
File: CS252-Worksheet1.doc
Printed at: 15:49 on Wednesday, 29 September, 2010

CS252 Worksheet 1: Getting Started with Rel — Page 1 of 5

CS252 Fundamentals of Relational Databases — Worksheet 1

Getting Started with Rel

If you get any unpleasant error messages you may wish to study the Rel forum at
http://shark.armchair.mb.ca/~dave/relforum/index.php, in the section named Report a Bug.

1. Start up Rel. Instructions are at http://www.dcs.warwick.ac.uk/~acristea/courses/CS252/rel/.

2. Familiarise yourself with the way of working and the things you can do in Rel. You should
be looking at a window something like this (which was obtained in Windows Vista):

 Note the layout of the window: a lower pane into which you can type statements to be
executed, an upper pane in which results are displayed, and the movable horizontal bar
between the panes.

 Note the  and  at the left-hand end of the horizontal bar, allowing you to let one or the
other pane occupy the whole window for a while.

 See what is available on the Tools menu and perhaps choose your preferred font. Alert:
At the time of writing the chosen font appears to be used only when you do not select
Enhanced on the output pane.

 Note the < and > to the left of the menu on the input (lower) pane. These are greyed out
initially but after you have executed a couple of statements you will be able to use them
to recall previously executed statements to the input pane.

Page 2 of 5 —CS252 Worksheet 1: Getting Started with Rel

 Note the toolbars on both panes. As you do the exercises, decide which options suit you
best. Note that you can save the contents of either pane into a local file, and that you
load the contents of a local file into the input area.

 Note the check boxes on the right of the toolbars. They are fairly self-explanatory, apart
from “Enhanced”, which we will examine later.

 The box at the top of the upper pane, labelled “Location:”, identifies the directory
containing the database you are working with. You can switch to another directory by
clicking on the little button to the right of the box, labelled with three dots (…).

3. Type the following into the lower pane:

output 2+2 ;

Execute what you have typed, either by clicking on Evaluate (F5) shown at the bottom of
the window or by pressing F5.

Now delete the semicolon and try executing what remains. (If necessary, use the < button
on the lower pane to recall the statement.) You will see how Rel handles errors.

Now strike out the word output and do not put back the semicolon. What happens when
you execute that? (i.e., just 2+2).

You have now learned:

 that in Rel (as in Tutorial D) every executable statement is terminated by a semicolon;

 that Rel allows you to obtain the result of evaluating an expression by using an output
statement;

 that Rel treats an attempt to "execute" an expression x as shorthand for the statement
output x ; — the absence of the semicolon signals to Rel that you are using this
convenient shorthand.

4. This exercise is merely to alert you to a certain awkwardness in Rel that has no real
importance but might cause you to waste a lot of time if you are not warned about it. It's the
same as Step 3 except that instead of 2+2 you type 2+2.0. Look closely at what happens.
It doesn't work!

Rel, like some other languages, treats INTEGER and RATIONAL as distinct types. If you
want to do arithmetic on rational numbers, both operands must be rational numbers. Literals
denoting rational numbers are distinguished from those denoting integers by the presence of
a decimal point, and Rel follows the convention in the English-speaking community of using
a full stop for this purpose (as opposed to the comma that is used throughout most of
Europe, for example).

Now try this: 1/2 (i.e., the integer 1 divided by the integer 2). And then this: 1.0/2.0.

You have now learned that (a) the operands of dyadic arithmetic operators in Rel must be of
the same type, and (b) the type of the result of an invocation of such an operator is always of
the same type as the operands. Tutorial D is silent on such issues, because they are
orthogonal to what Tutorial D is really intended for (teaching relational theory). But every
implementation of Tutorial D has to address them somehow.

Fortunately, arithmetic is orthogonal to relational theory and there is no need for us to be
bothered by Rel's behaviour here. You have possibly already learned that the same
problems do not arise in SQL, where 1/2, 1/2.0 and 1.0/2.0 are all equivalent, in spite

CS252 Worksheet 1: Getting Started with Rel — Page 3 of 5

of the fact that INTEGER and REAL (SQL's counterpart of Tutorial D's RATIONAL) are
also distinct types in SQL.

5. Now try the following compound statement:

begin ;
VAR x integer init(0) ;
x := x + 1 ;
output x ;
end ;

Why do we have to write output x ; in full here, instead of just x?

Now write the fourth line in uppercase: OUTPUT X ; What happens?

Try OUTPUT x ; instead. What have you learned about Rel's rules concerning case
sensitivity?

6. Now you can start investigating Rel's support for relations (though not relational databases
yet). First, see how Rel displays a relation (i.e., the result of evaluating a relation
expression) in its upper pane. Rel supports two styles of presentation, depending on whether
the “Enhanced” option is checked.

