet length is Smax and the av-
erage arrival traffic over a period of I is upper-bounded
by I

Xave
. The corresponding minimal envelope may be

expressed by:

f(t) =
(

min
(⌈

t mod I

Xmin

⌉
,

⌈
I

Xave

⌉)
+

⌊
t

I

⌋ ⌈
I

Xave

⌉)
Smax

(3)

In Fig. 1 we present an example of the constraint func-
tion (3). Based on this, we will see later the analogy
between the Xmin and PSLB models.
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Fig. 1. X-min model

We point out that the original expression for f given in
Eq. (1) in [7]:

f(t) =
(

min
(⌈

t mod I

Xmin

⌉
,

⌈
I

Xave

⌉)
+

⌈
t

I

⌉ ⌈
I

Xave

⌉)
Smax

(4)
is not a true envelope function, since the function f de-
creases at integer multiples of I. In the next proposition,
we state that a corrected minimal envelope for the Xmin

is f given by (3).
Proposition 2: For the Xmin model, the constraint

function f given in (3) represents the minimal envelope.
The proof for this is given in Appendix I.

The (−→σ ,−→ρ )n model [11] has an envelope function

f(t) = min
i=1,n

(σi + ρit) , (5)

where 0 ≤ σ1 < ... < σn and 0 < ρn < ... < ρ1. It is
worth noticing that f is a piece-wise linear concave func-
tion. The model has its roots in the work of [3] where
the author studied some properties of concave traffic con-
straint functions.

The last model we discuss here is the D-BIND model,
described in [9], [11] and [13]. This model generalizes the
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(−→σ ,−→ρ )n model by allowing non-concave traffic constraint
functions. Formally, the condition 0 ≤ ρn ≤ ... ≤ ρ1 is
replaced by the weaker condition ρi ≥ 0 (∀)i = 1, n. The
motivation for this is the behavior of MPEG-compressed
video traces, where average rate ratios may be increasing
as functions of time. Also, using non-concave envelope
functions is beneficial when heterogeneous VBR traffic
streams are multiplexed [13]. The original description of
D-BIND was through n pairs (Ri, Ii), where 0 < I1 <
... < In, that constrain the arrival traffic as having an
average rate of Ri ≥ 0 over the corresponding interval of
time Ii; a similar model has been considered also in [14].
The envelope function of D-BIND is simply obtained by
interpolation as:

f(t) =
RiIi −Ri−1Ii−1

Ii − Ii−1
(t− Ii) + RiIi,

Ii−1 ≤ t ≤ Ii, (∀) i = 1, n (6)

and the convention that I0 = 0.
Besides the concept of traffic envelope, the concept of

service curve is necessary to derive performance results
in the deterministic network calculus. We will adopt
here the definition from [6], where the author puts the
service curve’s definition in the context of using min-
plus algebra in the filtering theory [17], [15], as a fun-
damental framework for the deterministic network cal-
culus. Specifically, S denotes a service curve if B(t) ≥
min

0≤s≤t
(A(s) + S(t− s)) .

Deterministic network calculus has been developed to
provide QoS to critical application. Two important QoS
parameters are represented by the maximum delay en-
countered by the packets flowing through the network
element and the necessary buffer length in order not
to be forced to drop packets arbitrarily. Considering a
FIFO scheduling policy and that A ≺ f , the virtual de-
lay d(t) = inf {d ≥ 0 | A(t) ≤ B(t + d)} encountered by a
packet arriving at a time t, is bounded by

d(t) ≤ inf
{
d ≥ 0 | f(s) ≤ S(s + d) (∀) s = 1, t

}
. (7)

Also, the virtual backlog b(t) is bounded by b(t) ≤
sup

0≤s≤t
(f(s)− S(s)) [17].

III. Partially Stopped Leaky Bucket Model

The main shortcoming of the Xmin model is represented
by the fact that the arrival rate of the traffic is almost con-
stant as a function of time. The relaxation of this con-
straint lead to more sophisticated constraint models like
(−→σ ,−→ρ )n, in which the arrival rate decreases with time, or
the D-BIND model, in which, as we have already noted,
the rate may increase/decrease as a function of time.

The PSLB is based on the leaky bucket or (σ, ρ) model.
Also, a subclass of PSLB may be viewed as a variant of

the Xmin model for which Smax = 1 and more than one
packet is allowed to arrive during the same time slot.

