File: M359-Notes-on-RA.doc
Printed at: 17:43 on Monday, 11 April, 2011

M359: Relational Databases: theory and practice
Notes to accompany slides on Relational Algebra

Hugh Darwen

1. Cover slide

An algebra is a set of operators that somebody has found interesting enough to describe, note their
properties, and (probably) propose them for some particular purpose. Arithmetic is one such set
(plus, minus, times, and divide). Propositional logic (AND, OR, NOT, etc.) is another.

In this lecture I first establish the general principles underlying the relational algebra and then
describe the operators, using simple examples.The principles lean heavily on the notion in logic of a
relation as being a representation of the extension of a predicate.The algebra is called relational
because its operators operate on relations to yield relations—in mathematical parlance, its operators
are closed over relations.

As in the slides, occasional references to features of Tutorial D that are not included in M359 are
shown in red, like this.

2. Anatomy of a Relation

This is a reprise of one of the slides of my tutorial 1 lecture, Introduction.

Because of the distinction I have noted between the terms “relation” and “table”, we prefer not to
use the terminology of tables for the anatomical parts of a relation. We use instead the terms
proposed by E.F. Codd, the researcher who first proposed relational theory as a basis for database
technology, in 1969.

Try to get used to these terms. You might not find them very intuitive. Their counterparts in the
tabular representation might help:

relation table
(n-)tuple row
attribute column

Also (repeating what is shown in the slide):
The degree is the number of attributes.
The cardinality is the number of tuples.

The heading is the set of attributes (note set, because the attributes are not ordered in any
way).

The body is the set of tuples (again, note set).

An attribute has an attribute name.

Each attribute has an attribute value in each tuple.

3. ENROLMENT Example

This is a reprise too, showing how a relation can be depicted as a table.

The relation shown here is a hypothetical “current” value assigned to the relvar named
ENROLMENT.

Notes for Relational Algebra — Page 1 of 9

Here is a possible declaration for this variable, in the notation used by M359 in Block 2:

relation ENROLMENT
Studentld SID
Name NAME
Courseld CID
primary key (Studentld, Courseld) ;

where SID, NAME and CID are the domains (nowadays normally referred to as #ypes) of the
attributes Studentld, Name and Courseld, respectively.

Note the predicate for the relvar, under which each tuple in the relation assigned to it (i.e., each row
in the table) is to be interpreted.

Because Anne is enrolled on two courses, her name is recorded twice. Not a good idea! What if
one row showed Anne as the name and the other showed Ann? Or Boris?

In any case, how could we record the student identifier and name of a student who has registered
with the university but is not currently enrolled on any courses? (Assuming such a strange state of
affairs is permissible, that is.)

The solution is to split the ENROLMENT variable into two. The conjunction “and” in the predicate
shows us how and where to make the split ...

4. Splitting ENROLMENT

To be going on with, these two relvars will constitute the database for our case study. We will add
more relvars when we need them.

Note the arrival of S5, called Boris, a student who is not enrolled on any courses. In the previous
single-relvar design we had no means of recording S5’s name while that student was not enrolled on
any courses.

5. Relations and Predicates (1)

No notes.

6. Relations and Predicates (2)

Under the Open-World Assumption, it is still the case that every tuple in the relation represents a
true instantiation, but it is not necessarily the case that every such tuple is included.

7. Relational Algebra

No notes.

8. Logical Operators

The operators that logicians define to operate on predicates are (a) all of those defined to operate on
propositions (AND, OR, NOT) and (b) quantifiers.

To quantify something is to say how many of it there are. The two best known quantifiers are
called EXISTS and FOR ALL, symbolically 3 and V, respectively. Either of these is sufficient for
all the others to be defined in terms of it, and we will take EXISTS as our primitive one. To say that
some kind of thing exists is to say there there is at least one thing of that kind.

EXISTS is illustrated in predicate number 2 in the slide. Read it as “There exists a course Courseld
such that Studentld is enrolled on Courseld.” Notice how, although the variable Courseld appears

Page 2 of 9 —Notes for Relational Algebra

twice in this rewrite, it doesn’t appear at all in the shorthand used on the slide. The variable is said
to be bound (by quantification). In predicates 3 and 4 we have replaced the variable Name by the
names Devinder and Boris. That variable is also said to be bound, but by substitution rather than by
quantification.

Variables that are not bound are called free variables, or parameters (because a predicate can be
thought of as an operator that when invoked yields a truth value).

AND, OR, and NOT are illustrated in predicates 1, 4 (which also uses NOT) and 3 (which also uses
AND), respectively.

