HACD.7: Constraints and Updating 18/10/2011

Constraints

Constraints and Updating

Constraints express the integrity rules for a database.

Hugh Darwen Enforcement of constraints by the DBMS ensures that the

database is at all times in a consistent state.
hugh@dcs.warwick.ac.uk

www.des.warwick.ac.uk/~hugh A constraint is a truth-valued expression, such as a comparison,
declared as part of the logical schema of the database.

(CS252.HACD: Fundamentals of Relational Databases The comparands of a constraint are typically relation expressions
Section 7: Constraints and Updating or invocations of aggregate operators.

But the commonest kinds of constraint are expressed using
special shorthands, like KEY, FOREIGN KEY, IS EMPTY.

KEY Constraints When a Superkey Is a Key

The constraint shown below EXAM_MARK
is a “uniqueness” constraint,
meaning that no two distinct

If no proper subset of superkey K is a superkey, then K is a key.

Studentld | Courseld Mark

So { StudentId, Courseld } is in fact a key of EXAM_MARK, and

tuples can match on both S1 Cl 85 e

Studentld and Courseld. s1) 19 is in fact the only key of EXAM_MARK.

{ Studentld, Courseld } is a S2 C1 49 In general a relvar can have several keys, in which case it is

superke of’EXAM M’ARK S3 C3 66 sometimes useful to nominate one of them as being the primary
pertey - S4 Cl 93 key. For that reason, keys are sometimes referred to as candidate

keys. When a primary key is nominated, any other keys are called
((EXAM_MARK GROUP { Mark } AS Marks alternate keys.
WHERE COUNT (Marks)>1) { })= RELATION { } { }

The KEY Shorthand Multiple Keys

Recall PLUS (¢ + b =c¢):

Traditionally, a KEY constraint is declared as part of the
definition of the relvar to which it pertains, thus:

VAR EXAM_MARK BASE RELATION {
Studentld SID,
Courseld CID,
Mark INTEGER }

KEY { Studentld, Courseld } ;

DN =
— W |o
W ln|w|le

Not a variable, of course, but we can still observe that {a, b},
{a, c} and {b, c} are all keys. We might even nominate {a, b}
to be the primary key (for psychological reasons only).

CS252: Fundamentals of Relational Databases 1

HACD.7: Constraints and Updating

18/10/2011

Degenerate Cases of Keys

The entire heading can be a key. In that case it is the only key
(why?).

The empty set can be a key. In that case it is the only key
(why?). What special property is implied by such a key?

“Foreign Key” Constraints

IS_ CALLED IS ENROLLED ON
Studentld| Name Studentld | Courseld
S1 Anne S1 Cl
S2 Boris S1 Cc2
S3 Cindy S2 Cl
S4 Devinder S3 C3
S5 Boris S4 Cl1

KEY { Studentld } Every Studentld value here must also

appear in IS_CALLED { StudentId }

8

Inclusion Dependency

FOREIGN KEY { Studentld } REFERENCING IS CALLED
included in declaration of IS_ENROLLED_ON is shorthand for:

IS_CALLED { Studentld } oIS _ENROLLED_ON { StudentId }

Such constraints in general are sometimes called inclusion
dependencies. An inclusion dependency is a foreign key if the
heading common to the two comparands is a key of the
referenced relvar.

A Special Case of Inclusion
Dependency

Consider:
TABLE DUM D { }
=RELATION {} {} or {}

In Tutorial D we can write this as IS_EMPTY (r).

Also:
rl or2=1IS_EMPTY (r2 MINUS /)

=r2 NOT MATCHING r!

10

IS EMPTY Example

EXAM _MARK
This might be subject Studentld | Courseld Mark
to the constraint:
0 <Mark <100 St ¢l 85
S1 C2 49
S2 Cl 49
IS EMPTY (= o 6
EXAM_MARK WHERE
Mark < 0 OR Mark > 100) 54 1 %3

Generalisation of Inclusion
Dependency

IS_EMPTY (rI NOT MATCHING r2)

E.g., to express that foreign key in IS ENROLLED_ON:

IS_EMPTY (IS_ENROLLED ON
NOT MATCHING IS_CALLED)

But now the operands can be arbitrary relation expressions,
without the restrictions of FOREIGN KEY.

