File: CS252-HACD-Notes2.doc
Printed at: 15:00 on Monday, 18 October, 2010

CS252:HACD Fundamentals of Relational Databases

Notes for Section 2: Values, Types, Variables, Operators

1. Cover slide

In this section we look at the four fundamental concepts on which most computer languages are
based. We acquire some useful terminology to help us talk about these concepts in a precise way,
and we begin to see how the concepts apply to relational database languages in particular. It is
quite possible that you are already very familiar with these concepts—indeed, if you have done any
computer programming they cannot be totally new to you—but I urge you to study the chapter
carefully anyway, as not everybody uses exactly the same terminology (and not everybody is as
careful about their use of terminology as we need to be in the present context). And in any case |
also define some special terms, introduced by C.J. Date and myself in the 1990s, which have
perhaps not yet achieved wide usage—for example, selector and possrep.

I wrote “most computer languages” because some languages dispense with variables. Database
languages typically do not dispense with variables because it seems to be the very nature of what
we call a database, that it varies over time in keeping with changes in the enterprise. Money
changes hands, employees come and go, get salary rises, change jobs, and so on. A language that
supports variables is said to be an imperative language (and one that does not is a functional
language).

2. Anatomy of an Imperative

The slide shows a simple imperative—the assignment, Y := X + 1-—annotated with the various
terms we use for its components:

An invocation (of +)
Example:

A variable

A read-only operator

A variable reference
(denoting current value)

An update operator X and 1 are arguments to the invocation of +

Y and X+1 are arguments to the invocation

of :=

The update operator : = is known as assignment. The imperative Y := X + 1 is an (invocation
of) assignment. Its effect is to evaluate the expression X + 1, yielding some numerical result r
and to assign r to the variable Y. Subsequent references to Y therefore yield r (until some
imperative is given to assign something else to Y).

CS252.HACD Notes for Section 2, Values, Types, Variables, Operators — Page 1 of 13

Note the two operands of the assignment: Y is the target, X+1 the source. The terms target and
source here are names for the parameters of the operator. In the example, the argument Y is
substituted for the parameter farget and the argument X+1 is substituted for the parameter source.
We say that target is subject to update, meaning that any argument substituted for it must denote a
variable. The other parameter, source, is not subject to update, so any argument substituted must
denote a value, not a variable. Y denotes a variable and X+1 denotes a value.

Now let’s analyse the expression X+1. It is an invocation of the read-only operator +, which has
two parameters, perhaps named a and b. Neither a nor b is subject to update. A read-only operator
is one that has no parameter that is subject to update. Evaluation of an invocation of a read-only
operator yields a value and updates nothing. The arguments to the invocation, in this example
denoted by X and 1, are also expressions denoting values. 1 is a literal, denoting the numerical
value that it always denotes; X is a variable reference, denoting the value currently assigned to X.

A literal, in general, is any expression that denotes a value and does not contain any variable
references.

3. Important Distinctions
Each of the distinctions mentioned on Slide 3 is illustrated in Slide 2, as follows:

e Value versus variable: Y denotes a variable, X denotes the current value assigned to the
variable X. 1 denotes itself (a value).

e Variable versus variable reference: Y denotes itself, a variable; X is a variable reference,
denoting its current value.

o Update operator versus read-only operator: : = (assignment) is an update operator; +
(addition) is a read-only operator.

e Operator versus invocation: + is an operator; X + 1 is an invocation of +.

e Parameter versus argument: The expressions X and 1 are arguments to the invocation of
+; the operator + is defined to have two parameters. When an operator is invoked, an
argument must be provided for each of its defined parameters. The term argument can refer
to the value denoted by the expression as well as to the expression itself.

e Parameter subject to update versus parameter not subject to update: The first
parameter of : = (the one representing the target) is subject to update and must therefore be
substituted with a variable when : = is invoked; the second parameter of : = and both
parameters of + are not subject to update and must be substituted, in invocations, by
expressions denoting values.

4. A Closer Look at an Operator (+)

A read-only operator is what mathematicians call a function, and a function turns out to be just a
special case of a relation! Because it is a relation, a function can be depicted in tabular form. The
slide shows a picture of part of the function represented by the read-only operator +.