Informally, the intuition behind a PSLB envelope is a
(σ, ρ) envelope function modified as follows. The PSLB
curve starts at time 0 with a value of σ and then increases
with a slope of ρ. At one point in time, x1, it will remain
constant for a given time t1. Then, again, it will increase
with a slope of ρ for a time of x1, followed by a temporarily
stopping of time t2 and so on. Note that the intervals in
which the PSLB envelope increases are equal, while the
intervals ti in which the PSLB envelope remains constant
must be increasing. We now give the formal definition of
the PSLB envelope.

Let us consider an affine model (σ, ρ), together with a
non-decreasing function g : N → N such that the corre-
sponding envelope will be

f(t) = σ + ρ(t− g(t)) (8)

An example is presented in Fig. 2 for

g(t) =
{

40j, 50j ≤ t ≤ 50j + 10
t− 10(j + 1), 50j + 10 ≤ t ≤ 50(j + 1), j = 0, 1, 2, ...
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Fig. 2. PSLB envelope function derivation

When Xmin = 1, the (Xmin, Xave, I, Smax) model can
be represented by the envelope (8) with σ = 0, ρ = Smax

and g given as follows:

g(t) = t−
⌊

t

p2

⌋
p1 −min(p1, t mod p2), (9)

where p2 = I and p1 =
⌈

I
Xave

⌉
. This shows the PSLB

model is more general than the Xmin model for which
Xmin = 1. Generalization of the PSLB model may also
be given in order to cover the general Xmin model, where
Xmin may be greater than 1.

For the PSLB model, we define the function g as fol-
lows: let {xn}n be a sequence of positive numbers such
that x0 = 0, xi < xi+1 and xi+1 − xi ≥ xi − xi−1 ≥ x1
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(∀) i ≥ 1. The intuition behind this sequence stems from
the informal description of PSLB given above.

Then g is defined, recursively, by g(0) = 0 and:

g(t) =
{

g(t− 1) + 1, t ∈ (xi, xi+1 − x1] (∀) i ≥ 1
g(t− 1), otherwise

(10)
Note that {xn}n may be finite. In such a case, the last
term xN = ∞. With this definition, we can see that the
expression (9) may be obtained for xi = (i − 1)p2 + p1.
Also, we have the following important fact:

Proposition 3: The function g defined by (10) is super-
additive.

Proof: We will prove by induction on t, that g(t) ≥
g(t − s) + g(s) (∀) 0 < s < t. Since g(0) = 0, the first
step of the induction is immediate. We suppose now that
g(t′) ≥ g(t′ − s) + g(s) (∀) 0 < s < t′ < t.

If t ∈ (xi, xi+1 − x1], where i ≥ 1, we have that g(t) =
g(t− 1) + 1 ≥ g(s) + g(t− 1− s) + 1 ≥ g(s) + g(t− s).

Now let t = xi, where i ≥ 1, and 0 < s < t. Suppose
that s ∈ (xk, xk+1−x1]. We have that: g(xi) = g(s)+xk−
s−x1+xk+1−xk−x1+...+xi+1−xi−x1 = g(s)+xi−s−
(i−k+1)x1. It follows that g(xi)−g(s) ≥ xi−s−(i−k+1).
On the other hand, g(xi−s) = xi−s−jx1, where j may be
determined. However, since xi+1−xi−x1 ≥ xi−xi−1−x1

(∀) i ≥ 1, we have that j ≥ i−k+1. It follows immediately
that g(xi − s) ≤ g(xi)− g(s). The case s ∈ (xk − x1, xk]
may be treated similarly.

Finally, if t ∈ (xi − x1, xi] and 0 < s < t, we have
that: g(t) = g(xi) = g(xi − s + s) ≥ g(xi − s) + g(s) ≥
g(t− s) + g(s).

Proposition 4: If g is superadditive, then f in (8) is
subadditive.

Proof: Let s, t ≥ 0. It follows immediately that
f(s+t) = σ+ρ(t+s−g(t+s)) ≤ σ+ρ(t+s−g(t)−g(s)) ≤
σ + ρ(t− g(t)) + σ + ρ(s− g(s)) = f(s) + f(t).