CS252: Fundamentals of Relational Databases

HACD.7: Constraints and Updating 18/10/2011

Constraint Declaration

“Exclusion Dependency”?

In Tutorial D (in addition to KEY specifications written
inside relvar declarations):

CONSTRAINT name expression ;

IS_EMPTY (r/ MATCHING r2)

E.g., to enforce disjointness of part-time and full-time employees:
E.g.: CONSTRAINT Marks_out of 100 IS EMPTY

IS_EMPTY (PART TIMER MATCHING FULL_TIMER) (EXAM_MARK WHERE Mark < 0 OR Mark > 100) ;
And to cancel this constraint:

Equivalently:
quivatenty DROP CONSTRAINT Marks_out of 100 ;

IS_EMPTY (FULL_TIMER MATCHING PART TIMER)

Relational Update Operators INSERT, UPDATE, DELETE

In theory, only assignment is needed. For example, to enrol

student S5 on course C1-: The following shorthands are universally agreed on:

IS_ENROLLED_ON := + INSERT, for adding tuples to a relvar
IS_ENROLLED_ON « UPDATE, for updating existing tuples in a relvar
UNION - * DELETE, for removing tuples from a relvar
RELATION { TUPLE { StudentId SID (‘S5’),

Courseld CID (“C1") } } 5 loosely speaking!

But that’s not always convenient, and not easy for the system to
do the update quickly, either.

In Tutorial D: In Tutorial D:
INSERT relvar-name relation-expression ; UPDATE relvar-name | WHERE ...] (attribute-updates) ;
E.g. Eg.
INSERT IS_ENROLLED _ON UPDATE EXAM_MARK WHERE Courseld = CID (‘C1”)
RELATION { TUPLE { StudentId SID (‘S5°), (Mark :==Mark +5);
Courseld CID (‘C1”) }, .) .
TUPLE { Studentld SID (‘S4’) When it was decided that the exam for C1 had been a little too
Courseld CID (‘C4’) }} ; difficult, perhaps. Everybody who sat the exam gets 5 more
marks.
17 18

CS252: Fundamentals of Relational Databases 3

HACD.7: Constraints and Updating

18/10/2011

DELETE

In Tutorial D:

DELETE relvar-name | WHERE condition | ;
E.g.
DELETE IS_CALLED WHERE Name = NAME (‘Boris’) ;

(Did we mean to do that? — there’s more than one Boris!)

An Occasional Problem with
Updating

Suppose the following constraints are in effect:

CONSTRAINT EnrolRecognisedStudentsOnly
IS_EMPTY (IS_ENROLLED_ON NOT MATCHING IS_CALLED);

CONSTRAINT RegisterEnrolledStudentsOnly
IS_EMPTY (IS_CALLED NOT MATCHING IS_ENROLLED_ON);

We can’t enrol a student before we have named her and we can’t
name her before we have enrolled her on some course. Impasse?

20

Proposed Solution to The
Impasse

“Multiple assignment”: updating several variables simultaneously.

In Tutorial D:

INSERT IS CALLED
RELATION { TUPLE { StudentId SID (‘S6”),
Name NAME (‘Zo€”) } },
INSERT IS_ENROLLED_ON
RELATION { TUPLE { StudentId SID (‘S6’),
Courseld CID (‘C1°) } };

21

A Note on Multiple Assignment

Would the following have the same effect?

INSERT IS_CALLED
RELATION { TUPLE { Studentld SID (‘S6”),

Name NAME (‘Zo&’) } },
INSERT IS ENROLLED ON

EXTEND IS CALLED WHERE Name = NAME (‘Zoé¢’)
ADD (CID(‘C1’) AS Courseld) {Studentld, Courseld } ;

No! The second INSERT cannot see Zoé.

22

CS252: Fundamentals of Relational Databases