Page 2 of 13 —CS252.HACD Notes for Section 2, Values, Types, Variables, Operators

1 2 3
2 3 5
2 1 3

and so on (ad infinitum)

The relation depicted here represents the predicate a + b = c¢. The relation attributes @ and b can be
considered as the parameters of the operator +. Each tuple maps a pair of values substituted for a
and b to the result of their addition, which is substituted for c. The relation is a function because
each unique <a,b> pair maps to exactly one ¢ value—no two tuples with the same a value also have
the same b value, so, given an a and a b, so to speak, we know the (only) resulting c.

Notice how the relational perception of an operator neutralises the distinction between arguments
and result.

This relation could also represent the predicate c — b =a, orc —a =b.

You can imagine the invocation 1 + 2 as singling out the tuple with a=1 and »=2 (there is only one
such tuple) and yielding the ¢ value (3) in that tuple.

This relation is concerned only with numbers, its domain of discourse, some would say.
Mathematicians, perceiving it as a function mapping pairs of numbers (a,b) to numbers (¢), call the
(a,b) number-pairs the domain of the function and numbers (c) its range. Computer scientists,
perceiving it as an operator, say that its parameters a and b are of type number, as is the result, ¢
(the type of the result is normally referred to as the type of the operator).

5. An Operator Definition

In computer languages we distinguish between operators that are defined as part of the language
and operators that may be defined by uses of the language. Those defined as part of the language
are called built-in operators and those defined by users are called user-defined operators.

The grammar for Tutorial D does not include a precise list of built-in operators. It mentions a few
particular ones that have been devised for certain special purposes and adds “... plus the usual
possibilities”, leaving it to the implementation to decide what the usual possibilities are. In this
book the matter of whether an operator used in my examples is built-in or user-defined is
immaterial, except of course for those operators which an implementation is explicitly required to
provide as built-in.

User-defined operator definition in Tutorial D is illustrated in Slide 5, which defines an operator
named HIGHER_OF to give the value of whichever is the higher of two given integers:

OPERATOR HIGHER OF (A INTEGER, B INTEGER) RETURNS INTEGER ;
IF A > B THEN RETURN A ;
ELSE RETURN B ;
END IF ;
END OPERATOR ;

Explanation:

e OPERATOR HIGHER OF announces that an operator is being defined and its name is
HIGHER OF.

CS252.HACD Notes for Section 2, Values, Types, Variables, Operators — Page 3 of 13

e A INTEGER, B INTEGER specifies two parameters, named A and B and both of
declared type INTEGER.

e RETURNS INTEGER specifies that the value resulting from every invocation of
HIGHER OF shall be of type INTEGER (which is thus the declared type of
HIGHER O F).

e IF .. END IF ; isa single imperative (specifically, an IF statement) constituting the
program code that implements HIGHER OF. The programming language part of
Tutorial D, intended for writing implementation code for operators and applications, is
really beyond the scope of CS252, but if you are reasonably familiar with programming
languages in general you should have no trouble understanding Tutorial D, which is
deliberately both simple and conventional.

The IF statement contains further imperatives within itself ...

e IF A > B THEN RETURN A...suchas RETURN A here, which is executed only
when the given TF condition, A > B, evaluates to TRUE (i.e., is satisfied by the
arguments substituted for A and B in an invocation of HIGHER OF). The RETURN
statement terminates the execution of an invocation and causes the result of evaluating
the given expression, A, to be the result of the invocation.

e ELSE RETURN B specifies the imperative to be executed when the given IF condition
is not satisfied.

e END IF marks the end of the IF statement.

e END OPERATOR marks the end of the program code and in fact the end of the operator
definition.

Page 4 of 13 —CS252.HACD Notes for Section 2, Values, Types, Variables, Operators

Notes concerning Rel:

1. Rel provides as built-in all the Tutorial D operators used in CS252 except where
explicitly stated to the contrary. (User-defined types didn’t appear until 2009.)

