
1/3

SQL Subqueries: Counterparts in Tutorial D

Hugh Darwen

I present some notes in response to a question on how to transcribe SQL queries that
use subqueries into Tutorial D. But first let me explain why I don’t teach this in
CS252. The explanation is quite simply that subqueries are not needed for relational
completeness! Put another way, for every SQL query that uses a subquery in its
WHERE clause there is an equivalent query that does not use any subqueries.
Subqueries do sometimes allow for a more convenient or more intuitive way of
expressing something but I am not too concerned with such psychological issues in
teaching relational theory. It is more important for you to understand how every
query can be expressed using just the relational operators and invocations of WHERE
that do not include relational expressions on the right-hand side.

So you don’t need to study these notes if you don’t want to. But in case you do …

What is a subquery?

SQL uses the term subquery to refer to a table expression (commonly known as a
query) that is contained within another table expression. Until 1992, as far as the
international standard for SQL is concerned, subqueries were permitted only inside
conditional expressions (i.e., truth-valued expressions), and conditional expressions
were permitted only inside the WHERE clause, and the HAVING clause. Nowadays
subqueries are permitted in the FROM and SELECT clauses too (and truth-valued
expressions can appear in the SELECT clause, but we don’t need to look at examples
of those here).

Does Tutorial D support subqueries?

Tutorial D has no restrictions on what type of expression is permitted where, apart
from the usual rule that the type of an expression must be appropriate to the context in
which it appears. (E.g., both operands of “=” must be of the same type, and both
operands of JOIN must be of some relation type.)

You can see examples of Tutorial D “subqueries” in some of my lecture slides—for
example, Lecture 5, Slide 11 and Lecture 6, Slides 12-16 and 21. These are
definitions of “shorthands”—operators like SUMMARIZE and DIVIDEBY that can
be defined entirely in terms of existing operators. And of course every constraint
declaration in Tutorial D (apart from KEY constraints) involves writing relational
expressions inside truth-valued expressions such as relation comparisons or
invocations of IS_EMPTY.

It follows that whatever can be expressed in SQL using a subquery can be expressed
in a similar fashion in Tutorial D—if you really want to; often, though, that is not the
best way of doing it in Tutorial D even if it is the best way in SQL, as we shall see.
However, there are some important differences in style to be noted. Understanding
these points will help you to make appropriate transcriptions.

SQL uses coercion; Tutorial D doesn’t

The term coercion refers to the use of an expression x of some type t1 in a place
where an operand of a different type t2 is expected. A suitable “type conversion”
operator is implicitly invoked to derive from x some corresponding value of type t2.
For example, some implementations of SQL allow you to assign a character string

2/3

such as '0001' to a numeric column. In this example, '0001' is implicitly “converted”
to the number 1.

Now consider the following SQL query:

SELECT Emp#, Name
FROM Emp
WHERE Salary = (SELECT MAX(Salary) FROM Emp)

That WHERE clause appears to be comparing a number, Salary, with a table! But
because the table is guaranteed to consist of exactly one column and exactly one row
(even when Emp is empty!), SQL is willing to save you the trouble of writing
something to tell it to extract the single column value from that single row.

In general coercion is not a good idea and the use of it in SQL has led to severe
difficulties in the development of the language since its introduction in 1979. So
Tutorial D does not use it at all. Here’s a faithful transcription into Tutorial D:

(Emp
WHERE Salary = Salary FROM TUPLE FROM

(SUMMARIZE Emp PER TABLE_DEE
ADD (MAX(Salary) AS Salary)))

{ Emp#, Name }

Alternatively, as the comparison uses “=” rather than “<” or “>”, we can convert the
scalar to a relation:

(Emp
WHERE RELATION { TUPLE { Salary Salary } }

= SUMMARIZE Emp PER TABLE_DEE
ADD (MAX(Salary) AS Salary))

{ Emp#, Name }

But exact transcription isn’t always the easiest way of solving the same problem in a
different language. Unlike SQL, Tutorial D has aggregate operators (Lecture 5,
Slides 13-14) that take relations and yield scalar values. To find the employees with
the highest salaries you would be more likely to simply write this:

(Emp
WHERE Salary = MAX (Emp, Salary))

{ Emp#, Name }

The second appearance of “Emp” here is what SQL would call a subquery. That’s a
rather heavy term for a simple relvar reference, but SQL does not allow a query to be
a simple table reference, forcing you to write SELECT * FROM Emp instead.

Column references versus attribute references

In SQL, if table operands T1 and T2 each have a column named C, you can use “dot
qualification” to tell the system which C you are referring to. This requires the table
operands to be named. For example, if they are assigned the names T1 and T2 (in
FROM clauses), then T1.C and T2.C can be used to distinguish between the two
columns.

Tutorial D does not use dot qualification, because in SQL it sometimes leads to
tables having more than one column of the same name. Such tables cannot be used
everywhere where you would expect to be able to use a table (e.g., they cannot be

3/3

stored in the database!). In Tutorial D, therefore, you sometimes have to resort to the
RENAME operator to avoid ambiguities. Consider, for example, the SQL query:

SELECT StudentId, Name
FROM Student S
WHERE NOT EXISTS (SELECT *

FROM IsEnrolledOn E
WHERE S.StudentId = C.StudentId)

Here’s as faithful a transcription into Tutorial D as I can come up with:

(Student WHERE IS_EMPTY ((IsEnrolledOn
RENAME (StudentId AS S))

WHERE StudentId = S)
{ StudentId, Name }

In the invocation of WHERE in the subquery, StudentId refers to the attribute of the
Student, permitted because Student is the relation operand of the WHERE in whose
condition StudentId appears. Without the RENAME it would refer to the attribute of
Enrolment and there would be no way of referring to StudentId of Student.

But of course you wouldn’t really do it that way in Tutorial D because it’s much
easier using plain old relational algebra:

(Student NOT MATCHING IsEnrolledOn) { StudentId, Name }

Truth-Valued Operators in SQL and Tutorial D

I’ve already shown that Tutorial D has IS_EMPTY (…) corresponding to SQL’s
NOT EXISTS (…). Obviously NOT (IS_EMPTY (…)) corresponds to SQL’s
EXISTS (…).

Scalar comparison operators in SQL and Tutorial D are pretty well identical, though
“=” really does mean “is exactly the same as” in Tutorial D whereas in SQL it
sometimes means “pretty well the same as, even if not exactly so”. Also, much more
importantly, all truth-valued operators in Tutorial D are guaranteed to yield either
TRUE or FALSE when invoked, whereas SQL’s (apart from EXISTS) sometimes
yield something called UNKNOWN.

Both SQL and Tutorial D have an operator for membership testing. In SQL it is IN.
In official Tutorial D it is  but Rel allows you to spell it the same way as in SQL.
Don’t forget, though, that Tutorial D’s counterpart of SQL’s

(x,y,z) IN (SELECT a, b, c FROM t)

would be

TUPLE { a x, b y, c z } IN t { c, b, a }.

(I have deliberately written the attribute names in different orders in the two operands,
to remind you that Tutorial D doesn’t care about the order of the attributes whereas
SQL does care about the order of columns.)

SQL has no counterpart of Tutorial D’s relation comparison operators (is subet of, is
superset of, and “equals”).

End of paper

