

Predicates and Propositions

Hugh Darwen

hugh@dcs.warwick.ac.uk
www.dcs.warwick.ac.uk/~hugh

CS252.HACD: Fundamentals of Relational Databases
 Section 3: Predicates and Propositions

1

Recommended Book

Highly recommended if you like this sort of thing (but definitely not a course requirement):

Wilfrid Hodges: “**Logic**”.

Pelican books, 1977. ISBN: 0 14 02.1985 4

2

What Is A Predicate?

Strictly, the *meaning* of a certain kind of **sentence**, but often used (conveniently) to refer to the sentence itself.

Example: “Student S1 is enrolled on course C1.”

Note that the meaning is language-independent; the sentence is not!

Note also that we get a very similar sentence, with very similar meaning, if we just change either of the designators, S1 and C1 (e.g., replace C1 by C2).

3

What Kind of Sentence?

A sentence having the grammatical form of a *statement* — something that can be *believed*, or *not believed*.

In English, if “Is it true that *x*?” is a grammatical English *question*, then *x* is a statement (having the form of a *declarative sentence*).

Might need to paraphrase *x*. E.g. (from Shakespeare):

“O for a muse of fire” ≡ “I wish for a muse of fire”.
 “To be or not to be, that is the question” ≡
 “The question is whether to be or not to be”

4

Some Counterexamples

Sentences that are not declarative:

- “Let’s all get drunk.”
- “Will you marry me?”
- “Please pass me the salt.”
- “If music be the food of love, play on.”

5

Some Examples

Sentences that *are* declarative (and so *denote predicates*):

- “Student S1 is enrolled on course C1.”
- “I will marry you.”
- “The king of France is bald”
- “2 + 2 = 5”
- “ $(x) \leq y$ ”
- “ $a + (b) = c$ ”
- “Student *s* is enrolled on course *(c)*”
- “*P(x)*” (notation for the general form)

Propositions

Parameters

6

Deriving Predicates from Predicates (1)

Substitution: of a *designator* for a parameter

Given an n -adic predicate, yields an $(n-1)$ -adic predicate.

E.g., in “ $a < b$ ” substitute 10 for b to give “ $a < 10$ ”.

Now substitute 5 for a , and we get “ $5 < 10$ ”, a proposition.

Instantiation: substitution of *all* the parameters, yielding a proposition.

7

Intension and Extension

Of a predicate:

Intension: its meaning (loosely speaking).

Extension: all the instantiations that are (believed to be) *true*.

The concept of extension is crucially important in relational theory. Note that it is a *set* of propositions. Alternatively, it is a single proposition formed by connecting all the members of that set together using “and”.

Note in passing that the extension of a niladic predicate is either itself (if it is *true*) or the empty set (if it is *false*).

8

Deriving Predicates from Predicates (2)

The familiar *logical* operators:

conjunction: “Student s is enrolled on course c **and** s is called *name*.”

disjunction: “ $a < b$ **or** $c < d$ ”

negation: “It is **not** the case that I will marry you.”

9

Deriving Predicates from Predicates (3)

Conditionals:

implication: “If you ask me nicely, **then** I will marry you.”

only if: “I will marry you **only if** you ask me nicely.”

biconditional: “I will marry you **if and only if** you ask me nicely.” (equivalence)

10

Deriving Predicates from Predicates (4)

Quantifiers:

existential: “There exists s such that s is a student and s is enrolled on course c .” (\equiv “At least one student is enrolled on course c .”)

universal: “For all s , if s is a student then s is enrolled on course c .” (\equiv “All the students are enrolled on course c .”)

Quantification, like substitution, *binds* a parameter.

11

Sets

Let $P(x)$ be a predicate. If object a is such that $P(a)$ is true, then a is said to *satisfy* P . And $P(x)$ is called a *membership predicate* for the *set* consisting of all such objects a .

Example: “ x is an integer such that $1 < x < 4$ ”

“ x is an integer such that $1 < x < 4$ ” is a membership predicate for the set consisting of the elements 2 and 3, denoted by the expression $\{2, 3\}$ (an enumeration).

This set is also denoted by $\{x : x \in \mathbb{Z} \text{ and } 1 < x < 4\}$.

12

The Language of Sets (1)

Let A and B be sets with membership predicates $PA(x)$ and $PB(x)$, respectively. Let a be an element. Then we have the following comparisons:

membership: $a \in A$ (a is a member of A)

containment: $B \subseteq A$ (B is a subset of A)

$A \supseteq B$ (A is a superset of B)

$B \subset A$ (B is a proper subset of A)

$A \supset B$ (A is a proper superset of B)

equality: $A = B$ ($A \subseteq B$ and $B \subseteq A$)

disjointness: A and B are *disjoint* (have no members in common)

13

The Language of Sets (2)

And the following operations on sets that yield sets:

union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$ (disjunction)

intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$ (conjunction)

complement: (of A) = $\{x : \text{not } x \in A\}$ (negation)

difference: $A - B = \{x : x \in A \text{ and not } x \in B\}$

14

EXERCISES

Assume that the membership predicate for the following relation is “Student $StudentId$, named $Name$, is enrolled on course $CourseId$.”

StudentId	Name	CourseId
S1	Anne	C1
S1	Anne	C2
S2	Boris	C1
S3	Cindy	C3
S4	Devinder	C1

(The exercises are in the Notes)

15