2. Rel supports Tutorial D user-defined operators.

3. Rel additionally supports user-defined operators with program code written in Java™ (the
language in which Rel! itself is implemented), indicated by the key word FOREIGN.
Examples of such operators are provided in the download package for Rel. Here are two of
them (as provided at the time of writing in Version 3.12):

OPERATOR SUBSTRING (s CHAR, beginindex INTEGER, endindex

INTEGER) RETURNS CHAR Java FOREIGN

// Substring, 0 based

return new ValueCharacter (s.stringValue () .substring(
(int)beginindex.longValue(),
(int)endindex.longValue()));

END OPERATOR;

OPERATOR SUBSTRING (s CHAR, index INTEGER) RETURNS CHAR

Java FOREIGN

// Substring, 0 based

return new ValueCharacter(s.stringValue () .substring (
(int) index.longValue()));

END OPERATOR;

Notice that they are both named SUBSTRING, the first having three parameters, the
second two. Thus, Rel can tell which one is being invoked according to the number
of arguments to the invocation (and in fact according to the declared types of those
arguments). The first, when invoked, yields the string starts at the given
beginindex position within the given string s, and ends at the given endindex
position, where 0 is the position of the first character in s. The second yields the
string that starts at the given index position in s and ends at the end of s. Hence,
SUBSTRING ('database',2,4) = 'tab' and

SUBSTRING ('database',4) = 'base'.

I do not offer an explanation of the Java™ code used in these examples, that being
beyond the scope of CS252.

6. What Is a Type?

A type is a named set of values. Much of the relational database literature, especially the earlier
literature, uses the term domain for this concept, because that was the term E.F. Codd used.
Nowadays we prefer fype because that is the term most commonly used for the concept in computer
science and it is not at all clear that Codd meant anything significantly different when he introduced
domain. In fact, Codd's term was used to refer specifically to what we now call the declared type of
an attribute of a relation.

For example, there might be a type named WEEKDAY whose values constitute the set { Sunday,
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday }. For another
example, type INTEGER is commonly available in computer languages, its values being all the
integers in some range, such as —(2*) to 2*2-1. Terms such as Monday and -1 are literals.

CS252.HACD Notes for Section 2, Values, Types, Variables, Operators — Page 5 of 13

Monday denotes a certain value of type WEEKDAY and -7 denotes a certain value of type
INTEGER. Itis important that every value that can be operated on in a computer language can be
denoted by some literal in that language.

In any computer language that supports types (as most of them do), some types are built-in
(provided as part of the language). In some languages the only supported types are the built-in
ones, but the trend in modern languages has been towards inclusion of support for user-defined
types 100.

Tutorial D includes comprehensive support for user-defined types, and so does the latest (2009)
version of Rel. Previous releases of Rel support only the built-in types of Tutorial D. These are:

e CHARACTER or, synonymously, CHAR, for character strings.
e INTEGER or, synonymously, INT, for integers.

e RATIONAL for rational numbers, denoted by numeric literals that include a decimal point,
suchas 3.25, 1.0, 0.0, -7.935.

e TUPLE types and RELATION types as described later in this lecture.

7. What is a Type For?

In general, a type is used for constraining the values that are permitted to be used for some purpose.
In particular, for constraining:

o the values that can be assigned to a variable

o the values that can be substituted for a parameter

o the values that an operator can yield when invoked

o the values that can appear for a given attribute of a relation

In each of the above cases, the type used for the purpose in question is the declared type of the
variable, parameter, operator, or attribute, respectively.

8. What is the Type of This?

Now, if every value is of some type, and a relation, as we have previously observed, is a value, then
we need to understand to what type a given relation belongs, and we need a name for that type.
Here again is our running example of a relation:

Studentld Name Courseld
S1 Anne C1
S1 Anne C2
S2 Boris C1
S3 Cindy C3
S4 Devinder C1

At this stage it is perhaps tempting to conclude that relations are all of the same type, which we
might as well call RELATION, just as all integers are of type INTEGER. However, it turns out to
be much more appropriate, as we shall see, to consider relations of the same heading to be of the
same type and relations of different headings to be of different types. But all the types whose

Page 6 of 13 —CS252.HACD Notes for Section 2, Values, Types, Variables, Operators

values are relations have that very fact—their values are relations—in common, and we call them
relation types.