Observe that other conditions on g may be specified
for which f is subadditive. Fig. 3 shows an example of a
PSLB envelope function.

x1 x2 x3

x1 x1

f(t)
=σ+ρ(t-g

(t))

Fig. 3. PSLB envelope function

From Fig. 3, we can see that

xi−x1∑
t=0

f(t)

xi − x1
≥

xi+1−x1∑
t=0

f(t)

xi+1 − x1
(∀) i > 0,

which demonstrates that the PSLB model can capture
the important property of decreasing rate for sufficiently
large intervals. Also, it may be noticed that the PSLB
model allows the arrival rate to increase temporarily as
function of time. Recall that this is a key feature of the
D-BIND model.

To explain how the function g may be obtained,
note first that the average rate of a PSLB envelope is
lim

t→∞
σ+ρ(t−g(t))

t = ρ(1− lim
t→∞

g(t)
t ). For the example from

Fig. 2, we have that lim
t→∞

g(t)
t = 4

5 . This limit represents
a design parameter. In order to attain a long run average
rate of α, we need to have lim

t→∞
g(t)

t = 1− α
ρ .

Referring to the Proposition 2, we can say that (8),
together with (10), implements a minimal envelope for a
model that limits the number of packets over all intervals
of length xi − x1 to σ + iρx1 (∀) i > 1.

IV. Envelope implementation

We now address the issue of real-time implementation
of the traffic constraint functions. After discussing on
implementations of general traffic regulators, we will give
an efficient algorithm for implementing a PSLB regulator.
Here, we assume that the input A is given to us and is
not otherwise regulated.

The leaky bucket regulator (σ, ρ) has an intuitive im-
plementation as follows. There is a bucket T , of fixed
length σ, where tokens arrive from an infinite pool P at a
fixed rate of ρ. Initially, T is full. As packets arrive, they
leave the regulator as soon as possible, with the restriction
that the maximum number of packets to depart at a given
time is bounded by the bucket’s level. Each packet that
leaves the regulator consumes one token. It is assumed
that there is sufficient buffer space to hold all outstand-
ing packets. Also, tokens that arrive when T is full will
be dropped. In [17], the following result is presented:

Theorem 5: The leaky bucket regulator (σ, ρ) generates
an output B that satisfies:

B(t) = min
(

A(t), min
0≤s≤t−1

(A(s) + f(t− s))
)

where f(t) = σ + ρt (∀)t > 0 and f(0) = 0.

The above construction implements a maximal f -
regulator (under min-plus algebra terminology), meaning
that for any other regulator that will generate an output
B̃ with B̃ ≺ f , then B̃ ≤ B holds. However, we point
out that the statement of Theorem 5 has a small, but
noteworthy error. To show this, let us consider the case
where A(t) = f(t) (∀)t ≥ 0. The output B generated by
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(σ, ρ) will be B(t) = A(t)− ρ (∀)t > 0 and B(0) = 0. On
the other hand, if we modify the (σ, ρ) model by consid-
ering the token bucket’s level to be f(1), instead of σ, an
output B̃ = A will be obtained. Moreover, one has that
B̃ > B, meaning that the original (σ, ρ) mechanism does
not implement a maximal f -regulator.

Remark 6: (on the proof of Theorem 5 given in [17])
The error appears in ”Case 2”. More exactly, instead of

”The maximum number of departures ... ,i.e., q2(t)+ρ.”,
it should be ”... max(q2(t) + ρ, σ).

Intuitively, the discrepancy comes from the fact that
there are no arrivals (hence, no output) at time 0, while
the considered model is in discrete-time. We will call the
modified (σ, ρ) mechanism as (σ, ρ)MR (MR stands for
”maximal regulator”). Following the original proof of the
previous theorem, we conclude that the theorem will be
valid for the (σ, ρ)MR model instead of the (σ, ρ) model.
Also, it is worth mentioning that f represents the minimal
envelope for the (σ, ρ)MR model (see Lemma 1).

The implementation of the Xmin regulator may be done
in a greedy fashion as in [2]: for any

⌈
I

Xave

⌉
+ 1 packets,

the following condition must hold:

d I
Xave

e∑
i=1

Xi ≥ I,

where Xi represents the interarrival times between the ith

and (i + 1)th packets.
The existing suggestion [3] to implement the (−→σ ,−→ρ )n

model (f(t) = min
i=1,n

(σi + ρit)) is through n-parallel leaky

buckets. The maximum number of packets to depart will
be bounded by the minimum allowed to depart among all
the leaky buckets. Because this operation requires O(n)
time at each instant of time, there is a trade-off between
the accuracy of f (the larger is n, the more accurate is
f relative to the empirical envelope εA) and the perfor-
mance of the regulator in terms of time complexity.

