
HACD.7: Constraints and Updating 18/10/2011

CS252: Fundamentals of Relational Databases 1

1

Constraints and Updating

Hugh Darwen

hugh@dcs.warwick.ac.uk
www.dcs.warwick.ac.uk/~hugh

CS252.HACD: Fundamentals of Relational Databases
Section 7: Constraints and Updating

2

Constraints

Constraints express the integrity rules for a database.

Enforcement of constraints by the DBMS ensures that the
database is at all times in a consistent state.

A constraint is a truth-valued expression, such as a comparison,
declared as part of the logical schema of the database.

The comparands of a constraint are typically relation expressions
or invocations of aggregate operators.

But the commonest kinds of constraint are expressed using
special shorthands, like KEY, FOREIGN KEY, IS_EMPTY.

3

KEY Constraints

C1

C3

C1

C2

C1

CourseId

66S3

93S4

49S2

49S1

85S1

MarkStudentId

EXAM_MARK

((EXAM_MARK GROUP { Mark } AS Marks
WHERE COUNT (Marks) > 1) { }) = RELATION { } { }

The constraint shown below
is a “uniqueness” constraint,
meaning that no two distinct
tuples can match on both
StudentId and CourseId.

{ StudentId, CourseId } is a
superkey of EXAM_MARK

4

When a Superkey Is a Key

If no proper subset of superkey K is a superkey, then K is a key.

So { StudentId, CourseId } is in fact a key of EXAM_MARK, and
is in fact the only key of EXAM_MARK.

In general a relvar can have several keys, in which case it is
sometimes useful to nominate one of them as being the primary
key. For that reason, keys are sometimes referred to as candidate
keys. When a primary key is nominated, any other keys are called
alternate keys.

5

The KEY Shorthand

Traditionally, a KEY constraint is declared as part of the
definition of the relvar to which it pertains, thus:

VAR EXAM_MARK BASE RELATION {
StudentId SID,
CourseId CID,
Mark INTEGER }

KEY { StudentId, CourseId } ;

6

Multiple Keys

532

321

1

b

32

ca

Recall PLUS (a + b = c):

Not a variable, of course, but we can still observe that {a, b},
{a, c} and {b, c} are all keys. We might even nominate {a, b}
to be the primary key (for psychological reasons only).

HACD.7: Constraints and Updating 18/10/2011

CS252: Fundamentals of Relational Databases 2

7

Degenerate Cases of Keys

The entire heading can be a key. In that case it is the only key
(why?).

The empty set can be a key. In that case it is the only key
(why?). What special property is implied by such a key?

8

“Foreign Key” Constraints

DevinderS4

CindyS3

Boris

Boris

Anne

Name

S5

S2

S1

StudentId

C3S3

C1S4

C1S2

C2S1

C1S1

CourseIdStudentId

IS_CALLED IS_ENROLLED_ON

KEY { StudentId } Every StudentId value here must also
appear in IS_CALLED { StudentId }

9

Inclusion Dependency

FOREIGN KEY { StudentId } REFERENCING IS_CALLED
included in declaration of IS_ENROLLED_ON is shorthand for:

IS_CALLED { StudentId }  IS_ENROLLED_ON { StudentId }

Such constraints in general are sometimes called inclusion
dependencies. An inclusion dependency is a foreign key if the
heading common to the two comparands is a key of the
referenced relvar.

10

A Special Case of Inclusion
Dependency

Consider:
TABLE_DUM  r { }

 RELATION { } { }  r { }

In Tutorial D we can write this as IS_EMPTY (r).

Also:
r1  r2  IS_EMPTY (r2 MINUS r1)

 r2 NOT MATCHING r1

11

IS_EMPTY Example

C1

C3

C1

C2

C1

CourseId

66S3

93S4

49S2

49S1

85S1

MarkStudentId

EXAM_MARK

This might be subject
to the constraint:
0 ≤ Mark ≤ 100

IS_EMPTY (
EXAM_MARK WHERE
Mark < 0 OR Mark > 100)

12

Generalisation of Inclusion
Dependency

IS_EMPTY (r1 NOT MATCHING r2)

E.g., to express that foreign key in IS_ENROLLED_ON:

IS_EMPTY (IS_ENROLLED_ON
NOT MATCHING IS_CALLED)

But now the operands can be arbitrary relation expressions,
without the restrictions of FOREIGN KEY.