If relation types are distinguished by their headings, it is clear that a relation type name must
include a specification of its heading. In Tutorial D, therefore, the type name for the relation under
consideration can be written as

RELATION { StudentId SID, Name NAME, CourselId CID }
or, equivalently (for recall that there is no ordering to the elements of a set),

RELATION { Name NAME, StudentId SID, CourseId CID }
—and this is a particular relation type.

This type name is written in Tutorial D notation. Braces, { and }, are used because the order of
elements inside the braces is immaterial. In fact, { StudentId SID, Name NAME,
CourseId CID } denotes a set of attribute definitions, each consisting of an attribute name

followed by a type name. (Note: the type of an attribute is sometimes called its domain, the term
proposed by E.F. Codd in 1970.)

RELATION { StudentId SID, Name NAME, CourseId CID } mightin factbe the
declared type of the relation variable ENROLMENT, and that variable might be part of the
university’s database.

Clearly, there is in theory an infinite number of relation types, because there is no limit to the
degree of a relation. (Recall that the degree is the number of attributes.)

Here are some more relation types:
e RELATION { StudentId SID, CourseId CID }
e RELATION { a INTEGER, b INTEGER, c¢ INTEGER }
e RELATION { n INTEGER, w WEEKDAY }
e RELATION { }
That last one looks a bit special! We’ll investigate that one later.

The fact that we call them all relation types suggests that they have things in common about them,
even though they are different types. We can see already, for example, that every relation type
involves a set of attributes (the empty set in one particular case). Of particular interest are the
operators they have in common, which are described in lectures HACD.4-6.

9. How to Write This as a Literal?

In Slide 6, “What Is a Type?”, we noted the importance of being able to denote every value that can
be operated on in a computer language by some literal in that language. We have also noted that a
relation, such as our running example, is a value. What might a literal look like, that denotes that
value? In other words, how are we to write literals denoting values of type

RELATION { StudentId SID, Name NAME, CourseId CID }?

Of course we need a common notation for writing literals of any relation type.

10. A Relation Literal in Tutorial D

The slide shows a reasonable-looking attempt that actually isn’t good enough:

RELATION {
TUPLE { StudentId S1, CourselId Cl, Name Anne },

CS252.HACD Notes for Section 2, Values, Types, Variables, Operators — Page 7 of 13

TUPLE { StudentId S1, CourselId C2, Name Anne },
TUPLE { StudentId S2, Courseld Cl, Name Boris b,
TUPLE { StudentId S3, CourselId C3, Name Cindy },
TUPLE { StudentId S4, CourselId Cl, Name Devinder }

}

But of course it is not reasonable to expect a computer language to recognise symbols such as S1,
Cl, and Boris. We need a proper way of writing literals for those student identifiers, course
identifiers, and names. And that is the matter we address next ...

11. Literals for Student Ids, etc

Recall the declared types of the attributes: STD, NAME, CID. These are necessarily user-defined
types, for it would not be reasonable to expect them to be built-in.

Suppose that values of type SID are represented by character strings (values of type CHAR). CHAR
might well be a built-in type, and is indeed built-in in Tutorial D and Rel. Suppose further that
character strings are denoted by text in quotes, like this: 'S1 ', as indeed they are in most computer
languages. Then a literal for the student identifier S1 might be: SID ('S1'). This literal is an
invocation of the operator whose name happens to be the same as that of the type for student
identifiers, SID. This operator has a single parameter whose declared type, CHAR, is that of the
representations (character strings) chosen for student identifiers. In this invocation the CHAR literal
'S1 ' appears in substitution for that parameter. The result of the invocation is not a character
string but a value of type SID.

We call the operator SID a selector, because it can be used to “select” any value of type SID.
Now, it is very likely that not every character string can validly represent a student identifier.
Perhaps student identifiers must each be the letter S, followed by a maximum of four numeric
digits. In that case we can expect the operator STD, when it is invoked, to check that the given
string conforms to this rule—and raise an error if it doesn't. That is one good reason why type SID
might be chosen in preference to type CHAR for student identifiers.

By the way, you can think of the literal 'S1"' as “selecting” a CHAR value. Every CHAR value can
be denoted by a sequence of characters enclosed in quotes, and every sequence of characters
enclosed in quotes does denote a CHAR value; so this syntax for literals does satisfy the
requirements for being a selector.