As already noted, the subadditivity property of a con-
straint function plays an important role with respect to a
model’s performance.

Proposition 7: Let f : N → N be a concave function
with f(0) ≥ 0. Then f is subadditive.

Proof: Let 0 < x ≤ y. As f is concave, we have
f(x)−f(0)

x ≥ f(x+y)−f(x)
y . It follows that:

f(x)(
1
x

+
1
y
) ≥ f(x + y)

y
+

f(0)
x

. (11)

Similarly,

f(y)(
1
x

+
1
y
) ≥ f(x + y)

x
+

f(0)
y

(12)

From (11) and (12) we have immediately that f(x) +
f(y) ≥ f(x + y) + f(0). Since f(0) ≥ 0 the subadditivity
of f follows.

From this fact, the subadditivity of f(t) =
min
i=1,n

(σi + ρit) follows immediately by noting the concav-

ity of f . Besides this property we have the following ex-
tension of Theorem 5 [17]:

Theorem 8: If f(t) = min
i=1,n

(σi + ρit) (∀)t > 0 and

f(0) = 0, then Theorem 5 holds.

Again, we stress the fact that the theorem is valid if the
basic regulators work according to the (σi, ρi)

MR model
defined previously.

With respect to the more general D-BIND model, we
note that the implementation of (−→σ ,−→ρ )n cannot be used
because it is restricted to concave envelopes. Moreover,
a D-BIND envelope is generally not a subadditive func-
tion and finding its subadditive closure may be a very
complex task. There are two current ideas for the im-
plementation of D-BIND, both proposed in [9]. First, it
is suggested to use the (−→σ ,−→ρ )n implementation for the
concave closure of D-BIND’s envelope. The direct conse-
quence of this approach is loss of accuracy. The second
idea is to implement a cascade of leaky buckets with state
dependent token generating rates, depending on the num-
ber of transmitted packets over the last interval. It seems
that the last method provides a ”pseudo”-O(1) time com-
plexity (meaning that the constant may be too large) for
D-BIND and also for the (−→σ ,−→ρ )n model. However, as
we discuss below, this is not the case here. Consider the
example of traffic input A and D-BIND envelope function
f shown in Fig. 4:

t1 t2 t3

fA

Fig. 4. D-BIND envelope

If we assume in Fig. 4 that t3 − t2 > t2, A(t2 − 1) = 0
and A(t2) � 0, it is clear that for any point t0 during the
interval [t2, t3] we need the number of packets transmitted
during the intervals [t0−t1+1, t0) and [t0−t2+1, t0]. The
idea behind this example is that at any time we have to
guarantee the time-invariance property of the regulator.
Moreover, this property must be generally satisfied for an
O(n) number of intervals. Therefore, without a property
that will simplify the procedure from O(n) intervals to a
polynomially smaller number of intervals, it appears that
the required time of D-BIND is actually O(n), as in the
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case of the (−→σ ,−→ρ )n model.
From the implementation point of view of PSLB, one

may notice that if we have modified the leaky bucket al-
gorithm merely by temporarily stopping the token gen-
eration rate, there may be some unnecessary delays in
the regulator. Although our algorithm is not able to im-
plement a maximal regulator in O(1) time for the gen-
eral case, it significantly outperforms the previous ”first
glance” algorithm. We now give an O(1) time algorithm
for implementing a PSLB regulator.

Variables:
P - pool of tokens, |P | = ρx1

T - leaky bucket, |T | = σ + ρ
B - temporary packets’ buffer

d p - number of packets which depart during
(xi, xi+1 − x1]

Initialization:
i = 1
d p = 0
initialize T with |T | = σ

Repeat{
fill P and mark its last d p tokens as invalid
run the leaky bucket regulator during (xi − x1, xi]

as follows: {
- when an invalid token from P leaks to T , it

is immediately switched to the valid state
and returned to the top of P . Further, no

packets from B will depart on behalf of this
token

- when T is full and a valid token (tok) from
P leaks to T , the first invalid token from

P , if there is one, is flipped to the valid state.
Also, the token (tok) returns to P ,

without being dropped as in the standard
leaky bucket regulator

}
run the leaky bucket regulator during (xi, xi+1−x1]

as follows: {
- count the number of departing packets dur-

ing (xi+1 − 2x1, xi+1 − x1] as d p
- as before, tokens that are usually dropped

by a leaky bucket regulator return to P
- when i > 1, enforce that B(xi − x1 − (x2 −