HACD.7: Constraints and Updating 18/10/2011

CS252: Fundamentals of Relational Databases 3

13

“Exclusion Dependency”?

IS_EMPTY (r1 MATCHING r2)

E.g., to enforce disjointness of part-time and full-time employees:

IS_EMPTY (PART_TIMER MATCHING FULL_TIMER)

Equivalently:

IS_EMPTY (FULL_TIMER MATCHING PART_TIMER)

14

Constraint Declaration

In Tutorial D (in addition to KEY specifications written
inside relvar declarations):

CONSTRAINT name expression ;

E.g.: CONSTRAINT Marks_out_of_100 IS_EMPTY
(EXAM_MARK WHERE Mark < 0 OR Mark > 100) ;

And to cancel this constraint:
DROP CONSTRAINT Marks_out_of_100 ;

15

Relational Update Operators

In theory, only assignment is needed. For example, to enrol
student S5 on course C1:

IS_ENROLLED_ON :=
IS_ENROLLED_ON
UNION
RELATION { TUPLE { StudentId SID (‘S5’),

CourseId CID (‘C1’) } } ;

But that’s not always convenient, and not easy for the system to
do the update quickly, either.

16

INSERT, UPDATE, DELETE

The following shorthands are universally agreed on:

• INSERT, for adding tuples to a relvar
• UPDATE, for updating existing tuples in a relvar
• DELETE, for removing tuples from a relvar

loosely speaking!

17

INSERT

In Tutorial D:

INSERT relvar-name relation-expression ;

E.g.

INSERT IS_ENROLLED_ON
RELATION { TUPLE { StudentId SID (‘S5’),

CourseId CID (‘C1’) },
TUPLE { StudentId SID (‘S4’),

CourseId CID (‘C4’) }} ;

18

UPDATE

In Tutorial D:

UPDATE relvar-name [WHERE …] (attribute-updates) ;

E.g.

UPDATE EXAM_MARK WHERE CourseId = CID (‘C1’)
(Mark := Mark + 5) ;

When it was decided that the exam for C1 had been a little too
difficult, perhaps. Everybody who sat the exam gets 5 more
marks.

HACD.7: Constraints and Updating 18/10/2011

CS252: Fundamentals of Relational Databases 4

19

DELETE

In Tutorial D:

DELETE relvar-name [WHERE condition] ;

E.g.

DELETE IS_CALLED WHERE Name = NAME (‘Boris’) ;

(Did we mean to do that? — there’s more than one Boris!)

20

An Occasional Problem with
Updating

Suppose the following constraints are in effect:

CONSTRAINT EnrolRecognisedStudentsOnly
IS_EMPTY (IS_ENROLLED_ON NOT MATCHING IS_CALLED);

CONSTRAINT RegisterEnrolledStudentsOnly
IS_EMPTY (IS_CALLED NOT MATCHING IS_ENROLLED_ON);

We can’t enrol a student before we have named her and we can’t
name her before we have enrolled her on some course. Impasse?

21

Proposed Solution to The
Impasse

“Multiple assignment”: updating several variables simultaneously.

In Tutorial D:

INSERT IS_CALLED
RELATION { TUPLE { StudentId SID (‘S6’),

Name NAME (‘Zoë’) } } ,
INSERT IS_ENROLLED_ON

RELATION { TUPLE { StudentId SID (‘S6’),
CourseId CID (‘C1’) } } ;

22

A Note on Multiple Assignment

INSERT IS_CALLED
RELATION { TUPLE { StudentId SID (‘S6’),

Name NAME (‘Zoë’) } } ,
INSERT IS_ENROLLED_ON

EXTEND IS_CALLED WHERE Name = NAME (‘Zoë’)
ADD (CID(‘C1’) AS CourseId) {StudentId, CourseId } ;

Would the following have the same effect?

No! The second INSERT cannot see Zoë.