Notes concerning Rel:

Rel does not (at the time of writing, September 2008) support user-defined types, so in Rel exercises
we will use CHAR instead of types like SID, NAME and CID.Re/ allows CHAR literals to be

enclosed either in quotes, as already shown, or in double-quotes, like this: "S1". Thus, "S1" and
'S1"' both denote the same CHAR value.

12. A Tuple Literal

In Slide 10 we tried to write a relation literal by specifying a collection of tuple literals, and we tried
to write a tuple literal by specifying a collection of attribute values. Now that you know how to
specify those attribute values properly, you can easily see that the correct way of writing the first of
those tuple literals, arising from the foregoing discussion, is like this:

TUPLE { StudentId SID('S1l'), CourseId CID('C1l"'),
Name NAME ('Anne') }

And here is the entire relation literal in Tutorial D:

Page 8 of 13 —CS252.HACD Notes for Section 2, Values, Types, Variables, Operators

RELATION {

TUPLE { StudentId SID ('S1l') , CourseIlId CID ('Cl'),
Name NAME ('Anne') 1},

TUPLE { StudentId SID ('S1l') , CourseId CID ('C2'),
Name NAME ('Anne') 1},

TUPLE { StudentId SID ('S2') , CourseId CID ('C1l'),
Name NAME ('Boris') 1},

TUPLE { StudentId SID ('S3') , CourseId CID ('C3'),
Name NAME ('Cindy') 1},

TUPLE { StudentId SID ('sS4') , CourseId CID ('Cl” "),

Name NAME ('Devinder') }
}

13. Types and Representations

Consider again the invocation SID ('S1"'), aliteral of type SID. Recall that SID is an operator
that, when invoked with a suitable character string, returns a value of type STID; also that every
value of type SID can be denoted by some invocation of the operator SID. I have explained that
we call such an operator a selector (for values of the type in question).

Note that the relation literal given on Slide 12 is an invocation of a certain relation selector — the
specific selector for relations of that specific type. Similarly, a tuple literal is an invocation of a
certain tuple selector.

The parameters of a selector correspond to components of what we call a possible representation, or
possrep for short. (I will explain later why we use the word “possible” here.) So, certain “suitable”
values of type CHAR can be considered to represent values of type SID. Which CHAR values in
particular? Perhaps just those that consist of the upper-case letter S followed by numeric digits up
to an agreed maximum length. The next slide shows how the possrep and the format rule can be put
together to form a #ype definition for type SID.

14. A Type Definition for SID

Here is the complete definition, as expressed in Tutorial D with the use of operators LENGTH,
SUBSTRING, and IS DIGITS, defined in the script OperatorsChar.d provided by Re/ in its
directory named Scripts:

TYPE SID POSSREP SID { C CHAR
CONSTRAINT LENGTH (C) <= 5
AND
SUBSTRING(C,0,1) = 'S’
AND
IS DIGITS (SUBSTRING(C, 1))
o

Recall that POSSREP is short for “possible representation”. It means that the operators defined for
type SID behave as if values of type SID were represented that way, regardless of how they are
physically represented “under the covers”. That is why we use the word “possible”—the values
might possibly be represented internally that way (but they don’t have to be and we don’t even
know if they are).

Note how the definition of a (user-defined) type depends on the existence of the types used as
declared types for the components (in this case just one component) of the possrep. That’s why the
DBMS has to provide some built-in types.

CS252.HACD Notes for Section 2, Values, Types, Variables, Operators — Page 9 of 13

Reminder: Versions of Rel prior to 2009 did not support TYPE statements.