2x1 − l), xi + l] ≤ ρx1, for any
l ≤ x2 − 2x1. Note that one simple way of

doing this is by implementing a queue
to record the departures from B during (xi−

x1 − (x2 − 2x1), xi − x1]
}
i + +

}
It is worth mentioning that if {xn}n is finite (hence

xN = ∞), then the algorithm will loop forever, at itera-
tion i = N, inside the first leaky bucket procedure. The
complexity O(1) of the PSLB regulator is simply due to

the same complexity of the standard leaky bucket regu-
lator. Also, depending on the expression of {xn}n, the
complexity could be pseudo-O(1).

Theorem 9: The previous algorithm implements a reg-
ulator for the PSLB model. Also, a maximal regulator is
obtained in the case when xi+1− xi is constant for any i.
The proof for this is given in the Appendix.

Let us take a look now at the unnecessary delays which
may appear in the PSLB regulator. These are due to
the fact that the algorithm does not implement a max-
imal regulator for the general case. As one may visual-
ize in the system, the delays could be significant when
xi − x1 � x2 − x1 as i grows, and the input is idle for a
sufficiently long interval. One way to alleviate this phe-
nomenon would be not to count the time while the packet
buffer is empty. For example, if the algorithm runs up to
step i, and then discovers that during the step i + 1 the
buffer is empty, it can return safely to step i + 1 with-
out proceeding to step i + 2. One may argue that there
will still be certain cases when a lot of unnecessary delays
could exist. However, for regular traffic conforming with
the original empirical envelope, the PSLB algorithm per-
forms very well in the sense of minimizing the amount of
unnecessary delay introduced by the regulator.

V. Conclusions

In this paper, we introduced a new traffic regulator
called the Partially Stopped Leaky Bucket. The PSLB
model retains the key properties of the general D-BIND
model that allow the input traffic rate to decrease over
longer time intervals and the rate to increase temporarily
as a function of time. The main advantage of the PSLB
model over D-BIND, is that a PSLB traffic regulator can
be implemented in constant-time. This is a critical feature
for real-time applications requiring quality-of-service.

Currently, we are performing simulation studies to eval-
uate the performance of the PSLB model with real net-
work traffic and compare it empirically with the other
traffic models described above. Also, we are investigat-
ing the consequences of implementing regulators that does
not possess the maximality property.

References

[1] D. Ferrari and D. Verma. 1990. ”A scheme for real-time channel
establishment in wide-area networks.” IEEE J. Select. Areas
Commun., vol. 8, no. 3, 368-379.

[2] D. Verma. 1991. ”Guaranteed performance communication in
high-speed networks.” Ph.D. dissertation, University of Califor-
nia at Berkeley.

[3] R. L. Cruz. 1991. ”A calculus for network delay, part I: network
elements in isolation.” IEEE Trans. Info. Theory, vol. 37, no.
1, Jan.:113-131.

[4] R. L. Cruz. 1991. ”A calculus for network delay, part II: network
analysis.” IEEE Trans. Info. Theory, vol. 37, no.1, Jan.:132-141.

[5] A. K. Parekh and R. G. Gallager. 1993. ”A generalized processor
sharing approach to flow control in integrated services networks:
the single-node case.” IEEE/ACM Trans. Networking, vol. 1,
no. 3, June:344-357.

[6] C.-S. Chang. 1994. ”Stability, queue length and delay of deter-



7

ministic and stochastic queueing networks.” IEEE Trans. Au-
tomat. Contr., vol. 39, no. 5, May:913-931.

[7] E. Knightly, R. Mines and H. Zhang. 1994. ”Deterministic Char-
acterization and network utilizations for several distributed real-
time applications.” Proc. IEEE WORDS ’94, Dana Point, CA.

[8] R. L. Cruz. 1995. ”Quality of service guarantees in virtual circuit
switched networks.” IEEE J. of Select. Areas in Commun., vol.
13, no. 6, Aug.:1048-1056.

[9] E.Knightly and H. Zhang. 1995. ”Traffic characterization and
switch utilization using a deterministic bounding interval de-
pendent traffic model.” Proc. IEEE INFOCOM’95, Apr.:1137-
1145.

[10] H. Zhang. 1995. ”Service disciplines for guaranteed perfor-
mance service in packet-switching networks.” Proc. IEEE, vol.
83, no. 10, Oct.:1374-1396.

