Relational Algebra

Hugh Darwen

hughdarwen@gmail.com
web.onetel.com/~hughdarwen/M359/

A lecture derived from HD’s course at Warwick University.
Terms and concepts not used in M359 are shown in this colour.

Anatomy of a Relation

Studentld Name Courseld
Cl1

attribute values

n-tuple, or tuple.
This 1s a 3-tuple.
The tuples
constitute the body
of the relation.

The number of
tuples in the body
1s the cardinality of
the relation.

attribute name

Heading (a set of attributes)
The degree of this heading is 3,
which 1s also the degree of the relation.

ENROLMENT Example

ENROLMENT (a relation variable, or relvar)

Studentld Name Courseld
S1 Anne Cl
S1 Anne C2
S2 Boris Cl
S3 Cindy C3
S4 Devinder Cl

Predicate: Studentld 1s called Name and 1s enrolled on Courseld

Note redundancy: S1 1s always called Anne!

Splitting ENROLMENT

IS CALLED
Studentld| Name
S1 Anne
S2 Boris
S3 Cindy
S4 Devinder
S5 Boris

Student Studentld 1s called

Name

IS ENROLLED ON

Studentld | Courseld
S1 Cl
S1 C2
S2 Cl
S3 C3
S4 Cl

Student Studentld 1s enrolled on

course Courseld

Relations and Predicates (1)

Consider the predicate: Studentld 1s called Name

... 1s called --- is the intension (meaning) of the predicate.

The parameter names are arbitrary. “S is called N means the
same thing (has the same intension).

The extension of the predicate 1s the set of #rue propositions that
are instantiations of 1t:

{ S1 is called Anne, S2 1s called Boris, S3 1s called Cindy,

S4 1s called Devinder, S5 1s called Boris }

Each tuple in the body (extension) of the relation provides the
values to substitute for the parameters in one such
instantiation.

Relations and Predicates (2)

Moreover, each proposition in the extension has exactly one
corresponding tuple 1n the relation.
This 1:1 correspondence reflects the Closed-World Assumption:

A tuple representing a true instantiation 1s in the relation.
A tuple representing a false one is out.

The Closed-World Assumption underpins the operators we are
about to meet.

Relational Algebra

Operators that operate on relations and return relations.

In other words, operators that are closed over relations. Just as
arithmetic operators are closed over numbers.

Closure means that every invocation can be an operand, allowing
expressions of arbitrary complexity to be written. Just as, in
arithmetic, e.g., the invocation b-c 1s an operand of a+(b-c).

The operators of the relational algebra are relational
counterparts of logical operators: AND, OR, NOT, EXISTS.
Each, when invoked, yields a relation, which can be
interpreted as the extension of some predicate.

Logical Operators

Because relations are used to represent predicates, 1t makes sense for
relational operators to be counterparts of operators on predicates.
We will meet examples such as these:

Student Studentld is called Name AND Studentld is enrolled on
course Courseld.

Student Studentld 1s enrolled on some course.

Student Studentld 1s enrolled on course Courseld AND Studentld 1s
NOT called Devinder.

Student Studentld 1s NOT enrolled on any course OR Studentld 1s
called Boris.

Meet The Operators

Logic Relational counterpart
AND join
restriction (select ...where)
extension
SUMMARIZE
and some more
EXISTS project ... over
OR union
(AND) NOT (semi)difference

rename

join (= AND)

Studentld 1s called Name AND Studentld 1s enrolled on Courseld.

|

IS CALLED join IS ENROLLED ON

Name | Studentld Studentld | Courseld
Anne S1 S1 Cl
Boris S2 A S1 C2
Cindy 33 \ S2 Cl
Devinder S4 \’ S3 C3
Boris S5 \’ S4 Cl

10

IS CALLED join IS ENROLLED ON

Studentld Name Courseld
S1 Anne Cl
S1 Anne C2
S2 Boris Cl
S3 Cindy C3
S4 Devinder Cl

Seen this before? Yes, this 1s our original ENROLMENT. The
JOIN has reversed the split. (And has “lost” the second Boris.)

11

Definition of join

Let s =7/ join 2. Then:
The heading Hs of s 1s the union of the headings of »/ and 2.

The body of s consists of those tuples having heading Hs that can
be formed by taking the union of #/ and 72, where ¢/ 1s a tuple of
rl and £2 1s a tuple of 2.

If ¢ 1s a common attribute, then 1t must have the same domain in
both / and 2. (L.e., if it doesn’t, then / join r2 is undefined.)

Note: join, like AND, 1s both commutative and associative.

12

rename

Si1d1 1s called Name

IS CALLED rename (Studentld as Sid])

Studentld| Name Sid1 Name
S1 Anne S1 Anne
S2 Boris S2 Boris
S3 Cindy S3 Cindy
S4 Devinder S4 Devinder
S5 Boris S5 Boris

13

Definition of rename

Lets=rrename (A/ as B, ... An as Bn)

The heading of s 1s the heading of » except that attribute A/ 1s
renamed to B/ and so on.

The body of s consists of the tuples of » except that in each tuple
attribute A/ 1s renamed to B/ and so on.

14

rename and join

Sid1 1s called Name AND so 1s Sid2

IS CALLED rename (Studentld as Sidl) join
IS CALLED rename (Studentld as Sid2)

Sidl1 Name S1d2

S1 Anne S1
S2 Boris S2
S2 Boris S5
S5 Boris S2
S3 Cindy S3

S4 Devinder S4
S5 Boris S5

15

Special Cases of join

What is the result of R JOIN R?
R

What 1f all attributes are common to both operands?

It 1s called “intersection”.

What 1f no attributes are common to both operands?