15. Type Constraint for SID

This slide shows the CONSTRAINT part of the type definition:

CONSTRAINT LENGTH (C) <= 5
AND
SUBSTRING(C,0,1) = 'S’
AND
IS DIGITS (SUBSTRING (C, 1))

Explanation:

e CONSTRAINT announces that the expression following it (up to but excluding the closing
brace) is a condition that must be satisfied by all possrep values that do indeed represented
values of type SID. Note that the expression itself uses the logical connective AND, with its
usual meaning, to connect three expressions, two of which are comparisons and each of
which is a truth-valued expression—one that, when evaluated, yields either TRUE or
FALSE.

e LENGTH(C) <= 5 expresses a rule to the effect that the total length of a value for the C
possrep component must never exceed 5. Here I assume the existence of the operator,
LENGTH, for the purpose at hand. The definition of Tutorial D does not include all of the
operators that an implementation might provide as built-in. As already mentioned, Re!/
provides a script for defining this and other useful operators on character strings, in
OperatorsChar.d.

e SUBSTRING(C,0,1) denotes the string consisting of the leftmost character of the value
of the C possrep component. SUBSTRING is defined in OperatorsChar.d. Note that it treats
strings as starting at position 0, not 1.

e SUBSTRING (C, 1) uses the other SUBSTRING operator defined in OperatorsChar.d and
denotes the string consisting of the whole of the value of the C possrep component apart
from the first character. This is given as the argument to an invocation of IS DIGITS,
also provided in OperatorsChar.d. IS DIGITS takes a string and yields TRUE if every
character in the given string is a numeric digit, otherwise FALSE.

The combination of possrep and type constraint defines the entire set of values that constitute the
type.
16. Defining a Subtype

As the slide says, the subject of this slide is really beyond the scope of CS252, but you are welcome
to use subtyping in Rel if you would like to try it out—in the coursework exercises, for example.

Tutorial D's subtyping is different from that found in typical object-oriented languages such as
Java, because it uses subtyping by constraint—often known as specialization by constraint—rather
than subtyping by extension.

17. What Is a Variable?

The example shown on the slide is a VAR statement:

VAR SN SID INIT SID ('s1') ;

Page 10 of 13 —CS252.HACD Notes for Section 2, Values, Types, Variables, Operators

Note that the declaration takes the form of an imperative that, when invoked, brings into existence
(“creates”) a variable.

Explanation:

e VAR SN announces that what follows defines a variable named SN.

e SID, immediately following SN, specifies the declared type of this variable, indicating that
only values of type SID can be assigned to SN.

e INIT specifies that what follows is an expression whose value is to be immediately
assigned to SN. You already know what SID ('S1') denotes (see Slide 11). The value
specified in an INIT clause is commonly called the initial value of the variable in question.
It remains that value until it is replaced by subsequent invocation of an update operator such
as assignment.

To answer the question posed in the slide’s title, we can now see that a variable is something
consisting of a name, a declared type, and a value. The name and declared type remain the same
throughout the existence of the variable, but its value can change from time to time, which is of
course why it is called a variable. Although the value can change from time to time, the value must
always be a value of the declared type of the variable—in this example a value of type SID.

18. Updating a Variable

A value is assigned to a variable by invoking some update operator. The simplest and most general
of such operators is the assignment operator itself—: = in Tutorial D (and some other languages).
The example on the slide shows a simple invocation of assignment to “update” the variable SN:

The first example on the slide, the assignment SN := SID ('S2'), simply assigns the
student identifier S2 to SN. If that assignment is given some time after the declaration shown in
Slide 16, then the effect will indeed be to change the value of the variable SN. It is changed from
being the student identifier S1 to the student identifier S2. Here SID ('S2') is the source for
the assignment and SN is the target. The source does not have to be a literal, of course, as the
second example on the slide demonstrates.

SN := S# (LEFT (THE C (SN), 1) || '5") assigns the student identifier S5 to
SN (because the current value of SN must begin with S as required by the type constraint). Please
note that details of the expression on the right-hand side of this assignment are utterly unimportant
as far as CS252 is concerned. In case you need them, though:

| | is the “concatenation” operator that joins two strings together to form a single string;

THE C (SN) yields the character string that is the value of the component named C of the
representation of the SID value of SN. (The equivalent in Java would be SN.C.)

LEFT (s, n) returns the string consisting of the leftmost n characters of the string s.
The leftmost single character of THE C (SN) is of course the letter S, which is to be
concatenated with the string consisting of the numeric digit 5.