9. Meet The Operators

The left-hand column shows the familiar operators of predicate logic. The right-hand column gives
names of corresponding relational operators. These relational operators constitute the relational
algebra.

Why so many for AND? We will see that join is the fundamental one, but we need others for
convenience, to cater for various common special cases that would be too difficult if join were our
only counterpart of AND.

Why some in capitals and others in lower case? The ones in caps are operator names that are
actually used (normally) in concrete syntax for invoking the operators in question; the other
operators are (normally) invoked using different notation, as we shall see. In particular, the ones in
caps are used that way in Tutorial D.

Advance warning: When we come to the treatment of OR and NOT we will find that relational
algebra imposes certain restrictions to overcome certain severe computational problems with these
operators. For this reason, relational algebra is not complete with respect to logic (first order
predicate calculus, to be precise). Instead we will make do with what E.F. Codd called relational
completeness.

10. join (= AND)

Note the format of Slide 10 carefully. The format is used for other examples too. The top line
shows a predicate for which we provide a corresponding relational expression. The next line, with
upward arrows connecting its parts to part of the predicate, is that relational expression—in this
case an invocation of the operator join. Underneath that is a table depicting the relation resulting
from that invocation.

Note that join here is an infix operator, placed in between its operands, like the usual arithmetic
operators.

The relational expression corresponding to the given predicate is

IS CALLED join IS ENROLLED ON.

We can also write it as:

IS _ENROLLED ON join IS CALLED, or (in some languages, such as Tutorial D, but not
M359)

join { IS ENROLLED ON, IS CALLED },or

join { I S CALLED, IS ENROLLED ON }.

Those last two examples show join being used as a prefix operator, written in front of the operands,
the operands being enclosed in braces (rather than parentheses) to indicate that the order is
unimportant.

The upwards arrows show which bits of the relational expression correspond to which bits of the
predicate.

Notes for Relational Algebra — Page 3 of 9

The arrows connecting rows in the tables show which combinations of operand tuples represent true
instantiations of the predicate. Note how a tuple on the left “matches™ a tuple on the right if the two
tuples have the same Studentld value; otherwise they do not match.

The result of this join is shown on the next slide ...

11. IS_CALLED join IS_ENROLLED_ON

Note very carefully that the result has only one Studentld attribute, even though the corresponding
variable appears twice in the predicate. Multiple appearances of the same variable in a predicate are
always taken to stand for the same thing. Here, if we substitute S1 for one of the Studentlds, we
must also substitute S1 for the other. That is why we have only one Studentld in the resulting
relation. Studentld is called a common attribute (of r1 and r2). In general, there can be any number
of common attributes, including none at all.

12. Definition of join

Commutative means that the order of operands is immaterial: 7/ join 2 = r2 join r1.
Associative means that (7/ join 72) join »3 = r/ join (72 join 73).

From the given definition we can conclude:

(a) Each attribute that is common to both 7/ and 2 appears once in the heading of the result.

(b) It is only where ¢/ and ¢2 have equal values for each common attribute that their
combination (via union) yields a tuple of the result. If z/ and ¢2 have different values for
common attribute ¢, then their union will have two distinct ¢ attributes and therefore is not a
tuple and cannot appear in the result.

(c) If there are no common attributes, then the heading of the result consists of each attribute of
rl and each attribute of 2. It follows that every combination of a ¢/ with a #2 appears in the
result.

(d) If either operand is empty, then so is the result.

How would we achieve the same natural join, of [S CALLED and IS ENROLLED on, if the
student identifier attributes had different names? We must be able to do that, or we lose relational
completeness! We introduce a relational operator that has no direct counterpart in predicate logic:
RENAME.

13. rename

Unfortunately, E.F. Codd did not foresee the need for a rename operator and so it was omitted from
some prototype implementations of the relational algebra. And there is no counterpart of rename in
SQL.

rename returns its input unchanged apart from the specified change(s) in attribute name.
Multiple changes can be specified, separated by commas. For example:

rename [S CALLED (Studentld as Id, Name as StudentName)

14. Definition of rename

No notes.

15. rename and join

Each operand of the join is an invocation of rename.

Page 4 of 9 —Notes for Relational Algebra

It is perhaps a trifling irritating to be told that each of our students has the same name as himself or
herself. (Note in passing that “x has the same name as y” is an example of what is called a reflexive
relation—true whenever x=y.) Soon we will discover how those truisms can be eliminated from the
result.

It is also a trifle annoying to be told not only that S2 has the same name as S5 but also that S5 has
the same name as S2.(Note in passing that “x has the same name as y” is an example of what is
called a symmetric relation—if it is true for x=a and y=b, then it is true for x=b and y=a.) We will
discover how that truism can be eliminated, too.