[11] D. E. Wrege, E. W. Knightly, H. Zhang and J. Liebeherr.
1996. ”Deterministic delay bounds for VBR video in packet-
switching networks: fundamental limits and practical trade-
offs.” IEEE/ACM Trans. Networking, vol. 4, no. 3, June:352-
362.

[12] H. Sariowan. 1996. ”A service curve approach to performance
guarantees in integrated-service networks.” Ph.D. dissertation,
Dept. Elect. Comput. Eng., Univ. California at San Diego.

[13] E. Knightly and H. Zhang. 1997. ”D-BIND: An accurate
traffic model for providing QoS guarantees to VBR traffic.”
IEEE/ACM Trans. Networking, vol. 5, no. 2, Apr.:219-231.

[14] V. Firoiu, J. Kurose and D. Towsley. 1998. ”Efficient admission
control of piecewise linear traffic envelopes at EDF schedulers.”
IEEE/ACM Trans. Networking, vol. 6, no. 5, Oct.:558-570.

[15] J. Y. Le Boudec. 1998. ”Application of network calculus to
guarantee service networks.” IEEE Trans. on Info. Theory, vol.
44, 1087-1096.

[16] C.-S. Chang and R. L. Cruz. 1999. ”A time varying filtering
theory for constrained traffic regulation and dynamic service
guarantees.” Proc. of IEEE INFOCOM (New York), vol. 1, 63-
70.

[17] C.-S. Chang. 2000. Performance guarantees in communication
networks. Springer-Verlag, England.

Appendix

I.

Proof: (of Proposition 2)
Let A be an input process such that A = f . It is clear

that A satisfies the Xmin specifications. We will show now
that f is subadditive. For simplicity, we will prove only
the case when Xmin = 1 and Smax = 1. Let t, s ≥ 0 and
α =

⌈
I

Xave

⌉
. We can write t = Iq1 + r1, s = Iq2 + r2

and r1 + r2 = Iq3 + r3 with r1, r2 < I. It follows
immediately that q3 < 2. We now have: f(t + s) ≤
f(t) + f(s) ⇐⇒ min(d(t + s) mod Ie , α) +

⌊
t+s
I

⌋
α ≤

min(dt mod Ie , α) +
⌊

t
I

⌋
α + min(ds mod Ie , α) +⌊

s
I

⌋
α ⇐⇒ min(r3, α) + q3α ≤ min(r1, α) + min(r2, α).

Case 1: q3 = 0 ⇒ r1 + r2 ≤ I. We have to show that:
min(r1 + r2, α) ≤ min(r1, α) + min(r2, α). This is true
by applying the Proposition 7 for the function min(x, α)
which is both positive and concave.

Case 2: q3 = 1. Without loss of generality let us
suppose that r1 < r2. It is clear that r3 ≤ r1 ⇒
min(r3, α) ≤ min(r1, α) and α ≤ r2. It follows that
min(r3, α) + α ≤ min(r1, α) + min(r2, α) that is exactly
our goal.

Now, for s, t ≥ 0 it follows that f(t) ≤ f(t − s) +
f(s) ⇐⇒ A(t) − A(s) ≤ f(t − s). It follows that f is an
envelope for A.

Finally, simply apply Lemma 1 to complete the proof.

II.

Proof: (of Theorem 9)
Due to the complexity of the proof, we will give the

proof just for the particular case when xi+1−xi is constant
for each i. Let us denote xi+1− xi = p2 and x1 = p1. We
have to prove that the output B of the regulator satisfies
(1). The key observation is that for any ip2 ≤ s ≤ (i +
1)p2 +p1, where i ≥ 0, we have B(ip2, s] ≤ f(s− ip2) and
B(s, (i + 1)p2 + p1] ≤ f((i + 1)p2 + p1 − s). Let now be
0 ≤ s < t with s = ip2 + r1 and t = jp2 + r2 (r1, r2 < p2).
If i = j, it results immediately that B(t)−B(s) ≤ f(t−s).
Let us suppose in the following that i < j.