With “Enhanced” unchecked (it is usually checked to start with), get Rel to evaluate the
following relation expression (a literal which we shall call enrolment):

RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },
TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },
TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },
TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' } }

See Lecture HACD.2, Slides 9-12. Look closely at the output. Is it identical to the input?

Next, without altering the contents of the lower pane, turn “Enhanced” back on. Note the effect
on the display in the output pane.

Now delete all the tuple expressions, leaving just RELATION { }. What happens when Rel tries
to evaluate that?

Now use < to recall the original RELATION expression to the input pane and re-evaluate it with
“Enhanced” off. Use copy-and-paste to copy the result to the input pane, then delete all the
TUPLE expressions, to leave this:

RELATION {StudentId CHARACTER, CourseId CHARACTER,
Name CHARACTER} { }

Study the result of that in the output pane, first with “Enhanced” off, then with it on.

What conclusions do you draw from all this, about Rel and Tutorial D?

From now on you can run with “Enhanced” either on or off, according to your own preference.

Next, enter the following literal, perhaps by using the < button to recall enrolment and editing
it:

RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' }
}

Page 4 of 5 —CS252 Worksheet 1: Getting Started with Rel

Before you press Evaluate (F5), think about what you expect to happen. Does the result meet
your expectation? How do you explain it?

Use < again to recall the enrolment literal. Insert the word WITH at the beginning, add AS
enrolment : enrolment at the end, to give:

WITH RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },
TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },
TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },
TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' } }
AS enrolment : enrolment

and evaluate that.

How do you understand what you have just done? (WITH isn't taught in the lectures. In case you
aren't clear, try this in Rel: WITH 2+2 as four, four+four as eight : eight +
four. Note carefully that the introduced names, four and eight, are local only.)

By inspection of enrolment only, write down all the cases you can find of two students such
that there is at least one course they are both enrolled on.

7. For this exercise you will need to continue using < to recall your previous command (now
including the definition of the introduced name enrolment) and overtype as necessary.
Use enrolment to investigate the relational operator known as projection (see Lecture
HACD.4, slides 18-21). The projection of a given relation over a specified subset of its
attributes yields another relation. In Tutorial D a projection is specified by writing a list of
attribute names, enclosed in braces {} and separated by commas, after the operand relation.
The key words ALL BUT can optionally precede the list of attribute names, inside the
braces.

How many distinct projections can be obtained from enrolment? Obtain as many of
these as you wish, trying both the "inclusion" method and the "exclusion" method using
ALL BUT.

8. Still using enrolment, investigate the relational operator known as rename (see Lecture
HACD.4, slides 13-14). The renaming of a given relation returns that relation with one or
more of its attributes renamed. In Tutorial D a renaming is specified by writing RENAME
(old AS new, ...) after the operand relation.

At the moment you should have this in your input pane:

WITH RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },
TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },
TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },
TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' } }
AS enrolment : enrolment

Replace the single word (enrolment) that follows the colon by a renaming of
enrolment such that the result has attribute name SID1 instead of StudentId, N1
instead of Name, and is otherwise the same as enrolment itself. Replace the : that ends
the WITH specification by a comma and add AS E1 : E1 at the end. The result should
look like this:

CS252 Worksheet 1: Getting Started with Rel — Page 5 of 5

WITH RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },
TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },
TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },
TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' } }
AS enrolment ,
<your renaming of enrolment, as specified> AS E1 : E1

Evaluate that to check that you wrote the renaming correctly.

9. Again replace the : by a comma and this time add a similar renaming of enrolment,
using SID2 and N2 instead of SID1 and N1 for the new attribute names, and add AS E2
: E1 JOIN E2 at the end. You are investigating the operator called JOIN (see Lecture
HACD.4, slides 10-12, 15-17, and 22).

How do you interpret the result? How many tuples does it contain? Replace the key word
JOIN by COMPOSE (see Lecture HACD.6, slides 7-8). How do you interpret this result?
How many tuples are there now? How do you account for the difference?

10. Add WHERE NOT (SID1 = SID2) to end of the expression you evaluated in Step 9
(see Lecture HACD.5, slides 3-6). Examine the result closely. Now place parentheses
around E1 COMPOSE E2 and evaluate again. Confirm that you get the same result.

Repeat the experiment, replacing WHERE NOT (SID1 = SID2) by { SID1 }. Do
you get the same results this time? If not, why not?

What does all this tell you about operator precedence rules in Tutorial D?

Why was it probably a good idea to add that WHERE invocation? Did it completely solve
the problem? If not, can you think of a better solution?

What connection, if any, do you see between this exercise and Exercise 6?

11. Close Rel by clicking on File/Exit.

Write a summary of your experiences, good and bad, with this worksheet. Feel free to
comment on Rel, Tutorial D, and the worksheet, as you wish.

End of Worksheet