16. Special Cases of join

With some of the relational operators we can take note of certain special cases of their invocation,
just as we do with operators in other algebras. For example, in arithmetic, we note that adding 0 to
any number x is a special case of addition because it always yields x itself. Similarly, "times 1" is a
special case of multiplication. Each of these two examples involves the so-called identity under the
operator in question: 0 for addition and 1 for multiplication. With some dyadic operators the case
where the two operands are equal is also an interesting special case. For example, x-x is always
equal to 0, and x/x is always equal to 1 (except when x=0 of course, when it is undefined).

In set theory the empty set (usually denoted by the greek letter phi: ¢) is such that for an arbitrary
setA,AU¢d=A4,A-¢p=A,and AN ¢=¢. We can therefore note these three cases as special cases
of union, difference, and intersection, respectively.

In R join R, all attributes are common to both operands and each tuple in R “matches” itself and no
other tuples. Therefore the result is R.

When r/ and r2 have the same heading, then the result of 7/ join 72 consists of every tuple that is in
both 7/ and r2. Traditionally, such cases are allowed to be written as »/ intersect 2, as taught in
M359. It could be argued that there isn’t much point, but we will see some justification (not much,
perhaps) when we eventually come to relational union. Recall how in set theory, intersection
corresponds to AND whereas union corresponds to OR.

When 1 and 2 have disjoint headings (i.e., no attributes in common), then every tuple in 7/
matches every tuple in 72 and we call the join a Cartesian product. Some authorities permit or
require 7/ times 72, as taught in M359, to be written in this special case. Permitting it is perhaps a
good idea, for the user is thereby confirming that he or she is fully aware of the fact that there are no
common attributes in the operands. But requiring the use of times in this special case turns out to
be not such a good idea. Exercise: Why not? (Hint: look at the notes for Slide 12)

17. Interesting Properties of join

Because of these properties, Tutorial D (but not M359!) allows join to be written in prefix
notation, with any number of arguments:

join { rl, r2, ...rn}

18. Projection (= EXISTS)
We say that IS ENROLLED ON is projected over Studentld.

We can project a relation over any subset of its attributes. The chosen subset gives us the heading
of the result.

Note, however, that we are quantifying over the excluded attribute(s), in this case Courseld. It is
considered important to be able to write either the attributes to be included or those to be excluded,

Notes for Relational Algebra — Page 5 of 9

whichever suits best at the time. Accordingly, Tutorial D (but not M359!)permits the present
example to be written thus: IS ENROLLED ON { ALL BUT Courseld }.

In fact, Tutorial D supports the ALL BUT notation everywhere that an attribute name list can
appear.

19. Definition of Projection

No notes.

20. How ENROLMENT Was Split

In Block 2 M359 does not teach any operators for database updating. This slide uses the Tutorial
D assignment operator (:=) to assign the result of relational projection to each of the two variables,
IS CALLED and IS ENROLLED on into which we split the original ENROLMENT variable.

21. Special Case of AND (1)

The very special case here is a simple substitution of a value, 'Boris', for one of the predicate
variables, yielding a 1-place predicate. The corresponding relation therefore has just a single
attribute, Studentld. We achieve this by a combination of restriction (the new operator, where,
introduced on this slide) and projection.

It is the restriction that is a relational counterpart of AND. The predicate for the entire expression,
as shown on the slide, is

There exists a Name such that Studentld is called Name and Name is Boris.

The projection over Studentld corresponds to the “There exists a Name such that” part of the
predicate. The text following “such that” is the predicate for the where invocation:

Studentld is called Name and Name is Boris.

In general, the expression that appears after the key word where is a conditional expression,
typically involving comparisons, possibly combined using the usual logical operators, AND, OR
and NOT.

Note that the conditional expression can, and typically does, reference attributes of the input
relation.

22. A More Useful Restriction

In this slide we are applying the restriction “where sidl < sid2” to the join of two invocations of
rename. The parentheses make that order of operations clear if you study them very carefully, but
although they are easily understood by the computer, they are something of a burden to the human
reader.

Note how that where invocation cannot conveniently be expressed by a join, as we did in Slide 3,
with a relation of degree 1 and cardinality 1, to obtain student ids of students called Boris. If we
tried a similar technique here, we would have to join with a binary relation giving all pairs of
student ids where the first compares less than the second. When would we ever stop writing?

Now we know why where is a very useful operator for certain (very common) special cases of
predicates involving AND.