Case 1 : s ≥ ip2 + p1 and t ≥ jp2 + p1. We have
that: B(s, (i + 2)p2] ≤ f(p1), B((i + 2)p2, (i + 3)p2] ≤
f(p1), ..., B((i + k − 1)p2, (i + k)p2] ≤ f(p1) and B((i +
k)p2, t] ≤ f(p1), where i + k = j (note that k may be 1;
in such a case we will have just one inequality: B(s, t] ≤
f(p1)). It results that B(s, t] ≤ kf(p1) = f((k−1)p2+p1).
Note that the last equality holds because of the general
expression of f . Further, f((k−1)p2 +p1) = f(kp2−p2 +
p1) = f((j− i)p2−p2 +p1) = f(t−s+r1−r2−p2 +p1) ≤
f(t− s), because r1 < p2 and p1 ≤ r2.

Case 2 : s ≥ ip2 + p1 and t < jp2 + p1. We have that:
B(s, (i+2)p2] ≤ f(p1), B((i+2)p2, (i+3)p2] ≤ f(p1), ...,
B((i + k − 1)p2, (i + k)p2] ≤ f(p1) and B((i + k)p2, t] ≤
f(t−(i+k)p2), where i+k = j. Again, k may be 1, and in
such a case we would have just one inequality: B(s, t] ≤
f(t − s) which is satisfied. It follows that B(s, t] ≤ (k −
1)f(p1)+ f(t− (i+ k)p2) = f((k− 1)p2 + t− (i+ k)p2) =
f(t − (i + 1)p2) = f(t − s + r1 − p2) ≤ f(t − s), because
r1 < p2.

Case 3 : s < ip2 + p1 and t ≥ jp2 + p1. We have that:
B(s, ip2 + p1] ≤ f(p1− r1), B(ip2 + p1, (i+2)p2] ≤ f(p1),
...,B((i+k−1)p2, (i+k)p2] ≤ f(p1) and B((i+k)p2, t] ≤
f(p1), where i + k = j. If k = 1, we would have the
inequalities B(s, ip2+p1] ≤ f(p1−r1) and B(ip2+p1, t] ≤
f(p1). In both cases it follows that: B(s, t] ≤ kf(p1) +
f(p1−r1) = f(kp2+p1−r1) = f(t−s+p1−r2) ≤ f(t−s),
because p1 < r2.

Case 4 : s < ip2 + p1and t < jp2 + p1. We have that:
B(s, ip2 + p1] ≤ f(p1− r1), B(ip2 + p1, (i+2)p2] ≤ f(p1),
B((i + 2)p2, (i + 3)p2] ≤ f(p1), ..., B((i + k − 1)p2, (i +
k)p2] ≤ f(p1) and B((i+k)p2, t] ≤ f(t− (i+k)p2), where
i + k = j. If k = 1, we would have just the inequality:
B(s, t] ≤ f(t− s) which is satisfied due to the algorithm.

Otherwise (k > 1), it follows that: B(s, t] ≤ (k −
1)f(p1) + f(p1 − r1) + f(r2).

Case 4.1 : r2 ≤ r1. We have that (k− 1)f(p1) + f(p1−
r1)+f(r2) = f((k−1)p2+p1+r2−r1) = f((j−i−1)p2+
p1 + t− jp2 − s + ip2) = f(t− s + p1 − p2) ≤ f(t− s).

Case 4.2 : r1 < r2. We have that (k− 1)f(p1) + f(p1−
r1) + f(r2) = f(kp2 + r2 − r1) = f(t− s).

We now give a proof sketch of the maximal regularity
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statement. Let us suppose, by contradiction, that there
is another output B′ such that B < B′ and let be t =
inf{s > 0 | B(s) < B′(s)}. Without loss of generality, we
suppose that B′(t) = B(t) + 1. We will prove here just
the case when t ∈ (ip2 + p1, (i + 1)p2], where i > 0. The
first observation is that T (t) = 0, because otherwise we
would have a different output B.

Case 1 : |P (t)| = 0 (there is no more token available in
P at time t).

In such a case, we will have a contradiction in the def-
inition of the regulator (for B′) over the interval (ip2, t],
in the sense that B′(t)−B′(ip2) > σ + ρ(t− ip2).

Case 2: |P (t)| > 0
Let t1 = sup{s < t | T (s) ≥ σ}.
Case 2.1 : t1 > ip2 + p1

In such a case we have that B(t) − B(t1) = σ + ρ(t −
t1) ⇒ B

′
(t)−B

′
(t1) = σ +ρ(t− t1)+1 which contradicts

the regularity condition for B′.
Case 2.2 : t1 ∈ (ip2, ip2 + p1]
Using similar reasoning as above, we will obtain a con-

tradiction on the regularity of B′ over an interval (s, t],
where s > (i− 1)p2.