It 1s called “Cartesian product”

16

Interesting Properties of join

It 1s commutative: rl join r2 =r2 join rl
It 1s associative: (vl join r2) join 3 = rl join (72 join r3)
So Tutorial D allows join{r/, r2, ...} (note the braces)

We note in passing that these properties are important for
optimisation (in particular, of query evaluation).

Of course 1t 1s no coincidence that logical AND i1s also both
commutative and associative.

17

Projection (= EXISTS)

Student Studentld 1s enrolled on some course.

project IS ENROLLED ON over Studentld

To obtain:

Studentld

S1

S2

S3

S4

Given:
Studentld | Courseld
S1 Cl
S1 C2
S2 Cl
S3 C3
S4 Cl

18

Definition of Projection

Let s = project r over A1, ..., An }
(=, in Tutorial D, » { ALL BUT BI, ..., Bm }, where
B1, ..., Bm are the attributes not mentioned in 41/, ..., An)

The heading of s 1s the subset of the heading of » given by { A1,
.. An }.

The body of s consists of each tuple that can be formed from a
tuple of » by removing from it the attributes named B/, ... Bm.

Note that the cardinality of s can be less than that of » but
cannot be more than that of .

19

How ENROLMENT Was Split

relation IS CALLED
Studentld: Studentlds,
Name: Names })
primary key Studentld
IS CALLED := project ENROLMENT over Studentld, Name

relation IS ENROLLED ON
Studentld: Studentlds,
Courseld: Courselds
primary key Studentld, Courseld
IS ENROLLED ON := project ENROLMENT

over Studentld, Courseld
20

Special Case of AND (1)

Studentld 1s called Boris
Can be done using JOIN and projection, like this:
project (IS CALLED JOIN

RELATION { TUPLE { Name ‘Boris’ } })
over Studentld

but it’s easier using restriction (and projection again):
project (select IS CALLED where Name = ‘Boris’)
over Studentld

result: Studentld
S2
S5

“EXISTS Name such that Studentld 1s called Name AND Name 1s Boris™ 5;

A More Usetul Restriction

Sid1 has the same name as Sid2 (AND Si1d2 # Sid1).

project (select ((IS CALLED rename (Studentld as Sidl))
join
(IS CALLED rename (Studentld as Sid?)))
where Sidl < Sid2) over Sidl, Sid?2

Result: Sid1l Sid2
S2 S5

Hopelessly difficult using JOIN instead of WHERE! (Why?)

22

Definition of Restriction

Let s = select » where ¢, where c 1s a conditional expression on
attributes of 7.

The heading of s 1s the heading of 7.

The body of s consists of those tuples of » for which the
condition ¢ evaluates to TRUE.

So the body of s 1s a subset of that of 7.

23

Special Cases of Restriction

What is the result of R where TRUE?

R

What is the result of R where FALSE?

The empty relation with the heading of R.

24

Extension

Studentld 1s called Name AND Name begins with the letter Initial.

EXTEND IS CALLED ADD
(SUBSTRING (Name, 0, 1) AS Initial)

Result: Studentld| Name Initial
S1 Anne A
S2 Boris B
S3 Cindy C
S4 Devinder D
S5 Boris B

25

Definition of Extension

Let s = EXTEND r ADD (formula-1 AS A1, ... formula-n AS An)

The heading of s consists of the attributes of the heading of
plus the attributes 4/ ... An. The declared type of attribute Ak is
that of formula-k.

The body of s consists of tuples formed from each tuple of » by
adding » additional attributes A7 to An. The value of attribute
Ak 1s the result of evaluating formula-k on the corresponding
tuple of .

26

OR

Studentld is called Name OR Studentld is enrolled on Courseld.

and so on ad infinitum (almost!)

Studentld Name Courseld
S1 Anne Cl
S1 Boris Cl
S1 Zorba Cl
S1 Anne C4
________________ LSS N N —

NOT SUPPORTED!

27

UNION (restricted OR)

Studentld 1s called Devinder OR Studentld 1s enrolled on C1.

Studentld
S1
S2
S4

(project (select IS CALLED where Name = ‘Devinder’)
over Studentld)

union

(project (select IS ENROLLED ON where Courseld = ‘C1”)

over Studentld))%

Definition of UNION

Lets=r/ union r2. Then:

rl and r2 must have the same heading.

The heading of s 1s the common heading of »/ and r2.

The body of s consists of each tuple that is either a tuple of 1/

or a tuple of 2.

Is UNION commutative? Is it associative?

29

NOT

Studentld 1s NOT called Name

Studentld Name
S1 Boris
S1 Quentin
S1 Zorba
S1 Cindy
________________ LU

and so on ad infinitum (almost!)

NOT SUPPORTED!

30

Restricted NOT

Studentld 1s called Name AND i1s NOT enrolled on any course.

Studentld| Name
S5 Boris

In Tutorial D (but not in M359!)
IS CALLED NOT MATCHING IS ENROLLED ON

31

Detinition of NOT MATCHING

Let s =71 NOT MATCHING r2. Then:
The heading of s 1s the heading of /.

The body of s consists of each tuple of »/ that matches no tuple
of 72 on their common attributes.

It follows that in the case where there are no common attributes,
s 1s equal to 1 if 2 1s empty, and otherwise is empty .

32

DIFFERENCE

M359 teaches rl difference 72 instead of »/ NOT MATCHING r2.

difference 1s set difference and requires »/ and »2 to have the
same heading (as in 7/ union 72).

Most textbooks (following Codd) teach difference and do not
even define NOT MATCHING, in spite of its greater generality.

Either can be defined in terms of the other.

33

DIFFERENCE Example

As before:
Studentld 1s called Name AND 1s NOT enrolled on any course.

Studentld| Name
S5 Boris

IS CALLED join (
(project IS CALLED over Studentld)

difference
(project IS ENROLLED ON over Studentld))

34