The next example on the slide is

CALL SET DIGITS (SN , 23) ;

SET DIGITS (SN , 23) is(we assume) equivalent to

SN := S# (LEFT (THE C (SN), 1) || '23"'). Note that SN in the invocation of
SET DIGITS is an argument substituted for a parameter that is defined for update, so here stands
for the variable itself and not for its current value.

CS252.HACD Notes for Section 2, Values, Types, Variables, Operators — Page 11 of 13

The term pseudovariable comes from a once well known programming language called PL/I. It
refers to an expression, other than a simple variable name, that is permitted to appear as a target of
some update operator invocation (such as on the left-hand side of an assignment).

Tutorial D additionally allows certain special kinds of expression to appear as update targets. Such
expressions are called pseudovariables—they are not real variables but they can be treated as if they
were. A pseudovariable takes the form of an invocation of a read-only operator in which one of the
operands is a reference to a variable (or pseudovariable) that is to be updated. The final example on
the slide is an assignment to a pseudovariable:

THE C (SN) := 'S2' ;

In Tutorial D, THE C (SN) is a pseudovariable implied by the possrep definition, and
THE C (SN) := 'S2'isequivalentto SN := SN ('S2'). A pseudovariable of the
form SUBSTR (..) is self-explanatory.

19. Important Distinctions Arising

I conclude this lecture by reminding you of the important distinctions I drew to your attention at its
beginning. I repeat them here, with illustrative examples:

e values and variables

A value such as the integer 3, the character string ' London ', or the relation RELATION {
TUPLE { A 3, B 'London' } } is something that exists independently of time or
space and is not subject to change. A variable is subject to change, by invocation of
assignment (other update operators are really shorthands for particular assignments).

e values and representations of values

The character string value 'S1"' is a possible representation of the student identifier S1, a
value of type STD denoted by STD('S1"'").

e types and representations

POSSREP { C CHAR } defines a possible representation for all values of type SID.

¢ read-only operators and update operators

+ is a read-only operator because, when it is invoked, it returns a value. :=is an update
operator because, when it is invoked, it has the effect of replacing the current value of a
variable—and does nof return a value.

e operators and invocations

SID is an operator. lIts full name (signature) is STD (C CHAR). SID('S1') isan
invocation of STD. Similarly, + is an operator, with full name such as + (A RATIONAL,
B RATIONAL), and x+y is an invocation of +.

e parameters and arguments

C CHAR is a parameter (and in fact the only parameter) of the operator SID. 'S1' is the
argument substituted for C CHAR in the invocation SID ('S1"'). Similarly, x and y are
the arguments substituted for A’ RATIONAL and B RATIONAL in the invocation x+y.

You can now test your understanding of these distinctions by carrying out the accompanying
exercises (which also include some revision material for Lecture HACD.1).

Page 12 of 13 —CS252.HACD Notes for Section 2, Values, Types, Variables, Operators

20. EXERCISES

Complete sentences 1-10 below, choosing your fillings from the following:

=, :=, ::=,argument, arguments, body, bodies, BOOLEAN, cardinality, CHAR, CID, degree,
denoted, false, heading, headings, INTEGER, list, lists, literal, literals, operator, operators,
parameter, parameters, read-only, set, sets, SID, true, type, types, update, variable, variables.

In 1-5, consider the expression X = 1 OR Y = 2.

1. In the given expression, = and OR are whereas X and Y are
2 X and 1 are to an invocation of

3. The value by the given expressionisof ~ BOOLEAN.

4 1 and 2 are both of INTEGER.

5 The operators used in the given expression are operators.

In 6-10, consider the expression RELATION { X SID, Y CID } { }.
6. It denotes a relation whose is zero and whose is two.
7 It is a relation .

8. The declared type of Y is .

9

In general, the heading of a relation is a possibly empty of attributes and its body is
a possibly empty of tuples.

10. Itis that the assignment RV RELATION { X SID, Y CID } { } islegalif
the ofRVis { Y CID, X SID }, that it is legal if the of RV is
{ A SID, B CID }, that it is legal if the of RVis { X CID,
Y SID },and that it is legal if the of RVis { X CHAR, Y CHAR }.

End of Notes

CS252.HACD Notes for Section 2, Values, Types, Variables, Operators — Page 13 of 13