Page 6 of 9 —Notes for Relational Algebra

23. Definition of Restriction

“On attributes of 7’ simply means that ¢ can contain zero or more references to attributes of r.If ¢
contains no references to attributes of 7, then its result (TRUE or FALSE) is the same for each tuple
of r.

24. Special Cases of Restriction

No notes.

25. Special Case of AND (2)

Sorry about the contrived example. I could have given a more realistic one if my database had
some numerical data in it. For example, think about computing the price of each item in an order.
That would involve multiplying the unit price by the quantity ordered and perhaps applying a
discount agreed for the customer placing the order.

26. Extension

Unfortunately, E.F. Codd did not foresee the need for an EXTEND operator and so it was omitted
from some prototype implementations of the relational algebra and some textbooks still fail to
mention it.

In this example, we use the operator, SUBSTRING. SUBSTRING(s, b, n) returns the string
consisting of the n characters of s beginning at position 5. Thus, SUBSTRING(Name, 1, 1) yields
the string consisting of the first character of the Name value in each tuple of IS CALLED.

The relation corresponding to the SUBSTRING operator contains a 4-tuple for every possible
combination of s, b, and n values (compare with the relation for arithmetic “plus”, shown in my
lecture on Constraints, Slide 6). To write this relation out in full would take forever (nearly), and
that’s why the equivalent expression using join is impractical.

27. Definition of Extension

Exercise:

Assume the existence of the following relvars:
CUST with attributes C# and DISCOUNT
ORDER with attributes O#, C#, and DATE
ORDER _ITEM with attributes O#, P#, and QTY
PRODUCT with attributes P# and UNIT PRICE

The underlined attributes are those specified in a primary key declaration for each relvar. Thus,
for example, there cannot be more than one order item for the same part in the same order.

The price of an order item can be calculated by the formula QTY*UNIT_ PRICE*(1-
(DISCOUNT/100)).

Write down a relation expression to yield a relation with attributes O#, P#, and PRICE, giving the
price of each order item.

28. OR

The dotted line indicates that the table depicting the relation that would represent the extension of
that predicate is incomplete; for the relation, under our Closed-World Assumption, must include

Notes for Relational Algebra — Page 7 of 9

every tuple that satisfies either of the two disjuncts (the sentences connect by “or”: Studentld is
called Name, and Studentld is enrolled on Courseld).

It is neither reasonable nor very practical to require the DBMS to support evaluation of such huge
relations, so Codd sought some restricted support for disjunction that would be sufficient to meet
the perceived practical requirement ...

29. union (restricted OR)

As it happens, analogous restrictions are typically found in other logic-based languages, such as
Prolog. By enforcing the operands to be #ype compatible (i.e., have the same heading), the
combinatorial explosion depicted on the previous slide is avoided!

30. Definition of union

Recall that / intersect 72 is traditionally permitted in the special case where the heading of the
operands are identical. In basic set theory, we have union, intersection, and difference. It seems
that Codd thought his relational algebra would seem psychologically incomplete unless it had a
counterpart of each of those three.

Exercises:

1. What is the result of » union »?

2. Is union commutative? L.e., do »/ union »2 and 2 union »/ always denote the same
relation?

3. Is union associative? l.e., do (#/ union 72) union 73 and »/ union (72 union r3) always
denote the same relation?

31. NOT

Again the Closed-World Assumption makes general support for negation a no-no (pun intended!).

Codd’s solution was the same as with disjunction, with his definition of minus (see later), but after
Codd a significantly less restrictive approach was discovered ...

32. Restricted NOT

In Tutorial D (but not M359!) we define an operator, NOT MATCHING, that combines negation
with conjunction, thus avoiding the combinatorial explosion. Again, analogous restrictions are
found in other logic-based languages.

33. Definition of NOT MATCHING
Exercises: State the result of

1. r NOT MATCHING r

2. (¥ NOT MATCHING r) NOT MATCHING r
3. ry NOT MATCHING (»r NOT MATCHING r)
Is NOT MATCHING associative? Is it commutative?

34. difference

M359 teaches difference, which completes Codd’s trio of counterparts of the basic set operators.

Page 8 of 9 —Notes for Relational Algebra

To define difference in terms of NOT MATCHING is trivial, for I difference 2, for all the cases

where it is defined, is equivalent to »/ NOT MATCHING r2.

Exercise: Define I NOT MATCHING 72 in terms of difference.

35. Example of difference

Note how difference so often has to be used in conjunction with project and join, if one’s query is
to be useful. This example is equivalent to the Tutorial D expression [S CALLED NOT

MATCHING IS ENROLLED ON.

End of Notes

Notes for Relational Algebra — Page 9 of 9

